Skip to main content

CADASIL and Animal Models

  • Chapter
  • First Online:
White Matter Injury in Stroke and CNS Disease

Abstract

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common cause of inherited stroke and vascular dementia in young and middle-aged adults. The wide and heterogeneous clinical spectrum ranges from migraine with aura to leukoaraiosis and subcortical lacunar strokes, and mood disturbances, apathy and cognitive impairments. Since its genetic definition in early 1990s, an increasing number of clinical and experimental studies aimed to elucidate the relationship between CADASIL mutations on NOTCH3 gene and the pathology, aided by the development of transgenic mouse models expressing CADASIL mutations as experimental tools. In this chapter, we provide a brief review of animal models of CADASIL with an emphasis on neuropathological consequences including white matter disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain barrier

CADASIL:

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy

CBF:

Cerebral blood flow

CVR:

Cerebrovascular resistance

EGF:

Epidermal growth factor

MCAo:

Middle cerebral artery occlusion

N3KO:

Notch3 knockout

Notch3ECD :

Notch3 extracellular domain

NOTCH3ICD :

Notch3 intracellular domain

PID:

Peri-infarct depolarization

SD:

Spreading depression

SVD:

Small vessel disease

WT:

Wild type

References

  • Arboleda-Velasquez JF, Manent J, Lee JH, Tikka S, Ospina C, Vanderburg CR, Frosch MP, Rodriguez-Falcon M, Villen J, Gygi S, Lopera F, Kalimo H, Moskowitz MA, Ayata C, Louvi A, Artavanis-Tsakonas S (2011) Hypomorphic Notch 3 alleles link Notch signaling to ischemic cerebral small-vessel disease. Proc Natl Acad Sci U S A 108(21):E128–E135

    Article  PubMed  Google Scholar 

  • Arboleda-Velasquez JF, Zhou Z, Shin HK, Louvi A, Kim HH, Savitz SI, Liao JK, Salomone S, Ayata C, Moskowitz MA, Artavanis-Tsakonas S (2008) Linking Notch signaling to ischemic stroke. Proc Natl Acad Sci U S A 105(12):4856–4861

    Article  PubMed  CAS  Google Scholar 

  • Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood–brain barrier. Nature 468(7323):557–561. doi:10.1038/nature09522

    Article  PubMed  CAS  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284(5415):770–776

    Article  PubMed  CAS  Google Scholar 

  • Auer DP, Putz B, Gossl C, Elbel G, Gasser T, Dichgans M (2001) Differential lesion patterns in CADASIL and sporadic subcortical arteriosclerotic encephalopathy: MR imaging study with statistical parametric group comparison. Radiology 218(2):443–451

    Article  PubMed  CAS  Google Scholar 

  • Ayata C (2010a) CADASIL: experimental insights from animal models. Stroke 41(10 Suppl): S129–S134

    Article  PubMed  Google Scholar 

  • Ayata C (2010b) Cortical spreading depression triggers migraine attack: pro. Headache 50(4): 725–730. doi:10.1111/j.1526-4610.2010.01647.x

    Article  PubMed  Google Scholar 

  • Baudrimont M, Dubas F, Joutel A, Tournier-Lasserve E, Bousser MG (1993) Autosomal dominant leukoencephalopathy and subcortical ischemic stroke. A clinicopathological study. Stroke 24(1):122–125

    Article  PubMed  CAS  Google Scholar 

  • Borggrefe T, Oswald F (2009) The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci 66(10):1631–1646. doi:10.1007/s00018-009-8668-7

    Article  PubMed  CAS  Google Scholar 

  • Bousser M, Tournier-Lasserve E (2001) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: from stroke to vessel wall physiology. J Neurol Neurosurg Psychiatry 70(3):285–287

    Article  PubMed  CAS  Google Scholar 

  • Bruening R, Dichgans M, Berchtenbreiter C, Yousry T, Seelos KC, Wu RH, Mayer M, Brix G, Reiser M (2001) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: decrease in regional cerebral blood volume in hyperintense subcortical lesions inversely correlates with disability and cognitive performance. AJNR Am J Neuroradiol 22(7):1268–1274

    PubMed  CAS  Google Scholar 

  • Brulin P, Godfraind C, Leteurtre E, Ruchoux MM (2002) Morphometric analysis of ultrastructural vascular changes in CADASIL: analysis of 50 skin biopsy specimens and pathogenic implications. Acta Neuropathol 104(3):241–248. doi:10.1007/s00401-002-0530-z

    PubMed  Google Scholar 

  • Buffon F, Porcher R, Hernandez K, Kurtz A, Pointeau S, Vahedi K, Bousser MG, Chabriat H (2006) Cognitive profile in CADASIL. J Neurol Neurosurg Psychiatry 77(2):175–180. doi:10.1136/jnnp.2005.068726, 77/2/175 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG (2009) Cadasil. Lancet Neurol 8(7):643–653

    Article  PubMed  Google Scholar 

  • Chabriat H, Levy C, Taillia H, Iba-Zizen MT, Vahedi K, Joutel A, Tournier-Lasserve E, Bousser MG (1998) Patterns of MRI lesions in CADASIL. Neurology 51(2):452–457

    Article  PubMed  CAS  Google Scholar 

  • Chabriat H, Pappata S, Ostergaard L, Clark CA, Pachot-Clouard M, Vahedi K, Jobert A, Le Bihan D, Bousser MG (2000) Cerebral hemodynamics in CADASIL before and after acetazolamide challenge assessed with MRI bolus tracking. Stroke 31(8):1904–1912

    Article  PubMed  CAS  Google Scholar 

  • Chabriat H, Pappata S, Poupon C, Clark CA, Vahedi K, Poupon F, Mangin JF, Pachot-Clouard M, Jobert A, Le Bihan D, Bousser MG (1999) Clinical severity in CADASIL related to ultrastructural damage in white matter: in vivo study with diffusion tensor MRI. Stroke 30(12): 2637–2643

    Article  PubMed  CAS  Google Scholar 

  • Chabriat H, Vahedi K, Iba-Zizen MT, Joutel A, Nibbio A, Nagy TG, Krebs MO, Julien J, Dubois B, Ducrocq X et al (1995) Clinical spectrum of CADASIL: a study of 7 families. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Lancet 346(8980):934–939

    Article  PubMed  CAS  Google Scholar 

  • Coto E, Menendez M, Navarro R, Garcia-Castro M, Alvarez V (2006) A new de novo Notch3 mutation causing CADASIL. Eur J Neurol 13(6):628–631. doi:10.1111/j.1468-1331.2006. 01337.x, ENE1337 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Cumurciuc R, Guichard JP, Reizine D, Gray F, Bousser MG, Chabriat H (2006) Dilation of Virchow–Robin spaces in CADASIL. Eur J Neurol 13(2):187–190. doi:10.1111/j.1468- 1331.2006.01113.x

    Article  PubMed  CAS  Google Scholar 

  • D’Souza B, Miyamoto A, Weinmaster G (2008) The many facets of Notch ligands. Oncogene 27(38):5148–5167. doi:10.1038/onc.2008.229, onc2008229 [pii]

    Article  PubMed  Google Scholar 

  • Desmond DW, Moroney JT, Lynch T, Chan S, Chin SS, Mohr JP (1999) The natural history of CADASIL: a pooled analysis of previously published cases. Stroke 30(6):1230–1233

    Article  PubMed  CAS  Google Scholar 

  • Dichgans M, Holtmannspotter M, Herzog J, Peters N, Bergmann M, Yousry TA (2002) Cerebral microbleeds in CADASIL: a gradient-echo magnetic resonance imaging and autopsy study. Stroke 33(1):67–71

    Article  PubMed  Google Scholar 

  • Dichgans M, Ludwig H, Muller-Hocker J, Messerschmidt A, Gasser T (2000) Small in-frame deletions and missense mutations in CADASIL: 3D models predict misfolding of Notch3 EGF-like repeat domains. Eur J Hum Genet 8(4):280–285. doi:10.1038/sj.ejhg.5200460

    Article  PubMed  CAS  Google Scholar 

  • Dichgans M, Markus HS, Salloway S, Verkkoniemi A, Moline M, Wang Q, Posner H, Chabriat HS (2008) Donepezil in patients with subcortical vascular cognitive impairment: a randomised double-blind trial in CADASIL. Lancet Neurol 7(4):310–318. doi:10.1016/S1474-4422(08)70046-2

    Article  PubMed  CAS  Google Scholar 

  • Dichgans M, Mayer M, Uttner I, Bruning R, Muller-Hocker J, Rungger G, Ebke M, Klockgether T, Gasser T (1998) The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol 44(5):731–739. doi:10.1002/ana.410440506

    Article  PubMed  CAS  Google Scholar 

  • Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT, Klonjkowski B, Berrou E, Mericskay M, Li Z, Tournier-Lasserve E, Gridley T, Joutel A (2004) Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18(22):2730–2735. doi:10.1101/gad.308904, 18/22/2730 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Donahue CP, Kosik KS (2004) Distribution pattern of Notch3 mutations suggests a gain-of-function mechanism for CADASIL. Genomics 83(1):59–65. doi:S0888754303002064 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Dubroca C, Lacombe P, Domenga V, Maciazek J, Levy B, Tournier-Lasserve E, Joutel A, Henrion D (2005) Impaired vascular mechanotransduction in a transgenic mouse model of CADASIL arteriopathy. Stroke 36(1):113–117

    Article  PubMed  Google Scholar 

  • Duering M, Gonik M, Malik R, Zieren N, Reyes S, Jouvent E, Herve D, Gschwendtner A, Opherk C, Chabriat H, Dichgans M (2012) Identification of a strategic brain network underlying processing speed deficits in vascular cognitive impairment. Neuroimage 66C:177–183. doi:10.1016/j.neuroimage.2012.10.084

    PubMed  Google Scholar 

  • Eikermann-Haerter K, Yuzawa I, Dilekoz E, Joutel A, Moskowitz MA, Ayata C (2011) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy syndrome mutations increase susceptibility to spreading depression. Ann Neurol 69(2):413–418

    Article  PubMed  CAS  Google Scholar 

  • Gobron C, Viswanathan A, Bousser MG, Chabriat H (2006) Multiple simultaneous cerebral infarctions in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Cerebrovasc Dis 22(5–6):445–446. doi:10.1159/000095287

    Article  PubMed  Google Scholar 

  • Herve D, Mangin JF, Molko N, Bousser MG, Chabriat H (2005) Shape and volume of lacunar infarcts: a 3D MRI study in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 36(11):2384–2388. doi:10.1161/01.STR.0000185678.26296.38

    Article  PubMed  Google Scholar 

  • Ishiko A, Shimizu A, Nagata E, Takahashi K, Tabira T, Suzuki N (2006) Notch3 ectodomain is a major component of granular osmiophilic material (GOM) in CADASIL. Acta Neuropathol 112(3):333–339. doi:10.1007/s00401-006-0116-2

    Article  PubMed  CAS  Google Scholar 

  • Iso T, Hamamori Y, Kedes L (2003a) Notch signaling in vascular development. Arterioscler Thromb Vasc Biol 23(4):543–553. doi:10.1161/01.ATV.0000060892.81529.8F, 01.ATV.0000060892. 81529.8F [pii]

    Article  PubMed  CAS  Google Scholar 

  • Iso T, Kedes L, Hamamori Y (2003b) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194(3):237–255. doi:10.1002/jcp.10208

    Article  PubMed  CAS  Google Scholar 

  • Joutel A (2011) Pathogenesis of CADASIL: transgenic and knock-out mice to probe function and dysfunction of the mutated gene, Notch3, in the cerebrovasculature. Bioessays 33(1):73–80. doi:10.1002/bies.201000093

    Article  PubMed  CAS  Google Scholar 

  • Joutel A, Andreux F, Gaulis S, Domenga V, Cecillon M, Battail N, Piga N, Chapon F, Godfrain C, Tournier-Lasserve E (2000) The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest 105(5):597–605. doi:10.1172/JCI8047

    Article  PubMed  CAS  Google Scholar 

  • Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitch S, Domenga V, Cecillion M, Marechal E, Maciazek J, Vayssiere C, Cruaud C, Cabanis EA, Ruchoux MM, Weissenbach J, Bach JF, Bousser MG, Tournier-Lasserve E (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383(6602):707–710. doi:10.1038/383707a0

    Article  PubMed  CAS  Google Scholar 

  • Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitch S, Domenga V, Cecillion M, Marechal E, Maciazek J, Vayssiere C, Cruaud C, Cabanis EA, Ruchoux MM, Weissenbach J, Bach JF, Bousser MG, Tournier-Lasserve E (1997a) Notch3 mutations in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a mendelian condition causing stroke and vascular dementia. Ann N Y Acad Sci 826:213–217

    Article  PubMed  CAS  Google Scholar 

  • Joutel A, Monet-Lepretre M, Gosele C, Baron-Menguy C, Hammes A, Schmidt S, Lemaire-Carrette B, Domenga V, Schedl A, Lacombe P, Hubner N (2010) Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Invest 120(2):433–445

    Article  PubMed  CAS  Google Scholar 

  • Joutel A, Vahedi K, Corpechot C, Troesch A, Chabriat H, Vayssiere C, Cruaud C, Maciazek J, Weissenbach J, Bousser MG, Bach JF, Tournier-Lasserve E (1997b) Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet 350(9090):1511–1515. doi:10.1016/S0140-6736(97)08083-5, S0140-6736(97)08083-5 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Jouvent E, Mangin JF, Duchesnay E, Porcher R, During M, Mewald Y, Guichard JP, Herve D, Reyes S, Zieren N, Dichgans M, Chabriat H (2012) Longitudinal changes of cortical morphology in CADASIL. Neurobiol Aging 33(5):1002.e29–e36. doi:10.1016/j.neurobiolaging. 2011.09.013

    Article  Google Scholar 

  • Lacombe P, Oligo C, Domenga V, Tournier-Lasserve E, Joutel A (2005) Impaired cerebral vasoreactivity in a transgenic mouse model of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy arteriopathy. Stroke 36(5):1053–1058. doi:10.1161/01.STR.0000163080.82766.eb

    Article  PubMed  Google Scholar 

  • Lee JH, Bacskai BJ, Ayata C (2012) Genetic animal models of cerebral vasculopathies. Prog Mol Biol Transl Sci 105:25–55. doi:10.1016/B978-0-12-394596-9.00002-0

    Article  PubMed  CAS  Google Scholar 

  • Liem MK, Lesnik Oberstein SA, Vollebregt MJ, Middelkoop HA, van der Grond J, Helderman-van den Enden AT (2008) Homozygosity for a NOTCH3 mutation in a 65-year-old CADASIL patient with mild symptoms: a family report. J Neurol 255(12):1978–1980. doi:10.1007/s00415-009-0036-x

    Article  PubMed  Google Scholar 

  • Liem MK, Oberstein SA, van der Grond J, Ferrari MD, Haan J (2010) CADASIL and migraine: a narrative review. Cephalalgia 30(11):1284–1289

    Article  PubMed  Google Scholar 

  • Lundkvist J, Zhu S, Hansson EM, Schweinhardt P, Miao Q, Beatus P, Dannaeus K, Karlstrom H, Johansson CB, Viitanen M, Rozell B, Spenger C, Mohammed A, Kalimo H, Lendahl U (2005) Mice carrying a R142C Notch 3 knock-in mutation do not develop a CADASIL-like phenotype. Genesis 41(1):13–22. doi:10.1002/gene.20091

    Article  PubMed  CAS  Google Scholar 

  • Markus HS, Martin RJ, Simpson MA, Dong YB, Ali N, Crosby AH, Powell JF (2002) Diagnostic strategies in CADASIL. Neurology 59(8):1134–1138

    Article  PubMed  CAS  Google Scholar 

  • Miao Q, Paloneva T, Tuominen S, Poyhonen M, Tuisku S, Viitanen M, Kalimo H (2004) Fibrosis and stenosis of the long penetrating cerebral arteries: the cause of the white matter pathology in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Brain Pathol 14(4):358–364

    Article  PubMed  Google Scholar 

  • Monet-Lepretre M, Bardot B, Lemaire B, Domenga V, Godin O, Dichgans M, Tournier-Lasserve E, Cohen-Tannoudji M, Chabriat H, Joutel A (2009) Distinct phenotypic and functional features of CADASIL mutations in the Notch3 ligand binding domain. Brain 132(Pt 6): 1601–1612

    Article  PubMed  Google Scholar 

  • Monet M, Domenga V, Lemaire B, Souilhol C, Langa F, Babinet C, Gridley T, Tournier-Lasserve E, Cohen-Tannoudji M, Joutel A (2007) The archetypal R90C CADASIL-NOTCH3 mutation retains NOTCH3 function in vivo. Hum Mol Genet 16(8):982–992. doi:10.1093/hmg/ddm042

    Article  PubMed  CAS  Google Scholar 

  • Muqtadar H, Testai FD (2012) Single gene disorders associated with stroke: a review and update on treatment options. Curr Treat Options Cardiovasc Med 14(3):288–297. doi:10.1007/s11936-012-0179-4

    Article  PubMed  Google Scholar 

  • O’Sullivan M, Jarosz JM, Martin RJ, Deasy N, Powell JF, Markus HS (2001) MRI hyperintensities of the temporal lobe and external capsule in patients with CADASIL. Neurology 56(5): 628–634

    Article  PubMed  Google Scholar 

  • Okeda R, Arima K, Kawai M (2002) Arterial changes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) in relation to pathogenesis of diffuse myelin loss of cerebral white matter: examination of cerebral medullary arteries by reconstruction of serial sections of an autopsy case. Stroke 33(11):2565–2569

    Article  PubMed  Google Scholar 

  • Opherk C, Duering M, Peters N, Karpinska A, Rosner S, Schneider E, Bader B, Giese A, Dichgans M (2009) CADASIL mutations enhance spontaneous multimerization of NOTCH3. Hum Mol Genet 18(15):2761–2767. doi:10.1093/hmg/ddp211, ddp211 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Peters N, Herzog J, Opherk C, Dichgans M (2004) A two-year clinical follow-up study in 80 CADASIL subjects: progression patterns and implications for clinical trials. Stroke 35(7): 1603–1608. doi:10.1161/01.STR.0000131546.71733.f1, 01.STR.0000131546.71733.f1 [pii]

    Article  PubMed  Google Scholar 

  • Reyes S, Viswanathan A, Godin O, Dufouil C, Benisty S, Hernandez K, Kurtz A, Jouvent E, O’Sullivan M, Czernecki V, Bousser MG, Dichgans M, Chabriat H (2009) Apathy: a major symptom in CADASIL. Neurology 72(10):905–910. doi:10.1212/01.wnl.0000344166.03470.f8

    Article  PubMed  CAS  Google Scholar 

  • Roy B, Maksemous N, Smith RA, Menon S, Davies G, Griffiths LR (2012) Two novel mutations and a previously unreported intronic polymorphism in the NOTCH3 gene. Mutat Res 732(1–2): 3–8. doi:10.1016/j.mrfmmm.2012.02.004, S0027-5107(12)00044-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Ruchoux MM, Brulin P, Brillault J, Dehouck MP, Cecchelli R, Bataillard M (2002) Lessons from CADASIL. Ann N Y Acad Sci 977:224–231

    Article  PubMed  Google Scholar 

  • Ruchoux MM, Chabriat H, Bousser MG, Baudrimont M, Tournier-Lasserve E (1994) Presence of ultrastructural arterial lesions in muscle and skin vessels of patients with CADASIL. Stroke 25(11):2291–2292

    Article  PubMed  CAS  Google Scholar 

  • Ruchoux MM, Guerouaou D, Vandenhaute B, Pruvo JP, Vermersch P, Leys D (1995) Systemic vascular smooth muscle cell impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Acta Neuropathol 89(6):500–512

    Article  PubMed  CAS  Google Scholar 

  • Shibata M, Yamasaki N, Miyakawa T, Kalaria RN, Fujita Y, Ohtani R, Ihara M, Takahashi R, Tomimoto H (2007) Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion. Stroke 38(10):2826–2832. doi:10.1161/STROKEAHA.107.490151

    Article  PubMed  Google Scholar 

  • Sozmen EG, Kolekar A, Havton LA, Carmichael ST (2009) A white matter stroke model in the mouse: axonal damage, progenitor responses and MRI correlates. J Neurosci Methods 180(2): 261–272. doi:10.1016/j.jneumeth.2009.03.017

    Article  PubMed  Google Scholar 

  • Spinner NB (2000) CADASIL: Notch signaling defect or protein accumulation problem? J Clin Invest 105(5):561–562. doi:10.1172/JCI9511

    Article  PubMed  CAS  Google Scholar 

  • Taheri S, Gasparovic C, Huisa BN, Adair JC, Edmonds E, Prestopnik J, Grossetete M, Shah NJ, Wills J, Qualls C, Rosenberg GA (2011) Blood–brain barrier permeability abnormalities in vascular cognitive impairment. Stroke 42(8):2158–2163. doi:10.1161/STROKEAHA. 110.611731

    Article  PubMed  CAS  Google Scholar 

  • Tikka S, Mykkanen K, Ruchoux MM, Bergholm R, Junna M, Poyhonen M, Yki-Jarvinen H, Joutel A, Viitanen M, Baumann M, Kalimo H (2009) Congruence between NOTCH3 mutations and GOM in 131 CADASIL patients. Brain 132(Pt 4):933–939

    PubMed  Google Scholar 

  • Tournier-Lasserve E, Joutel A, Melki J, Weissenbach J, Lathrop GM, Chabriat H, Mas JL, Cabanis EA, Baudrimont M, Maciazek J et al (1993) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat Genet 3(3):256–259

    Article  PubMed  CAS  Google Scholar 

  • Tuominen S, Miao Q, Kurki T, Tuisku S, Poyhonen M, Kalimo H, Viitanen M, Sipila HT, Bergman J, Rinne JO (2004) Positron emission tomography examination of cerebral blood flow and glucose metabolism in young CADASIL patients. Stroke 35(5):1063–1067. doi:10.1161/01.STR.0000124124.69842.2d, 01.STR.0000124124.69842.2d [pii]

    Article  PubMed  Google Scholar 

  • Van Bogaert L (1955) Encephalopathie sous-corticale progressive (Binswanger) a evolution rapide chez deux soeurs. Med Hellen 24:961–972

    Google Scholar 

  • van den Boom R, Lesnik Oberstein SA, Ferrari MD, Haan J, van Buchem MA (2003) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: MR imaging findings at different ages–3rd-6th decades. Radiology 229(3):683–690. doi:10.1148/radiol.2293021354

    Article  PubMed  Google Scholar 

  • Viswanathan A, Godin O, Jouvent E, O’Sullivan M, Gschwendtner A, Peters N, Duering M, Guichard JP, Holtmannspotter M, Dufouil C, Pachai C, Bousser MG, Dichgans M, Chabriat H (2010) Impact of MRI markers in subcortical vascular dementia: a multi-modal analysis in CADASIL. Neurobiol Aging 31(9):1629–1636. doi:10.1016/j.neurobiolaging.2008.09.001

    Article  PubMed  Google Scholar 

  • Viswanathan A, Gray F, Bousser MG, Baudrimont M, Chabriat H (2006a) Cortical neuronal apoptosis in CADASIL. Stroke 37(11):2690–2695

    Article  PubMed  Google Scholar 

  • Viswanathan A, Gschwendtner A, Guichard JP, Buffon F, Cumurciuc R, O’Sullivan M, Holtmannspotter M, Pachai C, Bousser MG, Dichgans M, Chabriat H (2007) Lacunar lesions are independently associated with disability and cognitive impairment in CADASIL. Neurology 69(2):172–179. doi:10.1212/01.wnl.0000265221.05610.70, 69/2/172 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan A, Guichard JP, Gschwendtner A, Buffon F, Cumurcuic R, Boutron C, Vicaut E, Holtmannspotter M, Pachai C, Bousser MG, Dichgans M, Chabriat H (2006b) Blood pressure and haemoglobin A1c are associated with microhaemorrhage in CADASIL: a two-centre cohort study. Brain 129(Pt 9):2375–2383. doi:10.1093/brain/awl177

    Article  PubMed  Google Scholar 

  • Wallays G, Nuyens D, Silasi-Mansat R, Souffreau J, Callaerts-Vegh Z, Van Nuffelen A, Moons L, D’Hooge R, Lupu F, Carmeliet P, Collen D, Dewerchin M (2011) Notch3 Arg170Cys knock-in mice display pathologic and clinical features of the neurovascular disorder cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Arterioscler Thromb Vasc Biol 31(12):2881–2888. doi:10.1161/ATVBAHA.111.237859, ATVBAHA.111.237859 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Wardlaw JM, Sandercock PA, Dennis MS, Starr J (2003) Is breakdown of the blood-brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke 34(3):806–812. doi:10.1161/01.STR.0000058480.77236.B3

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Ihara M, Tham C, Low RW, Slade JY, Moss T, Oakley AE, Polvikoski T, Kalaria RN (2009) Neuropathological correlates of temporal pole white matter hyperintensities in CADASIL. Stroke 40(6):2004–2011. doi:10.1161/STROKEAHA.108.528299, STROKEAHA. 108.528299 [pii]

    Article  PubMed  Google Scholar 

  • Yoshizaki K, Adachi K, Kataoka S, Watanabe A, Tabira T, Takahashi K, Wakita H (2008) Chronic cerebral hypoperfusion induced by right unilateral common carotid artery occlusion causes delayed white matter lesions and cognitive impairment in adult mice. Exp Neurol 210(2): 585–591. doi:10.1016/j.expneurol.2007.12.005

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

 This work was supported by the National Institutes of Health (NS055104, NS061505, NS33335), Leducq Foundation (2012D000293), Neuroendovascular Research Fund from the Andrew David Heitman Foundation, and The Ellison Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cenk Ayata M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blasi, F., Viswanathan, A., Ayata, C. (2014). CADASIL and Animal Models. In: Baltan, S., Carmichael, S., Matute, C., Xi, G., Zhang, J. (eds) White Matter Injury in Stroke and CNS Disease. Springer Series in Translational Stroke Research, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9123-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9123-1_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9122-4

  • Online ISBN: 978-1-4614-9123-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics