Skip to main content

Hearing in Insects: The Why, When, and How

  • Chapter
  • First Online:
Perspectives on Auditory Research

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 50))

  • 2366 Accesses

Abstract

This chapter provides a brief history of the study of insect hearing from a personal perspective, covering the period from 1960 to the present. Insect bioacoustics developed in parallel in the 1960s with the emergence of invertebrate neurobiology and then in the 1970s with the emergence of the field of neuroethology. The age of invertebrate neuroscience coincided with intracellular techniques and the concept of identified neurons in small networks that generated behavioral acts. The golden age of neuroethology (1975–2000) heralded comparative approaches that resulted in invertebrate animal researchers having serious interactions with vertebrate physiologists and anatomists that led to remarkable advances in comparative bioacoustics, for which the SHAR series has played the key role of scribe and witness. My chapter is restricted to the bioacoustics of insects because they are the most acoustically active of all the invertebrate animals. Insect bioacoustics has focused on two main theme areas: acoustic signals that mediate predator–prey interactions and acoustic signals that mediate intraspecific social behavior such as mating and territorial behavior. The kinds of hearing of hearing organs that evolved in response to the imperatives of natural selection and sexual selection are remarkable in form and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, R. D. (1962). Evolutionary change in cricket acoustical communication. Evolution, 16, 443–467.

    Article  Google Scholar 

  • Cade, W. H. (1975). Acoustically orienting parasitoids: fly phonotaxis to cricket song. Science, 190, 1312–1313.

    Article  Google Scholar 

  • Cocroft, R., & McNett, G. D. (2006). Vibratory communication in treehoppers. In S. Drosopoulos & M. F. Claridge (Eds.), Insect sounds and communication (pp. 305–318). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Cokl, A., Virant-Doberlet, M., & Zorovic, M. (2006). Sense organs involved in the vibratory communication of bugs. In S. Drosopoulos & M. F. Claridge (eds.), Insect sounds and communication (pp. 71–80). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Drosopoulos, S., & Claridge, M. F. (2006). Insect sounds and communication. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Elias, D. O., Mason, A. C., Maddison, W. P., & Hoy, R. R. (2003). Seismic signals in a courting male jumping spider (Araneae: Salticidae). Journal of Experimental Biology, 206, 4029–4039.

    Article  PubMed  Google Scholar 

  • Ewing, A.W., & Bennet-Clark, H. C. (1968). The courtships songs of Drosophila. Behaviour, 31, 288–301.

    Article  Google Scholar 

  • Fullard, J. H., & Yack, J. E. ((1993). The evolutionary biology of insect hearing. Trends in Ecology and Evolution, 8, 248–252.

    Google Scholar 

  • Gerhardt, H., & Huber, F. (2002). Acoustic communication in insects and aneurans. Chicago: University of Chicago Press.

    Google Scholar 

  • Goepfert, M. C., & Robert, D. (2001). Active auditory mechanics in mosquitoes. Proceedings of the Royal Society of London B: Biological Sciences, 268, 333–339.

    Article  Google Scholar 

  • Goepfert, M. C., & Robert, D. (2002). The mechanical basis of Drosophila audition. Journal of Experimental Biology, 205, 1199–1208.

    Google Scholar 

  • Gogala, M. (2006). Vibratory signals produced by heteroptera. In S. Drosopoulos & M. F. Claridge (Eds.), Insect sounds and communication (pp. 275–296). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Griffin, D. R. (1958). Listening in the dark. New Haven, CT: Yale University Press.

    Google Scholar 

  • Gu, J.-J., Montealegre-Z, F. Robert, D., Engel, M.S., Qiao, G.-X., & Ren, D. (2012). Wing stridulation in a Jurassic katydid produced low-pitched musical calls to attract females. Proceedings of the National Academy of Sciences of the USA, 109, 3868–3873.

    Google Scholar 

  • Heberstein, M. E. (2011). Spider behaviors: Flexibility and versatility. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Hedwig, B. (2000). Control of cricket stridulation by a command neuron: Efficacy depends on behavioral state. Journal of Neurophysiology, 83, 712–722.

    PubMed  CAS  Google Scholar 

  • Hoikkala, A. (2006). Inheritance of male sound characteristics in Drosophila species. In S. Drosoopoulos & M. F. Claridge (Eds.), Insect sounds and communication (167–178). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Hoy, R. R. (1992). Tympanal hearing in insects. Annual Review of Entomology, 41, 433–450.

    Article  Google Scholar 

  • Huber, F., Moore, T., & Loher, W., Eds. (1989). Cricket behavior and neurobiology. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Kostarakos, K., & Hedwig, B. (2012). Calling song recognition in female crickets: Temporal tuning of identified brain neurons matches behavior. Journal of Neuroscience, 32(28), 9601–9612.

    Article  PubMed  CAS  Google Scholar 

  • Lakes-Harlan, R., & Heller, K.-G. (1992). Ultrasound sensitive-ears in a parasitoid fly. Naturwissenschaften, 79, 224–226.

    Article  Google Scholar 

  • Larsen, O. N., & Michelsen, A. (1978). Biophysics of the ensiferan ear. III. The cricket ear as a four-input system. Journal of Comparative Physiology A, 123, 217–227.

    Article  Google Scholar 

  • Michelsen, A. (1992). Hearing and sound communication in small animals: Evolutionary adaptations to the laws of physics. In D. M. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 61–78). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Miles, R. N., Robert, D., & Hoy, R. R. (1995). Mechanically coupled ears for directional hearing in the parastoid fly Ormia ochracea. Journal of the Acoustical Society of America, 98, 3059–3070.

    Article  PubMed  CAS  Google Scholar 

  • Miller, L. A., & Surlykke, A. M. (2001). How some insects detect and avoid being eaten by bats: Tactics and countertactics of prey and predator. BioScience, 51, 571–582.

    Article  Google Scholar 

  • Montealegre-Z, F., Jonsson, T., Robson-Brown, K. A., Postles, M., & Robert, D. (2012). Convergent evolution between insect and mammalian audition. Science, 338, 968–971.

    Article  PubMed  CAS  Google Scholar 

  • Nolen, T. G., & Hoy, R. R. (1984). Initiation of behavior by single neurons: The role of behavioral context. Science, 226, 992–994.

    Article  PubMed  CAS  Google Scholar 

  • Oldfield, B. P., Kleindienst, H.-U. & Huber, F. (1986). Physiology and tonotopic organization of auditory receptors in the cricket Grullus bimaculatus. Journal of Comparative Physiology A, 159, 454–464.

    Article  Google Scholar 

  • Paton, J. A., Capranica, R. R., Dragsten, P. R., & Webb, W. W. (1977). Physical basis for auditory frequency analysis in field crickets (Gryllidae). Journal of Comparative Physiology A, 119, 221–240.

    Article  Google Scholar 

  • Popper, A. N., Platt, C., & Edds, P. L. (1992). Evolution of the vertebrate inner ear. In D. M. Webster, R. R. Fay & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 49–66). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Robert, D., & Hoy, R. R. (1998). The evolutionary innovation of tympanal hearing in Diptera. In: R. R. Hoy, A. N. Popper, R. R. Fay (Eds.), Comparative hearing: Insects (pp. 197–227). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Robert, D., Amoroso J., & Hoy, R. R. (1992). The evolutionary convergence of hearing in a parasitoid fly and its cricket host. Science, 258, 1135–1137.

    Article  PubMed  CAS  Google Scholar 

  • Roeder, K. D. (1967). Nerve cells and insect behavior. Cambridge MA: Harvard University Press.

    Google Scholar 

  • Ronacher, B. (2012). Processing of species-specific signals in the auditory system of grasshoppers. In B. Hedwig (Ed.), Topics of acoustic communication in insects. New York: Springer Science+Business Media.

    Google Scholar 

  • Schoenreich, S., & Hedwig, B. (2012). Cellular basis for singing motor pattern generation in the field cricket. Brain and Behavior, 2(6), 707–725.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald R. Hoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoy, R.R. (2014). Hearing in Insects: The Why, When, and How. In: Popper, A., Fay, R. (eds) Perspectives on Auditory Research. Springer Handbook of Auditory Research, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9102-6_16

Download citation

Publish with us

Policies and ethics