Skip to main content

The Implications of Discharge Regularity: My Forty-Year Peek into the Vestibular System

  • Chapter
  • First Online:
Perspectives on Auditory Research

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 50))

  • 2291 Accesses

Abstract

The chapter traces my research in the vestibular system starting in the late 1960s when César Fernández and I collaborated in a study of the discharge properties of the mammalian vestibular nerve. In this chapter, I have taken advantage of Arthur Popper and Richard Fay’s invitation to write an account that “might be very personal.” The scientific literature emphasizes the orderly progress of knowledge. But research advances by fits and starts, with crucial clues coming not only from well-thought-out experiments, but also from experiments undertaken for purposes that, in retrospect, might be ill conceived. In this chapter I emphasize those intellectual way stations, both accidental and well conceived, that drove my own research. The theme that dominates the research is the discovery, made in our early studies, that afferents differing in their discharge regularity differ in many other respects as well. Later research showed that results first found in mammals were confirmed in other vertebrate classes. Regular and irregular units differ in their terminal morphology and their neuroepithelial locations. Beginning with studies of galvanic responses in the 1980s and confirmed more recently in intracellular recordings of the subthreshold events leading to spike discharge, the cellular basis of discharge regularity and associated properties are now well understood. Mutual-information calculations imply that regular and irregular units are optimized in the encoding, respectively, of low- and high-frequency head motions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, J. C., & Mugnaini, E. (1990). Immunocytochemical evidence for inhibitory and disinhibitory circuits in the superior olive. Hearing Research, 49, 281–296.

    PubMed  CAS  Google Scholar 

  • Adrian, E. D. (1943). Discharge from vestibular receptors in the cat. Journal of Physiology, 101, 389–407.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Angelaki, D. E., & Perachio, A. A. (1993). Contribution of irregular semicircular canal afferents to the horizontal vestibuloocular response during constant velocity rotation. Journal of Neurophysiology, 69(3), 996–999.

    PubMed  CAS  Google Scholar 

  • Angelaki, D. E., & Cullen, K. E. (2008). Vestibular system: The many facets of a multimodal sense. Annual Review of Neuroscience, 31, 125–150.

    PubMed  CAS  Google Scholar 

  • Angelaki, D. E., Yakusheva, T. A., Green, A. M., Dickman, J. D., & Blazquez, P. M. (2010). Computation of egomotion in the macaque cerebellar vermis. Cerebellum, 9(2), 174–182.

    PubMed Central  PubMed  Google Scholar 

  • Angelaki, D. E., Gu, Y., & DeAngelis, G. C. (2011). Visual and vestibular cue integration for heading perception in extrastriate visual cortex. Journal of Physiology, 589(4), 825–833.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Armand, M., & Minor, L. B. (2001). Relationship between time- and frequency-domain analyses of angular head movements in the squirrel monkey. Journal of Computational Neuroscience, 11, 217–239.

    PubMed  CAS  Google Scholar 

  • Aw, S. T., Todd, M. J., Aw, G. E., Weber, K. P., & Halmagyi, G. M. (2008). Gentamicin vestibulotoxicity impairs human electrically evoked vestibulo-ocular reflex. Neurology, 71, 1776–1782.

    PubMed  CAS  Google Scholar 

  • Baird, R. A., Desmadryl, G., Fernández, C., & Goldberg, J. M. (1988). The vestibular nerve of the chinchilla. II. Relation between afferent response properties and peripheral innervation patterns in the semicircular canals. Journal of Neurophysiology, 60(1), 182–203.

    PubMed  CAS  Google Scholar 

  • Boudreau, J. C., & Tsuchitani, C. (1968). Binaural interaction in the cat superior olive S segment. Journal of Neurophysiology, 31, 442–454.

    PubMed  CAS  Google Scholar 

  • Boyle, R., Carey, J. P., & Highstein, S. M. (1991). Morphological correlates of response dynamics and efferent stimulation in horizontal semicircular canal afferents of the toadfish, Opsanus tau. Journal of Neurophysiology, 66(5), 1504–1521.

    PubMed  CAS  Google Scholar 

  • Boyle, R., Goldberg, J. M., & Highstein, S. M. (1992). Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in squirrel monkey vestibular nuclei. III. Correlation with vestibulospinal and vestibuloocular output pathways. Journal of Neurophysiology, 68(2), 471–484.

    PubMed  CAS  Google Scholar 

  • Brichta, A. M., & Goldberg, J. M. (2000). Morphological identification of physiologically characterized afferents innervating the turtle posterior crista. Journal of Neurophysiology, 83(3), 1202–1223.

    PubMed  CAS  Google Scholar 

  • Brooks, J. X., & Cullen, K. E. (2009). Multimodal integration in rostral fastigial nucleus provides an estimate of body movement. Journal of Neuroscience, 29(34), 10499–10511.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brownell, W. E. (1975). Organization of the cat trapezoid body and the discharge characteristics of its fibers. Brain Research., 94(3), 413–433.

    PubMed  CAS  Google Scholar 

  • Camis, M. (1930). The physiology of the vestibular apparatus, translated by R.S. Creed. Oxford: Clarendon Press.

    Google Scholar 

  • Chatlani, S., & Goldberg, J. M. (2010). Whole-cell recordings from calyx endings in the turtle posterior crista. Association for Research in Otolaryngology Abstract, 937, 702–703.

    Google Scholar 

  • Contini, D., Zampini, V., Tavazzani, E., Maggistretti, J., Russo, G., Prigioni, I., & Masetto, S. (2012). Intercellular K+ accumulation depolarizes type I vestibular hair cells and their associated afferent nerve calyx. Neuroscience, 227, 232–246.

    PubMed  CAS  Google Scholar 

  • Correia, M. J., & Lang, D. G. (1990). An electrophysiological comparison of solitary type I and type II vestibular hair cells. Neuroscience Letters, 116, 106–111.

    PubMed  CAS  Google Scholar 

  • Correia, M. J., Perachio, A. A., Dickman, J. D., Kozlovskaya, I. B., Sirota, M. G., Yakushin, S. B., & Beloozerova, I. N. (1992). Changes in monkey horizontal semicircular canal afferent responses after spaceflight. Journal of Applied Physiology, 73(2 Suppl), 112S–120S.

    PubMed  CAS  Google Scholar 

  • deVries, H. (1950). The mechanics of the labyrinthine otoliths. Acta Oto-Laryngologica (Stockholm), 38, 262–273.

    Google Scholar 

  • Dhawan, R., Mann, S. E., Meredith, F. L., & Rennie, K. J. (2010). K+ currents in isolated vestibular afferent calyx terminals. Journal of the Association for Research in Otolaryngology, 11, 463–476.

    PubMed Central  PubMed  Google Scholar 

  • Duensing, F., & Schaefer, K.-P. (1958). Die Aktivität einzelner Neurone im Bereich der Vestibulariskerne bei Horizontalbeschleunigungen unter besonderer Berücksichtigung des vestibulären Nystagmus. Archiv für Psychiatrie und Nervenkrankheiten, 198, 225–252.

    CAS  Google Scholar 

  • du Lac, S., Raymond, J. L., Sejnowski, T. J., & Lisberger, S. G. (1995). Learning and memory in the vestibulo-ocular reflex. Annual Review of Neuroscience, 18, 409–441.

    PubMed  Google Scholar 

  • Eatock, R. A., & Songer, J. E. (2011). Vestibular hair cells and afferents: Two channels for head motion signals. Annual Review of Neuroscience, 34, 501–534.

    PubMed  CAS  Google Scholar 

  • Estes, M. S., Blanks, R. H., & Markham, C. H. (1975). Physiologic characteristics of vestibular first-order canal neurons in the cat. I. Response plane determination and resting discharge characteristics. Journal of Neurophysiology, 38, 1232–1249.

    PubMed  CAS  Google Scholar 

  • Ewald, J. R. (1892). Physiologische Untersuchungen ueber das Endorgan des Nervus Octavus. Wiesbaden: J.F. Bergmann.

    Google Scholar 

  • Fernández, C., & Goldberg, J. M. (1971). Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. Journal of Neurophysiology, 34(4), 661–675.

    PubMed  Google Scholar 

  • Fernández, C., & Goldberg, J. M. (1976a). Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. Journal of Neurophysiology, 39(5), 970–984.

    PubMed  Google Scholar 

  • Fernández, C., & Goldberg, J. M. (1976b). Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. Journal of Neurophysiology, 39(5), 985–995.

    PubMed  Google Scholar 

  • Fernández, C., & Goldberg, J. M. (1976c). Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. Journal of Neurophysiology, 39(5), 996–1008.

    PubMed  Google Scholar 

  • Fernández, C., Baird, R. A., & Goldberg, J. M. (1988). The vestibular nerve of the chinchilla. I. Peripheral innervation patterns in the horizontal and superior semicircular canals. Journal of Neurophysiology, 60(1), 167–181.

    PubMed  Google Scholar 

  • Fernández, C., Goldberg, J. M., & Baird, R. A. (1990). The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula. Journal of Neurophysiology, 63(4), 767–780.

    PubMed  Google Scholar 

  • Fernández, C., Lysakowski, A., & Goldberg, J. M. (1995). Hair-cell counts and afferent innervation patterns in the cristae ampullares of the squirrel monkey with a comparison to the chinchilla. Journal of Neurophysiology, 73(3), 1253–1269.

    PubMed  Google Scholar 

  • Fetter, M., Haslwanter, T., Bork, M., & Dichgans, J. (1999). New insights into positional alcohol nystagmus using three-dimensional eye-movement analysis. Annals of Neurology, 45, 216–223.

    PubMed  CAS  Google Scholar 

  • Fitzpatrick, R. C., & Day, B. L. (2004). Probing the human vestibular system with galvanic stimulation. Journal of Applied Physiology, 96, 2301–2316.

    PubMed  Google Scholar 

  • Fuchs, A. F., & Kimm, J. (1975). Unit activity in vestibular nucleus of the alert monkey during horizontal angular acceleration and eye movement. Journal of Neurophysiology, 38, 1140–1161.

    PubMed  CAS  Google Scholar 

  • Galambos, R., & Davis, H. (1946). Action potentials from single auditory-nerve fibers? Science, 108, 513.

    Google Scholar 

  • Geisler, C. D., & Goldberg, J. M. (1966). A stochastic model of the repetitive activity of neurons. Biophysics Journal, 6, 53–69.

    CAS  Google Scholar 

  • Gernandt, B. (1949). Response of mammalian vestibular neurons to horizontal rotation and caloric stimulation. Journal of Neurophysiology, 12, 173–184.

    PubMed  CAS  Google Scholar 

  • Goldberg, J. M. (1996). Theoretical analysis of intercellular communication between the vestibular type I hair cell and its calyx ending. Journal of Neurophysiology, 76, 1942–1957.

    PubMed  CAS  Google Scholar 

  • Goldberg, J. M. (2000). Afferent diversity and the organization of central vestibular pathways. Experimental Brain Research, 130(3), 277–297.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Goldberg, J. M., & Holt, J. C. (2013). Discharge regularity in the turtle posterior crista: comparisons between experiment and theory. J Neurophysiol, 110(12), 2830–2848.

    Google Scholar 

  • Goldberg, J. M., & Brown, P. B. (1968). Functional organization of the dog superior olivary complex: An anatomical and electrophysiological study. Journal of Neurophysiology, 31(4), 639–656.

    PubMed  CAS  Google Scholar 

  • Goldberg, J. M., & Brown, P. B. (1969). Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanisms of sound localization. Journal of Neurophysiology, 32(4), 613–636.

    PubMed  CAS  Google Scholar 

  • Goldberg, J. M., & Fernández, C. (1971a). Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. Journal of Neurophysiology, 34(4), 635–660.

    PubMed  CAS  Google Scholar 

  • Goldberg, J. M., & Fernández, C. (1971b). Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. III. Variations among units in their discharge properties. Journal of Neurophysiology, 34(4), 676–684.

    PubMed  CAS  Google Scholar 

  • Goldberg, J. M., & Fernández, C. (1975). Responses of peripheral vestibular neurons to angular and linear accelerations in the squirrel monkey. Acta Oto-Laryngologica, 80, 101–110.

    PubMed  CAS  Google Scholar 

  • Goldberg, J. M., & Fernández, C. (1977). Conduction times and background discharge of vestibular afferents. Brain Research, 122(3), 545–550.

    PubMed  CAS  Google Scholar 

  • Goldberg, J. M., & Fernández, C. (1980). Efferent vestibular system in the squirrel monkey: Anatomical location and influence on afferent activity. Journal of Neurophysiology, 43(4), 986–1025.

    PubMed  CAS  Google Scholar 

  • Goldberg, J. M., Adrian, H. O., & Smith, F. D. (1964). Response of neurons of the superior olivary complex of the cat to acoustic stimuli of long duration. Journal of Neurophysiology, 27, 706–749.

    PubMed  CAS  Google Scholar 

  • Goldberg, J. M., Fernández, C., & Smith, C. E. (1982). Responses of vestibular-nerve afferents in the squirrel monkey to externally applied galvanic currents. Brain Research, 252(1), 156–160.

    PubMed  CAS  Google Scholar 

  • Goldberg, J. M., Smith, C. E., & Fernández, C. (1984). Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. Journal of Neurophysiology, 51, 1236–1256.

    PubMed  CAS  Google Scholar 

  • Goldberg, J. M., Highstein, S. M., Moschovakis, A. K., & Fernández, C. (1987). Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in the vestibular nuclei of the squirrel monkey. I. An electrophysiological analysis. Journal of Neurophysiology, 58(4), 700–718.

    PubMed  CAS  Google Scholar 

  • Goldberg, J. M., Desmadryl, G., Baird, R. A., & Fernández, C. (1990). The vestibular nerve of the chinchilla. V. Relation between afferent discharge properties and peripheral innervation patterns in the utricular macula. Journal of Neurophysiology, 63(4), 791–804.

    PubMed  CAS  Google Scholar 

  • Goldberg, J. M., Wilson, V. J., Cullen, K. E., Angelaki, D. E., Broussard, D. M., Büttner-Ennever, J., Fukushima, K., & Minor, L. B. (2012). The Vestibular system: A sixth sense. New York: Oxford.

    Google Scholar 

  • Halmagyi, G. M., Weber, K. P., Aw, S. T., Todd, M. J., & Curthoys, I. S. (2008). Impulsive testing of semicircular canal function. Progress in Brain Research, 171, 187–194.

    PubMed  Google Scholar 

  • Hassfurth, B., Grothe, B., & Koch, U. (2010). The mammalian interaural time difference detection circuit is differentially controlled by GABA B receptors during development. Journal of Neuroscience, 30, 15–27.

    Google Scholar 

  • Highstein, S. M., & Politoff, A. L. (1978). Relation of interspike baseline activity to the spontaneous discharges of primary afferents from the labyrinth of the toadfish, Opsanus tau. Brain Research, 150(1), 182–187.

    PubMed  CAS  Google Scholar 

  • Highstein, S. M., Goldberg, J. M., Moschovakis, A. K., & Fernández, C. (1987). Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in the vestibular nuclei of the squirrel monkey. II. Correlation with output pathways of secondary neurons. Journal of Neurophysiology, 58(4), 719–738.

    PubMed  CAS  Google Scholar 

  • Highstein, S. M., Rabbitt, R. D., & Boyle, R. (1996). Determinants of semicircular canal afferent response dynamics in the toadfish, Opsanus tau. Journal of Neurophysiology, 75(2), 575–596.

    PubMed  CAS  Google Scholar 

  • Highstein, S. M., Rabbitt, R. D., Holstein, G. R., & Boyle, R. D. (2005). Determinants of spatial and temporal coding by semicircular canal afferents. Journal of Neurophysiology, 93(5), 2359–2370.

    PubMed Central  PubMed  Google Scholar 

  • Hind, J. E., Anderson, D. J., Brugge, J. F., & Rose, J. E. (1967). Coding of information pertaining to paired low-frequency tones in single auditory nerve fibers of the squirrel monkey. Journal of Neurophysiology, 30, 794–816.

    PubMed  CAS  Google Scholar 

  • Holt, J. C., Chatlani, S., Lysakowski, A., & Goldberg, J. M. (2007). Quantal and non-quantal transmission in calyx-bearing fibers of the turtle posterior crista. Journal of Neurophysiology, 98, 1083–1101.

    PubMed Central  PubMed  Google Scholar 

  • Holt, J. C., Lysakowski, A., & Goldberg, J. M. (2011). The efferent vestibular system. In D. K. Ryugo, R. R. Fay, & A. N. Popper (Eds.), Auditory and vestibular efferents. New York: Springer, 135–186.

    Google Scholar 

  • Honrubia, V., Hoffman, L. F., Sitko, S., & Schwartz, I. R. (1989). Anatomic and physiological correlates in bullfrog vestibular nerve. Journal of Neurophysiology, 61, 688–701.

    PubMed  CAS  Google Scholar 

  • Huterer, M., & Cullen, K. E. (2002). Vestibuloocular reflex dynamics during high-frequency and high-acceleration rotations of the head on body in rhesus monkey. Journal of Neurophysiology, 88, 13–28.

    PubMed  Google Scholar 

  • Iwasaki, S., Chihara, Y., Komuta, Y., Ito, K., & Sahara, Y. (2008). Low-voltage activated potassium channels underlie the regulation of intrinsic firing properties of rat vestibular ganglion cells. Journal of Neurophysiology, 100, 2192–2204.

    PubMed  CAS  Google Scholar 

  • Jörntell, H., Hansel C. (2006). Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron, 52(2), 227–238.

    Google Scholar 

  • Kalluri, R., Xue, J., & Eatock, R. A. (2010). Ion channels set spike timing regularity of mammalian vestibular afferent neurons. Journal of Neurophysiology, 104, 2034–2051.

    PubMed Central  PubMed  Google Scholar 

  • Keller, E. L. (1976). Behavior of horizontal semicircular canal afferents in alert monkey during vestibular and optokinetic stimulation. Experimental Brain Research, 24(5), 459–471.

    PubMed  CAS  Google Scholar 

  • Kiang, N. Y. S. (1965) Discharge patterns of single fibers in the cat’s auditory nerve. M.I.T. Research Monograph No. 35. Cambridge, MA: MIT Press.

    Google Scholar 

  • Li, A., Xue, J., & Peterson, E. H. (2008). Architecture of the mouse utricle: Macular organization and hair bundle heights. Journal of Neurophysiology, 99, 18–33.

    Google Scholar 

  • Liao, K., Kumar, A. N., Han, Y. H., Grammer, V. A., Gedeon, B. T., & Leigh, R. J. (2005). Comparison of velocity waveforms of eye and head saccades. Annals of the New York Academy of Sciences, 1039, 477–479.

    PubMed  Google Scholar 

  • Lifschitz, W. S. (1973). Responses from the first order neurons of the horizontal semicircular canal in the pigeon. Brain Research, 63, 43–57.

    PubMed  CAS  Google Scholar 

  • Lim, R., Kindig, A. E., Donne, S. W., Callister, R. J., & Brichta, A. M. (2011). Potassium accumulation between type I hair cells and calyx terminals in mouse crista. Experimental Brain Research, 210, 607–621.

    PubMed  CAS  Google Scholar 

  • Lindeman, H. H. (1969). Studies on the morphology of the sensory regions of the vestibular apparatus. Ergebnisse Anatomie Entwicklungsgeschite, 42, 1–113.

    CAS  Google Scholar 

  • Lindner, B., Chacron, M. J., & Longtin, A. (2005). Integrate-and-fire neurons with threshold noise: A tractable model of how interspike interval correlations affect neuronal signal transmission. Physical Review E, 72, 021911.

    Google Scholar 

  • Lorente de Nó, R. (1926). Etudes sur l’anatomie et la physiologie du labyrinthe de l’oreille et du VIIIe nerf. Deuxiéme partie. Quelques données au sujet d l’anatomie des organes sensoriels du labyrinthe. Travaux du Laboratoire de Recherches Biologiques de l’Université de Madrid, 24, 53–153.

    Google Scholar 

  • Louie, A. W., & Kimm, J. (1976). The response of 8th nerve fibers to horizontal sinusoidal oscillation in the alert monkey. Experimental Brain Research, 24, 447–457.

    PubMed  CAS  Google Scholar 

  • Lowenstein, O. (1955). The effect of galvanic polarization on the impulse discharge from sense endings in the isolated labyrinth in the thornback ray (Raja clavata). Journal of Physiology, 127, 104–117.

    Google Scholar 

  • Lowenstein, O. (1956). Peripheral mechanisms of equilibrium. British Medical Bulletin, 12(2), 114–118.

    PubMed  CAS  Google Scholar 

  • Lowenstein, O., & Sand, A. (1936). The activity of the horizontal semicircular canal of the dogfish, Scyllium canalicula. Journal of Experimental Biology, 13, 416–428.

    Google Scholar 

  • Lowenstein, O., & Sand, A. (1940a). The mechanisms of the semicircular canal. A study of the response of single-fiber preparations to angular accelerations and to rotation at constant speed. Proceedings of the Royal Society of London. Series B: Biological Sciences, 129, 256–275.

    Google Scholar 

  • Lowenstein, O., & Sand, A. (1940b). The individual and integrated activity of the semicircular canals of the elasmobranch labyrinth. Journal of Physiology, 99, 89–101.

    Google Scholar 

  • Lowenstein, O., & Wersäll, J. (1954). A functional interpretation of the electron microscopic structure of the sensory hairs in the cristae of the elasmobranch, Raja clavata. Nature, 184, 1807–1810.

    Google Scholar 

  • Lysakowski, A. (1996). Synaptic organization of the crista ampullaris in vertebrates. Annals of the New York Academy of Sciences, 781, 164–182.

    PubMed  CAS  Google Scholar 

  • Lysakowski, A., & Goldberg, J. M. (2004). Morphophysiology of the vestibular periphery. In S. M. Highstein, A. N. Popper, & R. R. Fay (Eds.), The vestibular system (pp. 57–152). New York: Springer-Verlag.

    Google Scholar 

  • Lysakowski, A., & Goldberg, J. M. (2008). Ultrastructural analysis of the cristae ampullares in the squirrel monkey (Saimiri sciureus). Journal of Comparative Neurology, 511, 47–64.

    PubMed Central  PubMed  Google Scholar 

  • Lysakowski, A., Minor, L. B., Fernández, C., & Goldberg, J. M. (1995). Physiological identification of morphologically distinct afferent classes innervating the cristae ampullares of the squirrel monkey. Journal of Neurophysiology, 73, 1270–1281.

    PubMed  CAS  Google Scholar 

  • Lysakowski, A., Gaboyard-Niay, S., Calin-Jageman, I., Chatlani, S., Price, S. D., & Eatock, R. A. (2011). Molecular microdomains in a sensory terminal, the vestibular calyx ending. Journal of Neuroscience, 31, 10101–10114.

    PubMed Central  PubMed  CAS  Google Scholar 

  • MacDougall, H. G., & Moore, S. T. (2005). Marching to the beat of the same drummer: The spontaneous tempo of human locomotion. Journal of Applied Physiology, 99, 1164–1173.

    PubMed  Google Scholar 

  • Meredith, F., Li, G. Q., & Rennie, K. J. (2011). Postnatal expression of an apamin-sensitive K(Ca) current in vestibular calyx terminals. Journal of Membrane Biology, 244, 81–91.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Meredith, F. L., Benke, T. A., & Rennie, K. (2012). Hyperpolarization-activated current (I(h)) in vestibular calyx terminals: Characterization and role in shaping postsynaptic events. Journal of the Association of Research in Otolaryngology, 13, 745–758.

    Google Scholar 

  • Miles, F. A. (1974). Single unit firing patterns in the vestibular nuclei related to voluntary eye movements and passive body rotation in conscious monkeys. Brain Research, 71, 215–224.

    PubMed  CAS  Google Scholar 

  • Minor, L. B., & Goldberg, J. M. (1991). Vestibular-nerve inputs to the vestibulo-ocular reflex: A functional-ablation study in the squirrel monkey. Journal of Neuroscience, 11(6), 1636–1648.

    PubMed  CAS  Google Scholar 

  • Money, K. E. (1970). Motion sickness. Physiological Reviews, 50, 1–39.

    PubMed  CAS  Google Scholar 

  • Money, K. E., & Myles, W. S. (1974). Heavy water nystagmus and effects of alcohol. Nature, 247, 404–405.

    PubMed  CAS  Google Scholar 

  • Money, K. E., Johnson, W. H., & Corlett, B. M. (1965). Role of the semicircular canals in positional alcohol nystagmus. American Journal of Physiology, 208, 1065–1070.

    PubMed  CAS  Google Scholar 

  • Perachio, A. A., & Correia, M. J. (1983). Responses of semicircular canal and otolith afferents to small angle static head tilts in the gerbil. Brain Research, 280, 287–298.

    PubMed  CAS  Google Scholar 

  • Plotnik, M., Marlinski, V., & Goldberg, J. M. (2002). Reflections of efferent activity in rotational responses of chinchilla vestibular afferents. Journal of Neurophysiology, 88(3), 1234–1244.

    PubMed  Google Scholar 

  • Ramachandran, R., & Lisberger, S. G. (2006). Transformation of vestibular signals into motor commands in the vestibulo-ocular reflex pathways of monkeys. Journal of Neurophysiology, 96(3), 1061–1074.

    PubMed Central  PubMed  Google Scholar 

  • Reason, J. T., & Brand, J. J. (1975). Motion sickness. New York: Academic Press.

    Google Scholar 

  • Rose, J. E., Brugge, J. F., Anderson, D. J., & Hind, J. E. (1967). Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. Journal of Neurophysiology, 30, 769–793.

    PubMed  CAS  Google Scholar 

  • Rowe, M. H., & Neiman, A. B. (2012). Information analysis of posterior canal afferents in the turtle, Trachemys scripta elegans. Brain Research, 1434, 226–242.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ruch, T. C., & Patton, H. D. (1965) Physiology and biophysics. Philadelphia: Saunders.

    Google Scholar 

  • Ruggero, M. A. (1973). Response to noise of auditory nerve fibers in the squirrel monkey. Journal of Neurophysiology, 36(4), 569–587.

    PubMed  CAS  Google Scholar 

  • Rüsch, A., & Eatock, R. A. (1996). A delayed rectifier conductance in type I hair cells of the mouse utricle. Journal of Neurophysiology, 76, 995–1004.

    PubMed  Google Scholar 

  • Sadeghi, S. G., Chacron, M. J., Taylor, M. C., & Cullen, K. E. (2007a). Neural variability, detection thresholds, and information transmission in the vestibular system. Journal of Neuroscience, 27(4), 771–781.

    PubMed  CAS  Google Scholar 

  • Sadeghi, S. G., Minor, L. B., & Cullen, K. E. (2007b). Response of vestibular-nerve afferents to active and passive rotations under normal conditions and after unilateral labyrinthectomy. Journal of Neurophysiology, 97, 1503–1514.

    PubMed  Google Scholar 

  • Sadeghi, S. G., Goldberg, J. M., Minor, L. B., & Cullen, K. E. (2009). Efferent-mediated responses in vestibular nerve afferents of the alert macaque. Journal of Neurophysiology, 101, 988–1001.

    PubMed Central  PubMed  Google Scholar 

  • Sato, F., & Sasaki, H. (1993). Morphological correlations between spontaneously discharging primary vestibular afferents and vestibular nucleus neurons in the cat. Journal of Comparative Neurology, 333(4), 554–566.

    PubMed  CAS  Google Scholar 

  • Schessel, D. A., Ginzberg, R., & Highstein, S. M. (1991). Morphophysiology of synaptic transmission between type I hair cells and vestibular primary afferents. An intracellular study employing horseradish peroxidase in the lizard, Calotes versicolor. Brain Research, 544, 1–16.

    PubMed  CAS  Google Scholar 

  • Schweizer, F. E., Savin, D., Luu, C., Sultemeier, D. R., & Hoffman, L. F. (2009). Distribution of high-conductance calcium-activated potassium channels in rat vestibular epithelia. Journal of Comparative Neurology, 517, 134–145.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Smith, C., & Goldberg, J. M. (1986). A stochastic afterhyperpolarization model of repetitive activity in vestibular afferents. Biological Cybernetics, 54, 41–51.

    PubMed  CAS  Google Scholar 

  • Somps, C. J., Schor, R. H., & Tomko, D. L. (1994). Vestibular afferent responses to linear accelerations in the alert squirrel monkey. Moffett Field, CA: Ames Research Center.

    Google Scholar 

  • St George, R. J., & Fitzpatrick, R. C. (2011). The sense of self-motion, orientation and balance explored by vestibular stimulation. Journal of Physiology, 589, 807–813.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Steinhausen, W. (1933). Über die Beobachtung der Cupula in den Bogengangsampullen des Labyrinthes des lebende Hechts. Pflugers Archiv fur Die Gesamte Physiologie des Menschen und der Tiere, 232, 500–512.

    Google Scholar 

  • Taube, J. S. (2007). The head direction signal: Origins and sensory-motor integration. Annual Review of Neuroscience, 30, 181–207.

    PubMed  CAS  Google Scholar 

  • Tomko, D. L., Peterka, R. J., & Schor, R. H. (1981a). Responses to head tilt in cat eight nerve afferents. Experimental Brain Research, 41, 216–221.

    PubMed  CAS  Google Scholar 

  • Tomko, D. L., Peterka, R. J., Schor, R. H., & O’Leary, D. P. (1981b). Response dynamics of horizontal canal afferents in barbiturate-anesthetized cats. Journal of Neurophysiology, 45, 376–396.

    PubMed  CAS  Google Scholar 

  • Trincker, D. (1962). The transformation of mechanical stimulus into nervous excitation by the labyrinthine receptors. Society for Experimental Biology, 16, 289–316.

    Google Scholar 

  • Wersäll, J. (1956). Studies on the structure and innervation of the sensory epithelium of the cristae ampullaris in the guinea pig. A light and electron microscopic investigation. Acta Oto-Laryngologica Supplementum, 126, 1–85.

    PubMed  Google Scholar 

  • Wersäll, J., & Bagger-Sjöbäck, D. (1974). Morphology of the vestibular sense organ. In H. H. Kornhuber (Ed.), Vestibular system: Basic mechanisms (pp. 123–170). Handbook of Sensory Physiology, Vol. 6, part I. Berlin: Springer-Verlag.

    Google Scholar 

  • Yagi, T., Simpson, N. E., & Markham, C. H. (1977). The relationship of conduction velocity to other physiological properties of the cat’s horizontal canal neurons. Experimental Brain Research, 30, 587–600.

    PubMed  CAS  Google Scholar 

  • Yakusheva, T. A., Shaikh, A. G., Green, A. M., Blazquez, P.M., Dickman, J. D., Angelaki, D. E. (2007). Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron, 54(6), 973–985.

    Google Scholar 

  • Yang, A., & Hullar, T. E. (2007). Relationship of semicircular canal size to vestibular-nerve afferent sensitivity in mammals. Journal of Neurophysiology, 98(6), 3197–3205.

    PubMed  Google Scholar 

  • Young, E. D., & Brownell, E. D. (1976). Responses to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized cats. Journal of Neurophysiology, 39(2), 282–300.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay M. Goldberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldberg, J.M. (2014). The Implications of Discharge Regularity: My Forty-Year Peek into the Vestibular System. In: Popper, A., Fay, R. (eds) Perspectives on Auditory Research. Springer Handbook of Auditory Research, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9102-6_11

Download citation

Publish with us

Policies and ethics