Skip to main content

Chronic Liver Disease, Cirrhosis and Complications: Part 2: Hepatic Encephalopathy and Other Systemic Effects

  • Chapter
  • First Online:
Diseases of the Liver in Children

Abstract

The liver is a metabolically active organ where there is continuous synthesis and detoxification of several biologically active substances such as albumin, clotting factors, neurotransmitters and vasoactive amines. In end-stage chronic liver disease (CLD), there is an imbalance between the production and degradation of these biologically active substances. This leads to a disturbance of end-organ homeostasis particularly in the brain, kidney and lungs. The severity of end-organ dysfunction might not be proportional to the degree of liver synthetic functional impairment, and progressive complexity of dysfunction should be expected. It is important that these complications are anticipated and treatment is initiated in a timely manner. This chapter focuses on cerebral, renal, pulmonary, skeletal and cardiac complications associated with chronic liver disease. Complications related to portal hypertension, ascites, SBP and hepatorenal syndrome are discussed in the preceding chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Iwasa M, et al. Decrease of regional cerebral blood flow in liver cirrhosis. Eur J Gastroenterol Hepatol. 2000;12(9):1001–6.

    PubMed  CAS  Google Scholar 

  2. Cash WJ, et al. Current concepts in the assessment and treatment of hepatic encephalopathy. QJM. 2010;103(1):9–16.

    PubMed  CAS  Google Scholar 

  3. Ferenci P, et al. Hepatic encephalopathy – definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology. 2002;35(3):716–21.

    PubMed  Google Scholar 

  4. Jones EA, Weissenborn K. Neurology and the liver. J Neurol Neurosurg Psychiatry. 1997;63(3):279–93.

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Frederick RT. Current concepts in the pathophysiology and management of hepatic encephalopathy. Gastroenterol Hepatol (N Y). 2011;7(4):222–33.

    Google Scholar 

  6. Vince AJ, Burridge SM. Ammonia production by intestinal bacteria: the effects of lactose, lactulose and glucose. J Med Microbiol. 1980;13(2):177–91.

    PubMed  CAS  Google Scholar 

  7. Romero-Gomez M, et al. Gut ammonia production and its modulation. Metab Brain Dis. 2009;24(1):147–57.

    PubMed  CAS  Google Scholar 

  8. Merli M, et al. Muscle depletion increases the risk of overt and minimal hepatic encephalopathy: results of a prospective study. Metab Brain Dis. 2013;28(2):281–4.

    PubMed  CAS  Google Scholar 

  9. Dejong CH, et al. Aromatic amino acid metabolism during liver failure. J Nutr. 2007;137(6 Suppl 1):1579S–85; discussion 1597S–8S.

    PubMed  CAS  Google Scholar 

  10. Fischer JE, et al. The effect of normalization of plasma amino acids on hepatic encephalopathy in man. Surgery. 1976;80(1):77–91.

    PubMed  CAS  Google Scholar 

  11. Skowronska M, Albrecht J. Alterations of blood brain barrier function in hyperammonemia: an overview. Neurotox Res. 2012;21(2):236–44.

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Al Mardini H, et al. Effect of methionine loading and endogenous hypermethioninaemia on blood mercaptans in man. Clin Chim Acta. 1988;176(1):83–9.

    PubMed  CAS  Google Scholar 

  13. Mortensen PB, et al. The degradation of amino acids, proteins, and blood to short-chain fatty acids in colon is prevented by lactulose. Gastroenterology. 1990;98(2):353–60.

    PubMed  CAS  Google Scholar 

  14. Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003;62(1):67–72.

    PubMed  CAS  Google Scholar 

  15. Riggio O, et al. Peripheral and splanchnic indole and oxindole levels in cirrhotic patients: a study on the pathophysiology of hepatic encephalopathy. Am J Gastroenterol. 2010;105(6):1374–81.

    PubMed  CAS  Google Scholar 

  16. Baraldi M, et al. Natural endogenous ligands for benzodiazepine receptors in hepatic encephalopathy. Metab Brain Dis. 2009;24(1):81–93.

    PubMed  CAS  Google Scholar 

  17. Ahboucha S, et al. Increased brain concentrations of a neuroinhibitory steroid in human hepatic encephalopathy. Ann Neurol. 2005;58(1):169–70.

    PubMed  CAS  Google Scholar 

  18. Guevara M, et al. Hyponatremia is a risk factor of hepatic encephalopathy in patients with cirrhosis: a prospective study with time-dependent analysis. Am J Gastroenterol. 2009;104(6):1382–9.

    PubMed  Google Scholar 

  19. Odeh M. Pathogenesis of hepatic encephalopathy: the tumour necrosis factor-alpha theory. Eur J Clin Invest. 2007;37(4):291–304.

    PubMed  CAS  Google Scholar 

  20. Odeh M, et al. Relationship between tumor necrosis factor-alpha and ammonia in patients with hepatic encephalopathy due to chronic liver failure. Ann Med. 2005;37(8):603–12.

    PubMed  CAS  Google Scholar 

  21. Odeh M, et al. Serum levels of tumor necrosis factor-alpha correlate with severity of hepatic encephalopathy due to chronic liver failure. Liver Int. 2004;24(2):110–6.

    PubMed  CAS  Google Scholar 

  22. Goral V, Atayan Y, Kaplan A. The relation between pathogenesis of liver cirrhosis, hepatic encephalopathy and serum cytokine levels: what is the role of tumor necrosis factor alpha? Hepatogastroenterology. 2011;58(107–108):943–8.

    PubMed  Google Scholar 

  23. Quero Guillen JC, Herrerias Gutierrez JM. Diagnostic methods in hepatic encephalopathy. Clin Chim Acta. 2006;365(1–2):1–8.

    PubMed  CAS  Google Scholar 

  24. Dhiman RK, et al. Minimal hepatic encephalopathy: consensus statement of a working party of the Indian National Association for Study of the Liver. J Gastroenterol Hepatol. 2010;25(6):1029–41.

    PubMed  Google Scholar 

  25. Govindarajan S, et al. Immunohistochemical distribution of renal prostaglandin endoperoxide synthase and prostacyclin synthase: diminished endoperoxide synthase in the hepatorenal syndrome. Hepatology. 1987;7(4):654–9.

    PubMed  CAS  Google Scholar 

  26. Yadav SK, et al. Encephalopathy assessment in children with extra-hepatic portal vein obstruction with MR, psychometry and critical flicker frequency. J Hepatol. 2010;52(3):348–54.

    PubMed  Google Scholar 

  27. Kircheis G, et al. Critical flicker frequency for quantification of low-grade hepatic encephalopathy. Hepatology. 2002;35(2):357–66.

    PubMed  Google Scholar 

  28. Kullmann F, et al. Brain electrical activity mapping of EEG for the diagnosis of (sub)clinical hepatic encephalopathy in chronic liver disease. Eur J Gastroenterol Hepatol. 2001;13(5):513–22.

    PubMed  CAS  Google Scholar 

  29. Terao Y, Ugawa Y. Basic mechanisms of TMS. J Clin Neurophysiol. 2002;19(4):322–43.

    PubMed  Google Scholar 

  30. Weber M, Eisen AA. Magnetic stimulation of the central and peripheral nervous systems. Muscle Nerve. 2002;25(2):160–75.

    PubMed  Google Scholar 

  31. Arya R, Gulati S, Deopujari S. Management of hepatic encephalopathy in children. Postgrad Med J. 2010;86(1011):34–41; quiz 40.

    PubMed  CAS  Google Scholar 

  32. Ito Y, et al. Effect of lactulose on short-chain fatty acids and lactate production and on the growth of faecal flora, with special reference to Clostridium difficile. J Med Microbiol. 1997;46(1):80–4.

    PubMed  CAS  Google Scholar 

  33. Holecek M. Three targets of branched-chain amino acid supplementation in the treatment of liver disease. Nutrition. 2010;26(5):482–90.

    PubMed  CAS  Google Scholar 

  34. Agrawal A, et al. Secondary prophylaxis of hepatic encephalopathy in cirrhosis: an open-label, randomized controlled trial of lactulose, probiotics, and no therapy. Am J Gastroenterol. 2012;107(7):1043–50.

    PubMed  CAS  Google Scholar 

  35. Bajaj JS, et al. A longitudinal systems biology analysis of lactulose withdrawal in hepatic encephalopathy. Metab Brain Dis. 2012;27(2):205–15.

    PubMed  CAS  Google Scholar 

  36. Patil DH, et al. Comparative modes of action of lactitol and lactulose in the treatment of hepatic encephalopathy. Gut. 1987;28(3):255–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Festi D, et al. Management of hepatic encephalopathy: focus on antibiotic therapy. Digestion. 2006;73 Suppl 1:94–101.

    PubMed  CAS  Google Scholar 

  38. Rivkin A, Gim S. Rifaximin: new therapeutic indication and future directions. Clin Ther. 2011;33(7):812–27.

    PubMed  CAS  Google Scholar 

  39. Gluud LL, et al. Lactulose, rifaximin or branched chain amino acids for hepatic encephalopathy: what is the evidence? Metab Brain Dis. 2013 (in press).

    Google Scholar 

  40. Malaguarnera M, et al. Bifidobacterium longum with fructo-oligosaccharide (FOS) treatment in minimal hepatic encephalopathy: a randomized, double-blind, placebo-controlled study. Dig Dis Sci. 2007;52(11):3259–65.

    PubMed  Google Scholar 

  41. Sharma P, et al. An open-label randomized controlled trial of lactulose and probiotics in the treatment of minimal hepatic encephalopathy. Eur J Gastroenterol Hepatol. 2008;20(6):506–11.

    PubMed  CAS  Google Scholar 

  42. Holte K, Krag A, Gluud LL. Systematic review and meta-analysis of randomized trials on probiotics for hepatic encephalopathy. Hepatol Res. 2012;42(10):1008–15.

    PubMed  Google Scholar 

  43. McGee RG, et al. Probiotics for patients with hepatic encephalopathy. Cochrane Database Syst Rev. 2011;(11):CD008716.

    Google Scholar 

  44. Olde Damink SW, et al. Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and a TIPSS. Hepatology. 2002;36(5):1163–71.

    PubMed  CAS  Google Scholar 

  45. Rose C, et al. L-ornithine-L-aspartate lowers plasma and cerebrospinal fluid ammonia and prevents brain edema in rats with acute liver failure. Hepatology. 1999;30(3):636–40.

    PubMed  CAS  Google Scholar 

  46. Al Sibae MR, McGuire BM. Current trends in the treatment of hepatic encephalopathy. Ther Clin Risk Manag. 2009;5(3):617–26.

    PubMed  PubMed Central  Google Scholar 

  47. Shores NJ, Keeffe EB. Is oral L-acyl-carnitine an effective therapy for hepatic encephalopathy? Review of the literature. Dig Dis Sci. 2008;53(9):2330–3.

    PubMed  CAS  Google Scholar 

  48. Malaguarnera M, et al. Acetyl-L-carnitine improves cognitive functions in severe hepatic encephalopathy: a randomized and controlled clinical trial. Metab Brain Dis. 2011;26(4):281–9.

    PubMed  CAS  Google Scholar 

  49. Malaguarnera M, et al. Oral acetyl-L-carnitine therapy reduces fatigue in overt hepatic encephalopathy: a randomized, double-blind, placebo-controlled study. Am J Clin Nutr. 2011;93(4):799–808.

    PubMed  CAS  Google Scholar 

  50. Loomba V, et al. Serum zinc levels in hepatic encephalopathy. Indian J Gastroenterol. 1995;14(2):51–3.

    PubMed  CAS  Google Scholar 

  51. Takuma Y, et al. Clinical trial: oral zinc in hepatic encephalopathy. Aliment Pharmacol Ther. 2010;32(9):1080–90.

    PubMed  CAS  Google Scholar 

  52. Reding P, Duchateau J, Bataille C. Oral zinc supplementation improves hepatic encephalopathy. Results of a randomised controlled trial. Lancet. 1984;2(8401):493–5.

    PubMed  CAS  Google Scholar 

  53. Burkhard PR, et al. Chronic Parkinsonism associated with cirrhosis: a distinct subset of acquired hepatocerebral degeneration. Arch Neurol. 2003;60(4):521–8.

    PubMed  Google Scholar 

  54. Corenblum B, Shaffer EA. Hyperprolactinemia in hepatic encephalopathy may result from impaired central dopaminergic neurotransmission. Horm Metab Res. 1989;21(12):675–7.

    PubMed  CAS  Google Scholar 

  55. Als-Nielsen B, Gluud LL, Gluud C. Dopaminergic agonists for hepatic encephalopathy. Cochrane Database Syst Rev. 2004;(4):CD003047.

    Google Scholar 

  56. Als-Nielsen B, Gluud LL, Gluud C. Benzodiazepine receptor antagonists for hepatic encephalopathy. Cochrane Database Syst Rev. 2004;(2):CD002798.

    Google Scholar 

  57. Spahr L, et al. Increased blood manganese in cirrhotic patients: relationship to pallidal magnetic resonance signal hyperintensity and neurological symptoms. Hepatology. 1996;24(5):1116–20.

    PubMed  CAS  Google Scholar 

  58. Schaefer B, Schmitt CP. The role of molecular adsorbent recirculating system dialysis for extracorporeal liver support in children. Pediatr Nephrol. 2013;28(9):1763–9.

    PubMed  Google Scholar 

  59. Abrams GA, et al. Use of macroaggregated albumin lung perfusion scan to diagnose hepatopulmonary syndrome: a new approach. Gastroenterology. 1998;114(2):305–10.

    PubMed  CAS  Google Scholar 

  60. Wang YW, Lin HC. Recent advances in hepatopulmonary syndrome. J Chin Med Assoc. 2005;68(11):500–5.

    PubMed  Google Scholar 

  61. Whyte MK, et al. Analysis of intrapulmonary right to left shunt in the hepatopulmonary syndrome. J Hepatol. 1998;29(1):85–93.

    PubMed  CAS  Google Scholar 

  62. Varghese J, et al. Hepatopulmonary syndrome – past to present. Ann Hepatol. 2007;6(3):135–42.

    PubMed  Google Scholar 

  63. Sasaki T, et al. Development of intrapulmonary arteriovenous shunting in postoperative biliary atresia: evaluation by contrast-enhanced echocardiography. J Pediatr Surg. 2000;35(11):1647–50.

    PubMed  CAS  Google Scholar 

  64. Noli K, et al. Prevalence of hepatopulmonary syndrome in children. Pediatrics. 2008;121(3):e522–7.

    PubMed  Google Scholar 

  65. Fallon MB, et al. Common bile duct ligation in the rat: a model of intrapulmonary vasodilatation and hepatopulmonary syndrome. Am J Physiol. 1997;272(4 Pt 1):G779–84.

    PubMed  CAS  Google Scholar 

  66. Barbe T, et al. Pulmonary arteriovenous shunting in children with liver disease. J Pediatr. 1995;126(4):571–9.

    PubMed  CAS  Google Scholar 

  67. Gupta D, et al. Prevalence of hepatopulmonary syndrome in cirrhosis and extrahepatic portal venous obstruction. Am J Gastroenterol. 2001;96(12):3395–9.

    PubMed  CAS  Google Scholar 

  68. Rolla G, et al. Exhaled nitric oxide and impaired oxygenation in cirrhotic patients before and after liver transplantation. Ann Intern Med. 1998;129(5):375–8.

    PubMed  CAS  Google Scholar 

  69. Fallon MB, et al. The role of endothelial nitric oxide synthase in the pathogenesis of a rat model of hepatopulmonary syndrome. Gastroenterology. 1997;113(2):606–14.

    PubMed  CAS  Google Scholar 

  70. Gomez FP, et al. Effects of nebulized N(G)-nitro-L-arginine methyl ester in patients with hepatopulmonary syndrome. Hepatology. 2006;43(5):1084–91.

    PubMed  CAS  Google Scholar 

  71. Zhang HY, et al. Experimental study on the role of endotoxin in the development of hepatopulmonary syndrome. World J Gastroenterol. 2005;11(4):567–72.

    PubMed  CAS  Google Scholar 

  72. Sztrymf B, et al. Prevention of hepatopulmonary syndrome and hyperdynamic state by pentoxifylline in cirrhotic rats. Eur Respir J. 2004;23(5):752–8.

    PubMed  CAS  Google Scholar 

  73. Sztrymf B, et al. Cirrhotic rats with bacterial translocation have higher incidence and severity of hepatopulmonary syndrome. J Gastroenterol Hepatol. 2005;20(10):1538–44.

    PubMed  CAS  Google Scholar 

  74. Gomez FP, et al. Gas exchange mechanism of orthodeoxia in hepatopulmonary syndrome. Hepatology. 2004;40(3):660–6.

    PubMed  Google Scholar 

  75. Dickinson CJ. The aetiology of clubbing and hypertrophic osteoarthropathy. Eur J Clin Invest. 1993;23(6):330–8.

    PubMed  CAS  Google Scholar 

  76. Alves L, et al. Preoperative pulmonary assessment of children for liver transplantation. Pediatr Transplant. 2008;12(5):536–40.

    PubMed  Google Scholar 

  77. El-Shabrawi MH, et al. (99m)Technetium-macroaggregated albumin perfusion lung scan versus contrast enhanced echocardiography in the diagnosis of the hepatopulmonary syndrome in children with chronic liver disease. Eur J Gastroenterol Hepatol. 2010;22(8):1006–12.

    PubMed  CAS  Google Scholar 

  78. Lee KN, et al. Hypoxemia and liver cirrhosis (hepatopulmonary syndrome) in eight patients: comparison of the central and peripheral pulmonary vasculature. Radiology. 1999;211(2):549–53.

    PubMed  CAS  Google Scholar 

  79. Kuntz E, Kuntz HD. Hepatopulmonary syndrome, in hepatology. In: Kuntz E, Kuntz HD, editors. Textbook and atlas. Heidelberg: Springer; 2008. p. 340–5.

    Google Scholar 

  80. Schenk P, et al. Hepatopulmonary syndrome: prevalence and predictive value of various cut offs for arterial oxygenation and their clinical consequences. Gut. 2002;51(6):853–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Herve P, et al. Pulmonary vascular disorders in portal hypertension. Eur Respir J. 1998;11(5):1153–66.

    PubMed  CAS  Google Scholar 

  82. Martinez-Palli G, et al. Effect of transjugular intrahepatic portosystemic shunt on pulmonary gas exchange in patients with portal hypertension and hepatopulmonary syndrome. World J Gastroenterol. 2005;11(43):6858–62.

    PubMed  Google Scholar 

  83. Battaglia SE, et al. Resolution of gas exchange abnormalities and intrapulmonary shunting following liver transplantation. Hepatology. 1997;25(5):1228–32.

    PubMed  CAS  Google Scholar 

  84. Abrams GA, et al. Hepatopulmonary syndrome and venous emboli causing intracerebral hemorrhages after liver transplantation: a case report. Transplantation. 1999;68(11):1809–11.

    PubMed  CAS  Google Scholar 

  85. Arguedas MR, et al. Prospective evaluation of outcomes and predictors of mortality in patients with hepatopulmonary syndrome undergoing liver transplantation. Hepatology. 2003;37(1):192–7.

    PubMed  Google Scholar 

  86. Simonneau G, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S43–54.

    PubMed  Google Scholar 

  87. Hoeper MM, Krowka MJ, Strassburg CP. Portopulmonary hypertension and hepatopulmonary syndrome. Lancet. 2004;363(9419):1461–8.

    PubMed  Google Scholar 

  88. Castro M, et al. Frequency and clinical implications of increased pulmonary artery pressures in liver transplant patients. Mayo Clin Proc. 1996;71(6):543–51.

    PubMed  CAS  Google Scholar 

  89. Krowka MJ. Hepatopulmonary syndromes. Gut. 2000;46(1):1–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Budhiraja R, Hassoun PM. Portopulmonary hypertension: a tale of two circulations. Chest. 2003;123(2):562–76.

    PubMed  Google Scholar 

  91. Edwards BS, et al. Coexistent pulmonary and portal hypertension: morphologic and clinical features. J Am Coll Cardiol. 1987;10(6):1233–8.

    PubMed  CAS  Google Scholar 

  92. Robalino BD, Moodie DS. Association between primary pulmonary hypertension and portal hypertension: analysis of its pathophysiology and clinical, laboratory and hemodynamic manifestations. J Am Coll Cardiol. 1991;17(2):492–8.

    PubMed  CAS  Google Scholar 

  93. McDonnell PJ, Toye PA, Hutchins GM. Primary pulmonary hypertension and cirrhosis: are they related? Am Rev Respir Dis. 1983;127(4):437–41.

    PubMed  CAS  Google Scholar 

  94. Lammers AE, Hislop AA, Haworth SG. Prognostic value of B-type natriuretic peptide in children with pulmonary hypertension. Int J Cardiol. 2009;135(1):21–6.

    PubMed  Google Scholar 

  95. Ivy DD, et al. Non-congenital heart disease associated pediatric pulmonary arterial hypertension. Prog Pediatr Cardiol. 2009;27(1–2):13–23.

    PubMed  PubMed Central  Google Scholar 

  96. Talwalkar JA, et al. Prevalence of spontaneous portosystemic shunts in patients with portopulmonary hypertension and effect on treatment. Gastroenterology. 2011;141(5):1673–9.

    PubMed  Google Scholar 

  97. Barst RJ, et al. Pharmacokinetics, safety, and efficacy of bosentan in pediatric patients with pulmonary arterial hypertension. Clin Pharmacol Ther. 2003;73(4):372–82.

    PubMed  CAS  Google Scholar 

  98. Austin MJ, et al. Safety and efficacy of combined use of sildenafil, bosentan, and iloprost before and after liver transplantation in severe portopulmonary hypertension. Liver Transpl. 2008;14(3):287–91.

    PubMed  Google Scholar 

  99. Ashfaq M, et al. The impact of treatment of portopulmonary hypertension on survival following liver transplantation. Am J Transplant. 2007;7(5):1258–64.

    PubMed  CAS  Google Scholar 

  100. Goel V, Kar P. Hepatic osteodystrophy. Trop Gastroenterol. 2010;31(2):82–6.

    PubMed  Google Scholar 

  101. Klein GL, et al. Hepatic osteodystrophy in chronic cholestasis: evidence for a multifactorial etiology. Pediatr Transplant. 2002;6(2):136–40.

    PubMed  Google Scholar 

  102. Hogler W, Baumann U, Kelly D. Growth and bone health in chronic liver disease and following liver transplantation in children. Pediatr Endocrinol Rev. 2010;7(3):266–74.

    PubMed  Google Scholar 

  103. Hogler W, Baumann U, Kelly D. Endocrine and bone metabolic complications in chronic liver disease and after liver transplantation in children. J Pediatr Gastroenterol Nutr. 2012;54(3):313–21.

    PubMed  Google Scholar 

  104. Baik SK, Fouad TR, Lee SS. Cirrhotic cardiomyopathy. Orphanet J Rare Dis. 2007;2:15.

    PubMed  PubMed Central  Google Scholar 

  105. Liu H, Song D, Lee SS. Cirrhotic cardiomyopathy. Gastroenterol Clin Biol. 2002;26(10):842–7.

    PubMed  Google Scholar 

  106. Desai MS, et al. Cardiac structural and functional alterations in infants and children with biliary atresia, listed for liver transplantation. Gastroenterology. 2011;141(4):1264–72, 1272.e1–4.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Dhawan MD, FRCPCH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shanmugam, N.P., Karthikeyan, P., Dhawan, A. (2014). Chronic Liver Disease, Cirrhosis and Complications: Part 2: Hepatic Encephalopathy and Other Systemic Effects. In: Murray, K., Horslen, S. (eds) Diseases of the Liver in Children. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9005-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9005-0_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9004-3

  • Online ISBN: 978-1-4614-9005-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics