Skip to main content

Assessing the Effects of Imprinting and Maternal Genotypes on Complex Genetic Traits

  • Conference paper
  • First Online:
Risk Assessment and Evaluation of Predictions

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 215))

Abstract

A susceptibility variant may affect a trait not only through sequence variation, but also through parental origin, and even through combination with the maternal genotype. Although associations have been established for more than one thousand five hundred Single Nucleotide Polymorphisms (SNPs) and over two hundred diseases through genome-wide association studies, imprinting and maternal genotype effects (collectively referred to as parent-of-origin effects) have largely not been taken into account. The ignorance of parent-of-origin effects may have adversely contributed to “missing heritability”; thus, attempts have been made to incorporate these two epigenetic factors when assessing the effect of a genetic variant on a complex trait. In this review, we will discuss the difference between retrospective and prospective studies in genetic analysis and indicate how this difference may influence the choice of methods for assessing parent-of-origin effects on the risk of complex genetic traits. We will provide expositions on several specific study designs and their associated analysis methods, including the case-parent triad design and designs that include control samples, such as the case-parent triads/control-parent triads design. Most available methods are for retrospective studies, but a handful of methods applicable to extended pedigrees from prospective studies also exist. Although log-linear or logistic models are frequently used to factor in parent-of-origin effects, we review non-parametric approaches as well for detecting imprinting effects. We further discuss implications of various assumptions made in the modeling to avoid overparameterization. In summary, a model factoring in epigenetically modulated gene variant effects is expected to be of greater value in risk assessment and prediction if such epigenetic factors indeed play a role in the etiology of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although such data are typically only used to help estimating mating type probabilities, they can contribute to the estimation of risk parameters under certain formulations [57].

References

  1. Ainsworth, H.F., Unwin, J., Jamison, D.L., Cordell, H.J.: Investigation of maternal effects, maternal-fetal interactions and parent-of-origin effects (imprinting), using mothers and their offspring. Genet. Epidemiol. 35, 19–45 (2011)

    Article  Google Scholar 

  2. Becker, T., Baur, M.P., Knapp, M.: Detection of parent-of-origin effects in nuclear families using haplotype analysis. Hum. Hered. 62, 64–76 (2006)

    Article  Google Scholar 

  3. Boycott, K.M., Parboosingh, J.S., Chodirker, B.N., Lowry, R.B., McLeod, D.R., Morris, J., Greenberg, C.R., Chudley, A.E., Bernier, F.P., Midgley, J., Moller, L.B., Innes, A.M.: Clinical genetics and the Hutterite population: a review of Mendelian disorders. Am. J. Med. Genet. Part A 146A, 1088–1098 (2008)

    Article  Google Scholar 

  4. Buyske, S.: Maternal genotype effects can alias case genotype effects in case-control studies. Eur. J. Hum. Genet. 16, 784–785 (2008)

    Article  Google Scholar 

  5. Cassidy, S.B., Driscoll, D.J.: Prader-Willi syndrome. Eur. J. Hum. Genet. 17, 3–13 (2009)

    Article  Google Scholar 

  6. Chen, J., Zheng, H., Wilson, M.L.: Likelihood ratio tests for maternal and fetal genetic effects on obstetric complications. Genet. Epidemiol. 33, 526–538 (2009)

    Article  Google Scholar 

  7. Childs, E.J., Palmer, C.G., Lange, K., Sinsheimer, J.S.: Modeling maternal-offspring gene-gene interactions: the extended-MFG test. Genet. Epidemiol. 34, 512–521 (2010)

    Article  Google Scholar 

  8. Cordell, H.J., Barratt, B.J., Clayton, D.G.: Case/pseudocontrol analysis in genetic association studies: a unified framework for detection of genotype and haplotype associations, gene-gene and gene-environment interactions, and parent-of-origin effects. Genet. Epidemiol. 26, 167–185 (2004)

    Article  Google Scholar 

  9. Couzin, J.: Genetics: DNA test for breast cancer risk draws criticism. Science 322, 357 (2008)

    Article  Google Scholar 

  10. Edwards, D.R.V., Gilbert, J.R., Jiang, L., Gallins, P.J., Caywood, L., Creason, M., Fuzzell, D., Knebusch, C., Jackson, C.E., Pericak-Vance, M.A., Haines, J.L., Scott, W.K.: Successful aging shows linkage to chromosomes 6, 7, and 14 in the Amish. Ann. Hum. Genet. 75, 516–528 (2011)

    Article  Google Scholar 

  11. Epstein, M., Veal, C., Trembath, R., Barker, J., Li, C., Satten, G.: Genetic association analysis using data from triads and unrelated subjects. Am. J. Hum. Genet. 76, 592–608 (2005)

    Article  Google Scholar 

  12. Falls, J.G., Pulford, D.J., Wylie, A.A., Jirtle, R.L.: Genomic imprinting: implications for human disease. Am. J. Pathol. 154, 635–647 (1999)

    Article  Google Scholar 

  13. Ferguson-Smith, A.C.: Genome imprinting: the emergence of an epigenetic paradigm. Nat. Rev. 12, 565–575 (2011)

    Article  Google Scholar 

  14. Giannoukakis, N., Deal, C., Paquette, J., Goodyer, C.G., Polychronakos, C.: Parental genomic imprinting of the human IGF2 gene. Nat. Genet. 4, 98–101 (1993)

    Article  Google Scholar 

  15. Goldstein, D.B.: Common genetic variation and human traits. N. Engl. J. Med. 360, 1696–1698 (2009)

    Article  Google Scholar 

  16. Gregg, C., Zhang, J., Weissbourd, B., Luo, S., Schroth, G.P., Haig, D., Dulac, C.: High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329, 643–648 (2010)

    Article  Google Scholar 

  17. Hager, R., Cheverud, J.M., Wolf, J.B.: Maternal effects as the cause of parent-of-origin effects that mimic genomic imprinting. Genetics 178, 1755–1762 (2008)

    Article  Google Scholar 

  18. Haig, D.: Genetic conflicts in human pregnancy. Q. Rev. Biol. 68, 495–532 (1993)

    Article  Google Scholar 

  19. Haig, D.: Evolutionary conflicts in pregnancy and calcium metabolism – a review. Placenta 25, S10–S15 (2004)

    Article  Google Scholar 

  20. Hardy, J., Singleton, A.: Genomewide association studies and human disease. N. Engl. J. Med. 360, 1759–1768 (2009)

    Article  Google Scholar 

  21. Harney, S., Newton, J., Milicic, A., Brown, M.A., Wordsworth, B.P.: Non-inherited maternal HLA alleles are associated with rheumatoid arthritis. Rheumatology 42, 171–174 (2003)

    Article  Google Scholar 

  22. He, F., Zhou, J.Y., Hu, Y.Q., Sun, F., Yang, J., Lin, S., Fung, W.K.: Detection of parent-of-origin effects for quantitative traits in complete and incomplete nuclear families with multiple children. Am. J. Epidemiol. 174, 226–233 (2011)

    Article  Google Scholar 

  23. Hindorff, L.A., Junkins, H.A., Hall, P.N., Mehta, J.P., Manolio, T.A.: A catalog of published genome-wide association studies. Available from www.genome.gov/gwastudies (2010). Accessed 15 Oct 2012

    Google Scholar 

  24. Hirschhorn, J.N.: Genomewide association studies – illuminating biologic pathways. N. Engl. J. Med. 360, 1699–1701 (2009)

    Article  Google Scholar 

  25. Huang, B.E., Amos, C.I., Lin, D.Y.: Detecting haplotype effects in genomewide association studies. Genet. Epidemiol. 31, 803–812 (2007)

    Article  Google Scholar 

  26. Jamrozik, E.F., Knuiman, M.W., James, A., Divitini, M., Musk, A.W.: Risk factors for adult-onset asthma: a 14-year longitudinal study. Respirology 14(6), 814–821 (2009)

    Article  Google Scholar 

  27. Jamrozik, E.F., Warrington, N., Mcclenaghan, J., Hui, J., Musk, A.W., James, A., Beilby, J.P., Hansen, J., De Klerk, N.H., Palmer, L.J.: Funcational haplotypes in the PTGDR gene fail to associate with asthma in two Australian populations. Respirology 16, 359–366 (2010)

    Article  Google Scholar 

  28. Janssens, A.C.J.W., Ioannidis, J.P.A., van Dujin, C.M., Little, J., Khoury, M.J.: Strengthening the reporting of genetic risk prediction studies: the GRIPS statement. Genome Med. 3, 16 (2011)

    Article  Google Scholar 

  29. Jensen, L.E., Etheredge, A.J., Brown, K.S., Mitchell, L.E., Whitehead, A.S.: Maternal genotype for the monocyte chemoattractant protein 1 A(-2518)G promotor polymorphism is associated with the risk of spina bifida in offspring. Am. J. Med. Genet. 140A, 1114–1118 (2006)

    Article  Google Scholar 

  30. Kong, A., Steinthorsdottir, V., Masson, G., et al.: Parental origin of sequence variants associated with complex diseases. Nature 462, 868–874 (2009)

    Article  Google Scholar 

  31. Kraft, P., Hunter, D.J.: Genetic risk prediction – are we there yet? N. Engl. J. Med. 360, 1701–1703 (2009)

    Article  Google Scholar 

  32. Maher, B.: Personal genomes: the case of the missing heritability. Nature 456, 18–21 (2008)

    Article  Google Scholar 

  33. Manolio, T.A.: Genomewide association studies and assessment of the risk of disease. N. Engl. J. Med. 363, 166–176 (2010)

    Article  Google Scholar 

  34. Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J., McCarthy, M.I., Ramos, E.M., Cardon, L.R., Chakravarti, A., et al.: Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009)

    Article  Google Scholar 

  35. Morison, I.M., Paton, C.J., Cleverley, S.D.: The imprinted gene and parent-of-origin effect database. Nucleic Acids Res. 29, 275–276 (2001)

    Article  Google Scholar 

  36. Ober, C.: HLA and pregnancy: the paradox of the fetal allograft. Am. J. Hum. Genet. 62, 1–5 (1998)

    Article  Google Scholar 

  37. Peltonen, L., Palotie, A., Lange, K.: Use of population isolates for mapping complex traits. Nat. Rev. Genet. 1, 182–190 (2000)

    Article  Google Scholar 

  38. Ploughman, L., Boehnke, M.: Estimating the power of a proposed linkage study for a complex genetic trait. Am. J. Hum. Genet. 44, 543–551 (1989)

    Google Scholar 

  39. Scuteri, A., Sanna, S., Chen, W., Uda, M., Albai, G., et al.: Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 3(7), e1151 (2007)

    Article  Google Scholar 

  40. Shete, S., Amos, C.I.: Testing for genetic linkage in families by a variance-components approach in the presence of genomic imprinting. Am. J. Hum. Genet. 70, 751–757 (2002)

    Article  Google Scholar 

  41. Shi, M., Umbach, D.M., Vermeulen, S.H., Weinberg, C.R.: Making the most of case-mother/control-mother studies. Am. J. Epidemiol. 168, 541–547 (2008)

    Article  Google Scholar 

  42. Sinsheimer, J.S., Palmer, C.G.S., Woodward, J.A.: Detecting genotype combinations that increase risk for disease: the maternal-fetal genotype incomparibility test. Genet. Epidemiol. 24, 1–13 (2003)

    Article  Google Scholar 

  43. Splansky, G.L., Corey, D., Yang, Q., Atwood, L.D., Cupples, L.A., Benjamin, E.J., et al.: The Third Generation Cohort of the National Heart, Lung, and Blood Institute’s Framingham Heart Study: design, recruitment, and initial examination. Am. J. Epidemiol. 165, 1328–1335 (2007)

    Article  Google Scholar 

  44. Strachan, T., Read, A.P. (eds.): Human Molecular Genetics, 2nd edn. Wiley, New York (1999)

    Google Scholar 

  45. Thompson, E.E., Sun, Y. Nicolae, D., Ober, C.: Shades of gray: a comparison of linkage disequilibrium between Hutterites and Europeans. Genet. Epidemiol. 34, 133–139 (2010)

    Article  Google Scholar 

  46. Van Buggenhout, G., Fryns, J.P.: Angelman syndrome (AS, MIM 105830). Eur. J. Hum. Genet. 17, 1367–1373 (2009)

    Article  Google Scholar 

  47. van den Oord, E.J.: The use of mixture models to perform quantitative tests for linkage disequilibrium, maternal effects, and parent-of-origin effects with incomplete subject-parent triads. Behav. Genet. 30, 335–343 (2000)

    Article  Google Scholar 

  48. Vermeulen, S.H., Shi, M., Weinberg, C.R., Umbach, D.M.: A hybrid design: case-parent triads supplemented by control-mother dyads. Genet. Epidemiol. 33, 136–144 (2009)

    Article  Google Scholar 

  49. Wang, X., Sun, Q., McGrath, S.D., Mardis, E.R., Soloway, P.D., Clark, A.G.: Transcriptome-wide identification of novel imprinted genes in neonatal mouse brain. PLoS One 3, e3839 (2008)

    Article  Google Scholar 

  50. Weinberg, C.R.: Methods for detection of parent-of-origin effects in genetic studies of case-parents triads. Am. J. Hum. Genet. 65, 229–235 (1999)

    Article  Google Scholar 

  51. Weinberg, C.R., Wilcox, A.J., Lie, R.T.: A log-linear approach to case-parent triad data: assessing effects of disease genes that act either directly or through maternal effects and that may be subjected to parental imprinting. Am. J. Hum. Genet. 62, 969–978 (1998)

    Article  Google Scholar 

  52. Weinberg, C.R., Umbach, D.M.: A hybrid design for studying genetic influences on risk of diseases with onset early in life. Am. J. Hum. Genet. 77, 627–636 (2005)

    Article  Google Scholar 

  53. Wilcox, A.J., Weinberg, C.R., Lie, R.T.: Distinguishing the effects of maternal and offspring genes through studies of case-parent triads. Am. J. Epidemiol. 148, 893–901 (1998)

    Article  Google Scholar 

  54. Wittkopp, P.J., Haerum, B.K., Clark, A.G.: Parent-of-origin effects on mRNA expression in Drosophila melanogaster not caused by genomic imprinting. Genetics 173, 1817–1821 (2006)

    Article  Google Scholar 

  55. Yang, J.: Likelihood approaches for detecting imprinting and maternal effects in family-based association studeis. Ph.D. dissertation, The Ohio State University (2010)

    Google Scholar 

  56. Yang, J., Lin, S.: Detection of imprinting and heterogeneous maternal effects on high blood pressure using Framingham Heart Study data. BMC Proc. 3, S125 (2009)

    Article  MathSciNet  Google Scholar 

  57. Yang, J., Lin, S.: Likelihood approach for detecting imprinting and maternal effect using general pedigrees from prospective family-based association studies. Biometrics 68, 477–485 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yang, J., Lin, S.: Robust partial likelihood approach for detecting imprinting and maternal effects using case-control families. Ann. Appl. Stat. 7, 249–268 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  59. Yu, Z., Schaid, D.J.: Sequential haplotype scan methods for association analysis. Genet. Epidemiol. 31, 553–564 (2007)

    Article  Google Scholar 

  60. Zhou, J., Hu, Y., Lin, S., Fung, W.K.: Detection of parent-of-origin effects based on complete and incomplete nuclear families with multiple affected children. Hum. Hered. 67, 1–12 (2009)

    Article  Google Scholar 

  61. Zhou, J., Lin, S., Fung, W.K., Hu, Y.-Q.: Detection of parent-of-origin effects in complete and incomplete nuclear families with multiple affected children using multiple tightly linked markers. Hum. Hered. 67, 116–127 (2009)

    Article  Google Scholar 

  62. Zhou, J., Ding, J., Fung, W.K., Lin, S.: Detection of parent-of-origin effects using general pedigree data. Genet. Epidemiol. 34, 151–158 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation grant DMS-1208968. The author would like to thank Dr. Lynn Friedman for her valuable comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shili Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Lin, S. (2013). Assessing the Effects of Imprinting and Maternal Genotypes on Complex Genetic Traits. In: Lee, ML., Gail, M., Pfeiffer, R., Satten, G., Cai, T., Gandy, A. (eds) Risk Assessment and Evaluation of Predictions. Lecture Notes in Statistics, vol 215. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8981-8_13

Download citation

Publish with us

Policies and ethics