Skip to main content

Plastic Deformation and Damage in Rocks under Coupled Thermo-Hydromechanical Conditions: Numerical Study

  • Living reference work entry
  • First Online:
Handbook of Damage Mechanics
  • 31 Accesses

Abstract

Natural rocks often manifest at the same time, at various proportions, a mixing of typical irreversible (visco)plastic strains and damage mechanisms. For porous rocks, thermo-poromechanics offers a suitable thermodynamic framework for their study under complex thermal, hydraulic, and mechanical loads. Various numerical strategies are developed for modeling coupling between plasticity and damage on the one hand and multiphysics coupling on the other hand. A full coupling approach for solving thermos-hydromechanical field equations and a finite element software is used for 3D modeling of long-term evolution of a deep circular drift under thermal, hydraulic, and mechanical coupled loads. It is supposed this drift is part of a set of horizontal excavations, parallel to each other at some distances. Such small diameter drifts could be potentially used in various waste disposals or geothermal exploitation. The stress in the drift section is considered isotropic, yet a 3D model is used to point out the effects of a nonuniform thermal load on the response of the system. Because of that and under a decayed thermal power, the evolution of the temperature on the drift wall is neither uniform nor monotonic, and high gradients of temperature and stress are generated in both radial and longitudinal directions. In turn, these generate nonuniform stress fields leading in fine to nonuniform viscoplastic strains and damage. The effects of the interaction of adjacent drifts are manifested of developing a particular shape of the damage zone, larger and more intense on the vertical direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Andra, Dossier 2005 Argile – Tome Architecture et gestion du stockage géologique, 2005. www.andra.fr

  • C. Bikong, D. Hoxha, J.F. Shao, A micro-macro model for time-dependent behavior of clayey rocks due to anisotropic propagation of microcracks. Int. J. Plast. 69, 73–88 (2015)

    Article  Google Scholar 

  • A.S. Chiarelli, J.F. Shao, N. Hoteit, Modeling of elastoplastic damage behaviour of a claystone. Int. J. Plast. 19(2003), 23–45 (2003)

    Article  Google Scholar 

  • O. Coussy, Poromechanics, John Wiley & Sons, Ltd, ISBN:9780470849200 (2004)

    Google Scholar 

  • E. Detournay, A.H.-D. Cheng, Fundamentals of Poroelasticity, in Comprehensive Rock Engineering, ed. by J. Hudson, vol. II, (Pergamon Press, Oxford/New York, 1993)

    Google Scholar 

  • D.P. Do, D. Hoxha, Effective transfer properties of partially saturated geomaterials with interfaces using the immersed interface method. Int. J. Numer. Anal. Methods Geomech. 37(18), 3237–3257 (2013)

    Article  Google Scholar 

  • B. Félix, P. Lebon, R. Miguez, F. Plas, A review of the Andra’s research programmes on the thermo-hydromechanical behavior of clay in connection with the radioactive waste disposal project in deep geological formations. Eng. Geol. 41(1–4), 35–50 (1996)

    Article  Google Scholar 

  • Y. Gou, Z. Hou, M. Li, W. Feng, H. Liu, Coupled thermo-hydro-mechanical simulation of CO2 enhanced gas recovery with an extended equation of state module for TOUGH2MP- FLAC3D. J. Rock Mech. Geotech. Eng. 8, 904–920 (2016)

    Article  Google Scholar 

  • S. Granet (2014) Modélisations THHM: Généralités et algorithmes Modélisations THHM: Généralités et algorithmes – Code Aster document r7.01.10.pdf https://www.codeaster.org/V2/doc/v12/fr/index.php?man=R7

  • N.R. Hansen, H.L. Schreyer, A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int. J. Solids Struct. 31, 359–389 (1994)

    Article  Google Scholar 

  • K. Hayakawa, S. Murakami, Thermodynamical modeling of elastic-plastic damage and experimental validation of damage potential. Int. J. Damage Mech. 6, 333–363 (1997)

    Article  Google Scholar 

  • D. Hoxha, A. Giraud, A. Blaisonneau, F. Homand, A. Courtois, C. Chavant, Poroplastic modelling of the excavation and ventilation of a deep cavity. Int. J. Numer. Anal. Methods Geomech. 28(4), 339–364 (2004)

    Article  Google Scholar 

  • D. Hoxha, Z. Jiang, F. Homand, A. Giraud, K. Su, Y. Wileveau, Impact of THM constitutive behavior on the rock-mass response: Case of HE-D experiment in Mont Terri Underground Rock Laboratory, in Multiphysics coupling and long term behaviour in rock mechanics, Eurock 2006, Ed. Alain van Cotthem, Robert Charlier, Jean-Francois Thimus, Jean-Pierre Tshibangu, CRC Press, London, pp. 199–206 (2006)

    Google Scholar 

  • J.C. Jaeger, N.G.W. Cook, R. Zimmerman, Fundamentals of Rock Mechanics, 4th edn. (Blackwell Publishing, London, 2007)

    Google Scholar 

  • Y. Jia, H.B. Bian, G. Duveau, K. Su, J.F. Shao, Numerical modelling of in situ behaviour of the Callovo-Oxfordian argillite subjected to the thermal loading. Eng. Geol. 109(3–4), 262–272 (2009)

    Article  Google Scholar 

  • J.W. Ju, On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects. Int. J. Solids Struct. 25(27), 803–833 (1989)

    Article  Google Scholar 

  • M. Kachanov, Elastic Solids with Many Cracks and Related Problems, in Advances in Applied Mechanics, ed. by J. W. Hutchinson, T. Y. Wu, vol. 30, (Academic, New York, 1993), p. 259

    Google Scholar 

  • D. Krajcinovic, Damage Mechanics (North-Holland, Amsterdam, 1996)

    MATH  Google Scholar 

  • J. Lemaitre, A Course on Damage Mechanics, 2nd edn. (Springer, Berlin, 1992)

    Book  Google Scholar 

  • A. Millard, A. Rejeb, M. Chijimatsu, L. Jing, J. De Jonge, M. Kohlmeier, T.S. Nguyen, J. Rutqvist, M. Souley, Y. Sugit, Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository BMT1 of the DECOVALEX III project. Part 2: Effects of THM coupling in continuous and homogeneous rocks. Int. J. Rock Mech. Min. Sci. 42(2005), 731–744 (2005)

    Article  Google Scholar 

  • K.B. Min, J. Rutqvist, C.F. Tsang, L. Jing, Thermally induced mechanical and permeability changes around a nuclear waste repository – a far-field study based on equivalent properties determined by a discrete approach. Int. J. Rock Mech. Min. Sci. 42(5–6), 765–780 (2005)

    Article  Google Scholar 

  • B. Pardoen, F. Collin, Modelling the influence of strain localization and viscosity on the behaviour of underground drifts drilled in claystone. Comput. Geotech. 85, 351–367 (2017)

    Article  Google Scholar 

  • W.G. Pariseau, Design Analysis in Rock Mechanics, 2nd edn., CRC Press, London, (2011)

    Google Scholar 

  • P. Perzyna, Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243–377 (1966)

    Article  Google Scholar 

  • R. Plassart, R. Fernandez, A. Giraud, D. Hoxha, F. Laigle, Hydromechanical modelling of an excavation in an underground research laboratory with an elastoviscoplastic behaviour law and regularization by second gradient of dilation. Int. J. Rock Mech. Min. Sci. 58, 23–33 (2013)

    Article  Google Scholar 

  • J.F. Shao, G. Duveau, F. Bourgeois, W. Chen, Elastoplastic damage modeling in unsaturated rocks and applications. Int. J. Geomech. 6(2), 119–130 (2006)

    Article  Google Scholar 

  • M. Souley, F. Homand, S. Pepa, D. Hoxha, Damage-induced permeability changes in granite: A case example at the URL in Canada. Int. J. Rock Mech. Min. Sci. 38, 297–310 (2001)

    Article  Google Scholar 

  • M.T. VanGenuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soil. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  • G.Z. Voyiadjis, R.K. Abu Al-Rub, Thermodynamical framework for coupling of non-local viscoplasticity and non-local anisotropy viscodamage for dynamic localization problems using gradient theory. Int. J. Plast. 19, 2121–2147 (2003)

    Article  Google Scholar 

  • G.Z. Voyiadjis, Z.N. Taqieddin, P.I. Kattan, Theoretical formulation of a coupled elastic-plastic anisotropic damage model for concrete using the strain energy equivalence concept. Int. J. Damage Mech. 18, 603–638 (2008)

    Article  Google Scholar 

  • Minh-Ngoc Vu, Gilles Armand, Carlos Plua (2019) Thermal pressurization coefficient of anisotropic elastic porous media, Rock Mech. Rock. Eng., https://doi.org/10.1007/s00603-019-02021-1

  • Zhu Q. D. Kondo, J.F. Shao, V. Pensee, Micromechanical modelling of anisotropic damage in brittle rocks and application. International Journal of Rock Mechanics and Mining Sciences, 45(8), 467–477 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dashnor Hoxha .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hoxha, D., Do, D.P. (2020). Plastic Deformation and Damage in Rocks under Coupled Thermo-Hydromechanical Conditions: Numerical Study. In: Voyiadjis, G.Z. (eds) Handbook of Damage Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8968-9_62-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8968-9_62-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8968-9

  • Online ISBN: 978-1-4614-8968-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics