Skip to main content

Inflammation After Acute Brain Injuries Affects the Developing Brain Differently than the Adult Brain

  • Chapter
  • First Online:
Immunological Mechanisms and Therapies in Brain Injuries and Stroke

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR,volume 6))

  • 1243 Accesses

Abstract

Emerging data show that the mechanisms of injury, including neuroinflammation, differ greatly in the immature brain and adult brain. This chapter will discuss the maturation-dependent contribution of glial and peripheral immune cells, differences in the blood–brain barrier structure and function in relation to injury, as well as the effect of immaturity on the function of several receptors on microglia/macrophages related to innate and acquired immune responses. We will discuss how age-related differential inflammatory and vascular responses to injury would impact development of treatments for newborns affected by stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vexler ZS, Yenari MA (2009) Does inflammation after stroke affect the developing brain differently than adult brain? Dev Neurosci 31(5):378–93

    PubMed  CAS  Google Scholar 

  2. Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21(4):1302–12

    PubMed  CAS  Google Scholar 

  3. Kaur C, Ling EA (2009) Periventricular white matter damage in the hypoxic neonatal brain: role of microglial cells. Prog Neurobiol 87(4):264–80

    PubMed  CAS  Google Scholar 

  4. Oka A, Belliveau MJ, Rosenberg PA, Volpe JJ (1993) Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J Neurosci 13(4):1441–53

    PubMed  CAS  Google Scholar 

  5. Dahlstrom A, McRae A, Polinsky R, Nee L, Sadasivan B, Ling EA (1994) Alzheimer’s disease cerebrospinal fluid antibodies display selectivity for microglia. Investigations with cell cultures and human cortical biopsies. Mol Neurobiol 9(1–3):41–54

    PubMed  CAS  Google Scholar 

  6. Buser JR, Maire J, Riddle A, Gong X, Nguyen T, Nelson K et al (2012) Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. Ann Neurol 71(1):93–109

    PubMed  Google Scholar 

  7. Kinney HC, Haynes RL, Xu G, Andiman SE, Folkerth RD, Sleeper LA et al (2012) Neuron deficit in the white matter and subplate in periventricular leukomalacia. Ann Neurol 71(3):397–406

    PubMed  Google Scholar 

  8. McQuillen PS, Ferriero DM (2004) Selective vulnerability in the developing central nervous system. Pediatr Neurol 30(4):227–35

    PubMed  Google Scholar 

  9. Kirton A, Armstrong-Wells J, Chang T, Deveber G, Rivkin MJ, Hernandez M et al (2011) Symptomatic neonatal arterial ischemic stroke: the International Pediatric Stroke Study. Pediatrics 128(6):e1402–10

    PubMed  Google Scholar 

  10. Manabat C, Han BH, Wendland M, Derugin N, Fox CK, Choi J et al (2003) Reperfusion differentially induces caspase-3 activation in ischemic core and penumbra after stroke in immature brain. Stroke 34(1):207–13

    PubMed  CAS  Google Scholar 

  11. Northington FJ, Graham EM, Martin LJ (2005) Apoptosis in perinatal hypoxic-ischemic brain injury: how important is it and should it be inhibited? Brain Res Brain Res Rev 50(2):244–57

    PubMed  CAS  Google Scholar 

  12. Renolleau S, Fau S, Goyenvalle C, Joly LM, Chauvier D, Jacotot E et al (2007) Specific caspase inhibitor Q-VD-OPh prevents neonatal stroke in P7 rat: a role for gender. J Neurochem 100(4):1062–71

    PubMed  CAS  Google Scholar 

  13. Gonzalez FF, Ferriero DM (2009) Neuroprotection in the newborn infant. Clin Perinatol 36(4):859–80

    PubMed  Google Scholar 

  14. McLean C, Ferriero D (2004) Mechanisms of hypoxic-ischemic injury in the term infant. Semin Perinatol 28(6):425–32

    PubMed  Google Scholar 

  15. Jensen FE (2002) The role of glutamate receptor maturation in perinatal seizures and brain injury. Int J Dev Neurosci 20(3–5):339–47

    PubMed  CAS  Google Scholar 

  16. Johnston MV (2005) Excitotoxicity in perinatal brain injury. Brain Pathol 15(3):234–40

    PubMed  CAS  Google Scholar 

  17. Knox R, Zhao C, Miguel-Perez D, Wang S, Yuan J, Ferriero D et al (2012) Enhanced NMDA receptor tyrosine phosphorylation and increased brain injury following neonatal hypoxia-ischemia in mice with neuronal Fyn overexpression. Neurobiol Dis 51:113–9

    PubMed  Google Scholar 

  18. Jiang X, Mu D, Sheldon RA, Glidden DV, Ferriero DM (2003) Neonatal hypoxia-ischemia differentially upregulates MAGUKs and associated proteins in PSD-93-deficient mouse brain. Stroke 34(12):2958–63

    PubMed  CAS  Google Scholar 

  19. Ferriero DM (2001) Oxidant mechanisms in neonatal hypoxia-ischemia. Dev Neurosci 23(3):198–202

    PubMed  CAS  Google Scholar 

  20. Siddappa AJ, Rao RB, Wobken JD, Leibold EA, Connor JR, Georgieff MK (2002) Developmental changes in the expression of iron regulatory proteins and iron transport proteins in the perinatal rat brain. J Neurosci Res 68(6):761–75

    PubMed  CAS  Google Scholar 

  21. Sheldon RA, Aminoff A, Lee CL, Christen S, Ferriero DM (2007) Hypoxic preconditioning reverses protection after neonatal hypoxia-ischemia in glutathione peroxidase transgenic murine brain. Pediatr Res 61(6):666–70

    PubMed  CAS  Google Scholar 

  22. Sheldon RA, Jiang X, Francisco C, Christen S, Vexler ZS, Tauber MG et al (2004) Manipulation of antioxidant pathways in neonatal murine brain. Pediatr Res 56(4):656–62

    PubMed  CAS  Google Scholar 

  23. Faustino J, Wang X, Jonhson C, Klibanov A, Derugin N, Wendland M et al (2011) Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J Neurosci 31(36):12992–3001

    PubMed  CAS  Google Scholar 

  24. Hu BR, Liu CL, Ouyang Y, Blomgren K, Siesjo BK (2000) Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation. J Cereb Blood Flow Metab 20(9):1294–300

    PubMed  CAS  Google Scholar 

  25. Han BH, Xu D, Choi J, Han Y, Xanthoudakis S, Roy S et al (2002) Selective, reversible caspase-3 inhibitor is neuroprotective and reveals distinct pathways of cell death following neonatal hypoxic- ischemic brain injury. J Biol Chem 277(33):30128–36

    PubMed  CAS  Google Scholar 

  26. Zhu C, Wang X, Xu F, Bahr BA, Shibata M, Uchiyama Y et al (2005) The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ 12(2):162–76

    PubMed  CAS  Google Scholar 

  27. West T, Atzeva M, Holtzman DM (2006) Caspase-3 deficiency during development increases vulnerability to hypoxic-ischemic injury through caspase-3-independent pathways. Neurobiol Dis 22(3):523–37

    PubMed  CAS  Google Scholar 

  28. Carloni S, Carnevali A, Cimino M, Balduini W (2007) Extended role of necrotic cell death after hypoxia-ischemia-induced neurodegeneration in the neonatal rat. Neurobiol Dis 27(3):354–61

    PubMed  CAS  Google Scholar 

  29. Blomgren K, Leist M, Groc L (2007) Pathological apoptosis in the developing brain. Apoptosis 12(5):993–1010

    PubMed  Google Scholar 

  30. Northington FJ, Zelaya ME, O’Riordan DP, Blomgren K, Flock DL, Hagberg H et al (2007) Failure to complete apoptosis following neonatal hypoxia-ischemia manifests as “continuum” phenotype of cell death and occurs with multiple manifestations of mitochondrial dysfunction in rodent forebrain. Neuroscience 149(4):822–33

    PubMed  CAS  Google Scholar 

  31. Anthony DC, Bolton SJ, Fearn S, Perry VH (1997) Age-related effects of interleukin-1 beta on polymorphonuclear neutrophil-dependent increases in blood–brain barrier permeability in rats. Brain 120(Pt 3):435–44

    PubMed  Google Scholar 

  32. Fernandez-Lopez D, Faustino J, Daneman R, Zhou L, Lee SY, Derugin N et al (2012) Blood–brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat. J Neurosci 32(28):9588–600

    PubMed  CAS  Google Scholar 

  33. Kniesel U, Risau W, Wolburg H (1996) Development of blood–brain barrier tight junctions in the rat cortex. Brain Res Dev Brain Res 96(1–2):229–40

    PubMed  CAS  Google Scholar 

  34. Engelhardt B (2003) Development of the blood–brain barrier. Cell Tissue Res 314(1):119–29

    PubMed  CAS  Google Scholar 

  35. Iwai M, Cao G, Yin W, Stetler RA, Liu J, Chen J (2007) Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats. Stroke 38(10):2795–803

    PubMed  CAS  Google Scholar 

  36. Robertson PL, Du Bois M, Bowman PD, Goldstein GW (1985) Angiogenesis in developing rat brain: an in vivo and in vitro study. Brain Res 355(2):219–23

    PubMed  CAS  Google Scholar 

  37. Fernandez-Lopez D, Faustino J, Derugin N, Vexler ZS (2012) Acute and chronic vascular responses to experimental focal arterial stroke in the neonate rat. Transl Stroke Res 4(2):179–188

    Google Scholar 

  38. Benjelloun N, Renolleau S, Represa A, Ben-Ari Y, Charriaut-Marlangue C (1999) Inflammatory responses in the cerebral cortex after ischemia in the P7 neonatal Rat. Stroke 30(9):1916–23, discussion 23–4

    PubMed  CAS  Google Scholar 

  39. Svedin P, Hagberg H, Savman K, Zhu C, Mallard C (2007) Matrix metalloproteinase-9 gene knock-out protects the immature brain after cerebral hypoxia-ischemia. J Neurosci 27(7):1511–8

    PubMed  CAS  Google Scholar 

  40. Muramatsu K, Fukuda A, Togari H, Wada Y, Nishino H (1997) Vulnerability to cerebral hypoxic-ischemic insult in neonatal but not in adult rats is in parallel with disruption of the blood–brain barrier. Stroke 28(11):2281–8

    PubMed  CAS  Google Scholar 

  41. Chen W, Hartman R, Ayer R, Marcantonio S, Kamper J, Tang J et al (2009) Matrix metalloproteinases inhibition provides neuroprotection against hypoxia-ischemia in the developing brain. J Neurochem 111(3):726–36

    PubMed  CAS  Google Scholar 

  42. Emerich DF, Dean RL 3rd, Bartus RT (2002) The role of leukocytes following cerebral ischemia: pathogenic variable or bystander reaction to emerging infarct? Exp Neurol 173(1):168–81

    PubMed  Google Scholar 

  43. Mori E, del Zoppo GJ, Chambers JD, Copeland BR, Arfors KE (1992) Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons. Stroke 23(5):712–8

    PubMed  CAS  Google Scholar 

  44. Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT (2009) Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J 276(1):13–26

    PubMed  CAS  Google Scholar 

  45. Gautam N, Olofsson AM, Herwald H, Iversen LF, Lundgren-Akerlund E, Hedqvist P et al (2001) Heparin-binding protein (HBP/CAP37): a missing link in neutrophil-evoked alteration of vascular permeability. Nat Med 7(10):1123–7

    PubMed  CAS  Google Scholar 

  46. Afshar-Kharghan V, Thiagarajan P (2006) Leukocyte adhesion and thrombosis. Curr Opin Hematol 13(1):34–9

    PubMed  CAS  Google Scholar 

  47. Garcia JH, Liu KF, Yoshida Y, Lian J, Chen S, del Zoppo GJ (1994) Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol 144(1):188–99

    PubMed  CAS  Google Scholar 

  48. Matsuo Y, Kihara T, Ikeda M, Ninomiya M, Onodera H, Kogure K (1995) Role of neutrophils in radical production during ischemia and reperfusion of the rat brain: effect of neutrophil depletion on extracellular ascorbyl radical formation. J Cereb Blood Flow Metab 15(6):941–7

    PubMed  CAS  Google Scholar 

  49. Gidday JM, Gasche YG, Copin JC, Shah AR, Perez RS, Shapiro SD et al (2005) Leukocyte-derived matrix metalloproteinase-9 mediates blood–brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia. Am J Physiol Heart Circ Physiol 289(2):H558–68

    PubMed  CAS  Google Scholar 

  50. Tonai T, Shiba K, Taketani Y, Ohmoto Y, Murata K, Muraguchi M et al (2001) A neutrophil elastase inhibitor (ONO-5046) reduces neurologic damage after spinal cord injury in rats. J Neurochem 78(5):1064–72

    PubMed  CAS  Google Scholar 

  51. Tang Y, Xu H, Du X, Lit L, Walker W, Lu A et al (2006) Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J Cereb Blood Flow Metab 26:1089–102

    PubMed  CAS  Google Scholar 

  52. Akopov SE, Simonian NA, Grigorian GS (1996) Dynamics of polymorphonuclear leukocyte accumulation in acute cerebral infarction and their correlation with brain tissue damage. Stroke 27(10):1739–43

    PubMed  CAS  Google Scholar 

  53. Bona E, Andersson AL, Blomgren K, Gilland E, Puka-Sundvall M, Gustafson K et al (1999) Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatr Res 45(4 Pt 1):500–9

    PubMed  CAS  Google Scholar 

  54. Hudome S, Palmer C, Roberts RL, Mauger D, Housman C, Towfighi J (1997) The role of neutrophils in the production of hypoxic-ischemic brain injury in the neonatal rat. Pediatr Res 41(5):607–16

    PubMed  CAS  Google Scholar 

  55. Denker S, Ji S, Lee SY, Dingman A, Derugin N, Wendland M et al (2007) Macrophages are comprised of resident brain microglia not infiltrating peripheral monocytes acutely after neonatal stroke. J Neurochem 100(4):893–904

    PubMed  CAS  Google Scholar 

  56. McRae A, Gilland E, Bona E, Hagberg H (1995) Microglia activation after neonatal hypoxic-ischemia. Brain Res Dev Brain Res 84(2):245–52

    PubMed  CAS  Google Scholar 

  57. Dingman A, Lee SY, Derugin N, Wendland MF, Vexler ZS (2006) Aminoguanidine inhibits caspase-3 and calpain activation without affecting microglial activation following neonatal transient ischemia. J Neurochem 96:1467–79

    PubMed  CAS  Google Scholar 

  58. Denker SP, Ji S, Dingman A, Lee SY, Derugin N, Wendland MF et al (2007) Macrophages are comprised of resident brain microglia not infiltrating peripheral monocytes acutely after neonatal stroke. J Neurochem 100(4):893–904

    PubMed  CAS  Google Scholar 

  59. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–8

    PubMed  CAS  Google Scholar 

  60. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302(5651):1760–5

    PubMed  CAS  Google Scholar 

  61. Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJ, Bonde S, Kokaia Z et al (2006) Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 26(38):9703–12

    PubMed  CAS  Google Scholar 

  62. Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S et al (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116(5):829–40

    PubMed  CAS  Google Scholar 

  63. Watanabe H, Abe H, Takeuchi S, Tanaka R (2000) Protective effect of microglial conditioning medium on neuronal damage induced by glutamate. Neurosci Lett 289(1):53–6

    PubMed  CAS  Google Scholar 

  64. Lu YZ, Lin CH, Cheng FC, Hsueh CM (2005) Molecular mechanisms responsible for microglia-derived protection of Sprague–Dawley rat brain cells during in vitro ischemia. Neurosci Lett 373(2):159–64

    PubMed  CAS  Google Scholar 

  65. Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH et al (2009) Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 29(5):1319–30

    PubMed  CAS  Google Scholar 

  66. Schwartz M, Butovsky O, Bruck W, Hanisch UK (2006) Microglial phenotype: is the commitment reversible? Trends Neurosci 29(2):68–74

    PubMed  CAS  Google Scholar 

  67. Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S et al (2006) Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31(1):149–60

    PubMed  CAS  Google Scholar 

  68. Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N et al (2006) Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9(2):268–75

    PubMed  CAS  Google Scholar 

  69. Petersen MA, Dailey ME (2004) Diverse microglial motility behaviors during clearance of dead cells in hippocampal slices. Glia 46(2):195–206

    PubMed  Google Scholar 

  70. Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27(10):2596–605

    PubMed  CAS  Google Scholar 

  71. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35

    PubMed  CAS  Google Scholar 

  72. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–83

    PubMed  CAS  Google Scholar 

  73. Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ et al (2006) Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med 12(4):441–5

    PubMed  CAS  Google Scholar 

  74. Fullerton HJ, Ditelberg JS, Chen SF, Sarco DP, Chan PH, Epstein CJ et al (1998) Copper/zinc superoxide dismutase transgenic brain accumulates hydrogen peroxide after perinatal hypoxia ischemia. Ann Neurol 44(3):357–64

    PubMed  CAS  Google Scholar 

  75. Faustino J, Liu B, Lee SY, Derugin N, Wendland MF, Vexler ZS, (eds) (2009) Blockade of endogenous cytokine-induced neutrophil chemoattractant protein 1 exacerbates injury after neonatal stroke. Stroke meeting

    Google Scholar 

  76. Fernandez Lopez D, Faustino J, Daneman R, Zhou L, Lee SY, Derugin N et al (2012) Blood–brain barrier permeability is increased after acute adult stroke but not neonatal stroke. J Neurosci 32(28):9588–600

    PubMed  CAS  Google Scholar 

  77. Dingman A, Lee SY, Derugin N, Wendland MF, Vexler ZS (2006) Aminoguanidine inhibits caspase-3 and calpain activation without affecting microglial activation following neonatal transient cerebral ischemia. J Neurochem 96(5):1467–79

    PubMed  CAS  Google Scholar 

  78. Fox C, Dingman A, Derugin N, Wendland MF, Manabat C, Ji S et al (2005) Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 25(9):1138–49

    PubMed  CAS  Google Scholar 

  79. Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J (2001) Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci 21(8):2580–8

    PubMed  CAS  Google Scholar 

  80. van den Tweel ER, van Bel F, Kavelaars A, Peeters-Scholte CM, Haumann J, Nijboer CH et al (2005) Long-term neuroprotection with 2-iminobiotin, an inhibitor of neuronal and inducible nitric oxide synthase, after cerebral hypoxia-ischemia in neonatal rats. J Cereb Blood Flow Metab 25(1):67–74

    PubMed  Google Scholar 

  81. Faustino JV, Wang X, Johnson CE, Klibanov A, Derugin N, Wendland MF et al (2011) Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J Neurosci 31(36):12992–3001

    PubMed  CAS  Google Scholar 

  82. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–8

    PubMed  CAS  Google Scholar 

  83. Davalos D, Ryu J, Merlini M, Baeten K, Lemoan N, Murray SG, et al. (2012) In vivo imaging of blood–brain barrier disruption in the course of neuroinflammatory disease. Soc Neurosci

    Google Scholar 

  84. Silverstein RL, Febbraio M (2009) CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal 2(72):re3

    PubMed  Google Scholar 

  85. Primo L, Ferrandi C, Roca C, Marchio S, di Blasio L, Alessio M et al (2005) Identification of CD36 molecular features required for its in vitro angiostatic activity. Faseb J 19(12):1713–5

    PubMed  CAS  Google Scholar 

  86. Park YM, Febbraio M, Silverstein RL (2009) CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J Clin Invest 119(1):136–45

    PubMed  CAS  Google Scholar 

  87. Rahaman SO, Lennon DJ, Febbraio M, Podrez EA, Hazen SL, Silverstein RL (2006) A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab 4(3):211–21

    PubMed  CAS  Google Scholar 

  88. Silverstein RL, Li W, Park YM, Rahaman SO (2010) Mechanisms of cell signaling by the scavenger receptor CD36: implications in atherosclerosis and thrombosis. Trans Am Clin Climatol Assoc 121:206–20

    PubMed  Google Scholar 

  89. Zhao X, Sun G, Zhang J, Strong R, Song W, Gonzales N et al (2007) Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor gamma in microglia/macrophages. Ann Neurol 61(4):352–62

    PubMed  CAS  Google Scholar 

  90. Zhao X, Grotta J, Gonzales N, Aronowski J (2009) Hematoma resolution as a therapeutic target: the role of microglia/macrophages. Stroke 40(3 Suppl):S92–4

    PubMed  CAS  Google Scholar 

  91. Cho S, Park EM, Febbraio M, Anrather J, Park L, Racchumi G et al (2005) The class B scavenger receptor CD36 mediates free radical production and tissue injury in cerebral ischemia. J Neurosci 25(10):2504–12

    PubMed  CAS  Google Scholar 

  92. Cho S, Szeto HH, Kim E, Kim H, Tolhurst AT, Pinto JT (2007) A novel cell-permeable antioxidant peptide, SS31, attenuates ischemic brain injury by down-regulating CD36. J Biol Chem 282(7):4634–42

    PubMed  CAS  Google Scholar 

  93. Kunz A, Abe T, Hochrainer K, Shimamura M, Anrather J, Racchumi G et al (2008) Nuclear factor-kappaB activation and postischemic inflammation are suppressed in CD36-null mice after middle cerebral artery occlusion. J Neurosci 28(7):1649–58

    PubMed  CAS  Google Scholar 

  94. Kim E, Tolhurst AT, Qin LY, Chen XY, Febbraio M, Cho S (2008) CD36/fatty acid translocase, an inflammatory mediator, is involved in hyperlipidemia-induced exacerbation in ischemic brain injury. J Neurosci 28(18):4661–70

    PubMed  CAS  Google Scholar 

  95. Woo MS, Wang X, Faustino J, Derugin N, Wendland MF, Zhou P, et al. (2012) Genetic deletion of CD36 enhances injury after acute neonatal stroke. Ann Neurol 72(6):961–70

    Google Scholar 

  96. Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I (2007) Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 115(12):1599–608

    PubMed  CAS  Google Scholar 

  97. Lehnardt S, Lehmann S, Kaul D, Tschimmel K, Hoffmann O, Cho S et al (2007) Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. J Neuroimmunol 190(1–2):28–33

    PubMed  CAS  Google Scholar 

  98. Saito S, Matsuura M, Tominaga K, Kirikae T, Nakano M (2000) Important role of membrane-associated CD14 in the induction of IFN-beta and subsequent nitric oxide production by murine macrophages in response to bacterial lipopolysaccharide. Eur J Biochem 267(1):37–45

    PubMed  CAS  Google Scholar 

  99. Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA et al (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 100(14):8514–9

    PubMed  CAS  Google Scholar 

  100. Kilic U, Kilic E, Matter CM, Bassetti CL, Hermann DM (2008) TLR-4 deficiency protects against focal cerebral ischemia and axotomy-induced neurodegeneration. Neurobiol Dis 31(1):33–40

    PubMed  CAS  Google Scholar 

  101. Beschorner R, Schluesener HJ, Gozalan F, Meyermann R, Schwab JM (2002) Infiltrating CD14+ monocytes and expression of CD14 by activated parenchymal microglia/macrophages contribute to the pool of CD14+ cells in ischemic brain lesions. J Neuroimmunol 126(1–2):107–15

    PubMed  CAS  Google Scholar 

  102. Abe T, Shimamura M, Jackman K, Kurinami H, Anrather J, Zhou P et al (2010) Key role of CD36 in Toll-like receptor 2 signaling in cerebral ischemia. Stroke 41(5):898–904

    PubMed  CAS  Google Scholar 

  103. Ziegler G, Harhausen D, Schepers C, Hoffmann O, Rohr C, Prinz V et al (2007) TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochem Biophys Res Commun 359(3):574–9

    PubMed  CAS  Google Scholar 

  104. Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R et al (2007) Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol 9(9):1081–8

    PubMed  CAS  Google Scholar 

  105. Hua F, Ma J, Ha T, Kelley JL, Kao RL, Schweitzer JB et al (2009) Differential roles of TLR2 and TLR4 in acute focal cerebral ischemia/reperfusion injury in mice. Brain Res 1262:100–8

    PubMed  CAS  Google Scholar 

  106. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A et al (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11(2):155–61

    PubMed  CAS  Google Scholar 

  107. Stridh L, Smith PL, Naylor AS, Wang X, Mallard C (2011) Regulation of Toll-like receptor 1 and −2 in neonatal mice brains after hypoxia-ischemia. J Neuroinflammation 8:45

    PubMed  CAS  Google Scholar 

  108. Wang X, Stridh L, Li W, Dean J, Elmgren A, Gan L et al (2009) Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a MyD88-dependent manner. J Immunol 183(11):7471–7

    PubMed  CAS  Google Scholar 

  109. Du X, Fleiss B, Li H, D’Angelo B, Sun Y, Zhu C et al (2011) Systemic stimulation of TLR2 impairs neonatal mouse brain development. PLoS One 6(5):e19583

    PubMed  CAS  Google Scholar 

  110. Bell MJ, Hallenbeck JM (2002) Effects of intrauterine inflammation on developing rat brain. J Neurosci Res 70(4):570–9

    PubMed  CAS  Google Scholar 

  111. Rousset CI, Chalon S, Cantagrel S, Bodard S, Andres C, Gressens P et al (2006) Maternal exposure to LPS induces hypomyelination in the internal capsule and programmed cell death in the deep gray matter in newborn rats. Pediatr Res 59(3):428–33

    PubMed  CAS  Google Scholar 

  112. Oskvig DB, Elkahloun AG, Johnson KR, Phillips TM, Herkenham M (2012) Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain Behav Immun 26(4):623–34

    PubMed  CAS  Google Scholar 

  113. Stolp HB, Johansson PA, Habgood MD, Dziegielewska KM, Saunders NR, Ek CJ (2011) Effects of neonatal systemic inflammation on blood–brain barrier permeability and behaviour in juvenile and adult rats. Cardiovasc Psychiatry Neurol 2011:469046

    PubMed  CAS  Google Scholar 

  114. Mallard C (2012) Innate immune regulation by toll-like receptors in the brain. ISRN Neurol 2012:701950

    PubMed  Google Scholar 

  115. Singh AK, Jiang Y (2004) How does peripheral lipopolysaccharide induce gene expression in the brain of rats? Toxicology 201(1–3):197–207

    PubMed  CAS  Google Scholar 

  116. Quan N, Whiteside M, Kim L, Herkenham M (1997) Induction of inhibitory factor kappaBalpha mRNA in the central nervous system after peripheral lipopolysaccharide administration: an in situ hybridization histochemistry study in the rat. Proc Natl Acad Sci U S A 94(20):10985–90

    PubMed  CAS  Google Scholar 

  117. Verma S, Nakaoke R, Dohgu S, Banks WA (2006) Release of cytokines by brain endothelial cells: a polarized response to lipopolysaccharide. Brain Behav Immun 20(5):449–55

    PubMed  CAS  Google Scholar 

  118. Banks WA, Kastin AJ, Durham DA (1989) Bidirectional transport of interleukin-1 alpha across the blood–brain barrier. Brain Res Bull 23(6):433–7

    PubMed  CAS  Google Scholar 

  119. Banks WA, Kastin AJ, Gutierrez EG (1994) Penetration of interleukin-6 across the murine blood–brain barrier. Neurosci Lett 179(1–2):53–6

    PubMed  CAS  Google Scholar 

  120. Zhang RL, Zhang ZG, Chopp M (2005) Neurogenesis in the adult ischemic brain: generation, migration, survival, and restorative therapy. Neuroscientist 11(5):408–16

    PubMed  CAS  Google Scholar 

  121. Beck H, Plate KH (2009) Angiogenesis after cerebral ischemia. Acta Neuropathol 117(5):481–96

    PubMed  Google Scholar 

  122. Wang L, Zhang Z, Wang Y, Zhang R, Chopp M (2004) Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 35(7):1732–7

    PubMed  CAS  Google Scholar 

  123. Shimamura M, Sato N, Sata M, Kurinami H, Takeuchi D, Wakayama K et al (2007) Delayed postischemic treatment with fluvastatin improved cognitive impairment after stroke in rats. Stroke 38(12):3251–8

    PubMed  CAS  Google Scholar 

  124. Xiong Y, Mahmood A, Chopp M (2010) Angiogenesis, neurogenesis and brain recovery of function following injury. Curr Opin Investig Drugs 11(3):298–308

    PubMed  CAS  Google Scholar 

  125. Li L, Jiang Q, Zhang L, Ding G, Gang Zhang Z, Li Q et al (2007) Angiogenesis and improved cerebral blood flow in the ischemic boundary area detected by MRI after administration of sildenafil to rats with embolic stroke. Brain Res 1132(1):185–92

    PubMed  CAS  Google Scholar 

  126. Ohab JJ, Fleming S, Blesch A, Carmichael ST (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26(50):13007–16

    PubMed  CAS  Google Scholar 

  127. Battista D, Ferrari CC, Gage FH, Pitossi FJ (2006) Neurogenic niche modulation by activated microglia: transforming growth factor beta increases neurogenesis in the adult dentate gyrus. Eur J Neurosci 23(1):83–93

    PubMed  Google Scholar 

  128. Plane JM, Liu R, Wang TW, Silverstein FS, Parent JM (2004) Neonatal hypoxic-ischemic injury increases forebrain subventricular zone neurogenesis in the mouse. Neurobiol Dis 16(3):585–95

    PubMed  CAS  Google Scholar 

  129. Ong J, Plane JM, Parent JM, Silverstein FS (2005) Hypoxic-ischemic injury stimulates subventricular zone proliferation and neurogenesis in the neonatal rat. Pediatr Res 58(3):600–6

    PubMed  Google Scholar 

  130. Yang Z, Covey MV, Bitel CL, Ni L, Jonakait GM, Levison SW (2007) Sustained neocortical neurogenesis after neonatal hypoxic/ischemic injury. Ann Neurol 61(3):199–208

    PubMed  CAS  Google Scholar 

  131. Gonzalez FF, McQuillen P, Mu D, Chang Y, Wendland M, Vexler Z et al (2007) Erythropoietin enhances long-term neuroprotection and neurogenesis in neonatal stroke. Dev Neurosci 29(4–5):321–30

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zinaida S. Vexler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fernández-López, D., Vexler, Z.S. (2014). Inflammation After Acute Brain Injuries Affects the Developing Brain Differently than the Adult Brain. In: Chen, J., Hu, X., Stenzel-Poore, M., Zhang, J. (eds) Immunological Mechanisms and Therapies in Brain Injuries and Stroke. Springer Series in Translational Stroke Research, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8915-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8915-3_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8914-6

  • Online ISBN: 978-1-4614-8915-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics