Skip to main content

Principles of CT Imaging

  • Chapter
  • First Online:
Cardiac CT and MR for Adult Congenital Heart Disease

Abstract

The traditional imaging modality for the pre- and postoperative evaluation of patients with congenital heart disease (CHD) had been catheter angiography but had been replaced by echocardiography for most conditions. However, several anatomical structures including the pulmonary vasculature, the aortic arch, and the right ventricle are sometimes difficult to evaluate with transthoracic echocardiography. Albeit these structures are better visualized with transesophageal echocardiography, the method is limited in patients with pulmonary enlargement. Moreover, the diagnostic quality and interpretation of echocardiography highly depends on the operator and the presence of an adequate acoustic window. In recent years, magnetic resonance imaging (MRI) has been introduced in the diagnostic armamentarium for patients with CHD because of its noninvasiveness, the accurate morphological and functional information provided, and that neither iodinated contrast agent nor ionizing radiation is required. Therefore, MRI is considered an excellent diagnostic tool particularly for the evaluation of young children with CHD, because they may require several follow-up examinations during their lifetime. As a drawback, the utilization of MRI may be limited in the many patients who have undergone surgical corrections of CHD and those who have implanted pacemakers or cardioverter-defibrillator. In addition, the long examination time of MRI often requires lengthy period of patient sedation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goo HW, Park IS, Ko JK, et al. CT of congenital heart disease: normal anatomy and typical pathologic conditions. Radiographics. 2003;23(Spec No):S147–65.

    PubMed  Google Scholar 

  2. Goo HW. State-of-the-art CT, imaging techniques for congenital heart disease. Korean J Radiol. 2010;11(1):4–18.

    PubMed  Google Scholar 

  3. Berrington de Gonzalez A, Mahesh M, Kim KP, et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med. 2009;169(22):2071–7.

    PubMed  Google Scholar 

  4. Lindsten J. Nobel lectures, physiology or medicine 1971–1980. Singapore: World Scientific Publishing Co.; 1992.

    Google Scholar 

  5. Moller JH, Taubert KA, Allen HD, Clark EB, Lauer RM. Cardiovascular health and disease in children: current status. A Special Writing Group from the Task Force on Children and Youth, American Heart Association. Circulation. 1994;89(2):923–30.

    PubMed  CAS  Google Scholar 

  6. Wren C, O’Sullivan JJ. Survival with congenital heart disease and need for follow up in adult life. Heart. 2001;85(4):438–43.

    PubMed  CAS  Google Scholar 

  7. Karlo C, Leschka S, Goetti RP, et al. High-pitch dual-source CT angiography of the aortic valve-aortic root complex without ECG-synchronization. Eur Radiol. 2011;21(1):205–12.

    PubMed  Google Scholar 

  8. Flohr TG, McCollough CH, Bruder H, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006;16(2):256–68.

    PubMed  Google Scholar 

  9. Flohr TG, Schoepf UJ, Ohnesorge BM. Chasing the heart: new developments for cardiac CT. J Thorac Imaging. 2007;22(1):4–16.

    PubMed  Google Scholar 

  10. Kachelriess M, Ulzheimer S, Kalender WA. ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart. Med Phys. 2000;27(8):1881–902.

    PubMed  CAS  Google Scholar 

  11. Nieman K, Rensing BJ, van Geuns RJ, et al. Non-invasive coronary angiography with multislice spiral computed tomography: impact of heart rate. Heart. 2002;88(5):470–4.

    PubMed  CAS  Google Scholar 

  12. Kacmaz F, Ozbulbul NI, Alyan O, et al. Imaging of coronary artery anomalies: the role of multidetector computed tomography. Coron Artery Dis. 2008;19(3):203–9.

    PubMed  Google Scholar 

  13. Mochizuki T, Murase K, Koyama Y, Higashino H, Ikezoe J. LAD stenosis detected by subsecond spiral CT. Circulation. 1999;99(11):1523.

    PubMed  CAS  Google Scholar 

  14. Mochizuki T, Koyama Y, Tanaka H, Ikezoe J, Shen Y, Azemoto S. Images in cardiovascular medicine. Left ventricular thrombus detected by two- and three-dimensional computed tomographic ventriculography: a new application of helical CT. Circulation. 1998;98(9):933–4.

    PubMed  CAS  Google Scholar 

  15. Mochizuki T, Murase K, Higashino H, Koyama Y, Azemoto S, Ikezoe J. Images in cardiovascular medicine. Demonstration of acute myocardial infarction by subsecond spiral computed tomography: early defect and delayed enhancement. Circulation. 1999;99(15):2058–9.

    PubMed  CAS  Google Scholar 

  16. Becker CR, Knez A, Leber A, et al. Detection of coronary artery stenoses with multislice helical CT angiography. J Comput Assist Tomogr. 2002;26(5):750–5.

    PubMed  Google Scholar 

  17. Dirksen MS, Jukema JW, Bax JJ, et al. Cardiac multidetector-row computed tomography in patients with unstable angina. Am J Cardiol. 2005;95(4):457–61.

    PubMed  Google Scholar 

  18. Gaudio C, Mirabelli F, Alessandra L, et al. Noninvasive assessment of coronary artery stenoses by multidetector-row spiral computed tomography: comparison with conventional angiography. Eur Rev Med Pharmacol Sci. 2005;9(1):13–21.

    PubMed  CAS  Google Scholar 

  19. Herzog C, Ay M, Engelmann K, et al. Visualization techniques in multislice CT-coronary angiography of the heart. Correlations of axial, multiplanar, three-dimensional and virtual endoscopic imaging with the invasive diagnosis. Rofo. 2001;173(4):341–9.

    PubMed  CAS  Google Scholar 

  20. Kopp AF, Schroeder S, Kuettner A, et al. Non-invasive coronary angiography with high resolution multidetector-row computed tomography. Results in 102 patients. Eur Heart J. 2002;23(21):1714–25.

    PubMed  CAS  Google Scholar 

  21. Leber AW, Knez A, Becker C, et al. Non-invasive intravenous coronary angiography using electron beam tomography and multislice computed tomography. Heart. 2003;89(6):633–9.

    PubMed  CAS  Google Scholar 

  22. Morgan-Hughes GJ, Marshall AJ, Roobottom CA. Multislice computed tomographic coronary angiography: experience in a UK centre. Clin Radiol. 2003;58(5):378–83.

    PubMed  CAS  Google Scholar 

  23. Nieman K, Oudkerk M, Rensing BJ, et al. Coronary angiography with multi-slice computed tomography. Lancet. 2001;357(9256):599–603.

    PubMed  CAS  Google Scholar 

  24. Nieman K, Rensing BJ, van Geuns RJ, et al. Usefulness of multislice computed tomography for detecting obstructive coronary artery disease. Am J Cardiol. 2002;89(8):913–8.

    PubMed  Google Scholar 

  25. Cademartiri F, Runza G, Marano R, et al. Diagnostic accuracy of 16-row multislice CT angiography in the evaluation of coronary segments. Radiol Med. 2005;109(1–2):91–7.

    PubMed  CAS  Google Scholar 

  26. Hoffmann MH, Shi H, Schmitz BL, et al. Noninvasive coronary angiography with multislice computed tomography. JAMA. 2005;293(20):2471–8.

    PubMed  CAS  Google Scholar 

  27. Hoffmann U, Moselewski F, Cury RC, et al. Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis. Circulation. 2004;110(17):2638–43.

    PubMed  Google Scholar 

  28. Kuettner A, Beck T, Drosch T, et al. Diagnostic accuracy of noninvasive coronary imaging using 16-detector slice spiral computed tomography with 188 ms temporal resolution. J Am Coll Cardiol. 2005;45(1):123–7.

    PubMed  Google Scholar 

  29. Kuettner A, Trabold T, Schroeder S, et al. Noninvasive detection of coronary lesions using 16-detector multislice spiral computed tomography technology: initial clinical results. J Am Coll Cardiol. 2004;44(6):1230–7.

    PubMed  Google Scholar 

  30. Martuscelli E, Romagnoli A, D’Eliseo A, et al. Accuracy of thin-slice computed tomography in the detection of coronary stenoses. Eur Heart J. 2004;25(12):1043–8.

    PubMed  Google Scholar 

  31. Mollet NR, Cademartiri F, Krestin GP, et al. Improved diagnostic accuracy with 16-row multi-slice computed tomography coronary angiography. J Am Coll Cardiol. 2005;45(1):128–32.

    PubMed  Google Scholar 

  32. Mollet NR, Cademartiri F, Nieman K, et al. Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J Am Coll Cardiol. 2004;43(12):2265–70.

    PubMed  Google Scholar 

  33. Paul JF, Ohanessian A, Caussin C, et al. Visualization of coronary tree and detection of coronary artery stenosis using 16-slice, sub-millimeter computed tomography: preliminary experience. Arch Mal Coeur Vaiss. 2004;97(1):31–6.

    PubMed  CAS  Google Scholar 

  34. Schuijf JD, Bax JJ, Salm LP, et al. Noninvasive coronary imaging and assessment of left ventricular function using 16-slice computed tomography. Am J Cardiol. 2005;95(5):571–4.

    PubMed  Google Scholar 

  35. Garcia MJ, Lessick J, Hoffmann MH. Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis. JAMA. 2006;296(4):403–11.

    PubMed  CAS  Google Scholar 

  36. Stolzmann P, Knight J, Desbiolles L, et al. Remodelling of the aortic root in severe tricuspid aortic stenosis: implications for transcatheter aortic valve implantation. Eur Radiol. 2009;19(6):1316–23.

    PubMed  Google Scholar 

  37. Halpern EJ, Mallya R, Sewell M, Shulman M, Zwas DR. Differences in aortic valve area measured with CT planimetry and echocardiography (continuity equation) are related to divergent estimates of left ventricular outflow tract area. AJR Am J Roentgenol. 2009;192(6):1668–73.

    PubMed  Google Scholar 

  38. Shah RG, Novaro GM, Blandon RJ, Whiteman MS, Asher CR, Kirsch J. Aortic valve area: meta-analysis of diagnostic performance of multi-detector computed tomography for aortic valve area measurements as compared to transthoracic echocardiography. Int J Cardiovasc Imaging. 2009;25(6):601–9.

    PubMed  Google Scholar 

  39. Alkadhi H, Desbiolles L, Husmann L, et al. Aortic regurgitation: assessment with 64-section CT. Radiology. 2007;245(1):111–21.

    PubMed  Google Scholar 

  40. Boehm T, Husmann L, Leschka S, Desbiolles L, Marincek B, Alkadhi H. Image quality of the aortic and mitral valve with CT: relative versus absolute delay reconstruction. Acad Radiol. 2007;14(5):613–24.

    PubMed  Google Scholar 

  41. Alkadhi H, Desbiolles L, Stolzmann P, et al. Mitral annular shape, size, and motion in normals and in patients with cardiomyopathy: evaluation with computed tomography. Invest Radiol. 2009;44(4):218–25.

    PubMed  Google Scholar 

  42. Ehara M, Surmely JF, Kawai M, et al. Diagnostic accuracy of 64-slice computed tomography for detecting angiographically significant coronary artery stenosis in an unselected consecutive patient population: comparison with conventional invasive angiography. Circ J. 2006;70(5):564–71.

    PubMed  Google Scholar 

  43. Leber AW, Knez A, von Ziegler F, et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol. 2005;46(1):147–54.

    PubMed  Google Scholar 

  44. Leschka S, Alkadhi H, Plass A, et al. Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J. 2005;26(15):1482–7.

    PubMed  Google Scholar 

  45. Mollet NR, Cademartiri F, van Mieghem CA, et al. High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation. 2005;112(15):2318–23.

    PubMed  Google Scholar 

  46. Nikolaou K, Knez A, Rist C, et al. Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR Am J Roentgenol. 2006;187(1):111–7.

    PubMed  Google Scholar 

  47. Ong AT, Serruys PW, Mohr FW, et al. The SYNergy between percutaneous coronary intervention with TAXus and cardiac surgery (SYNTAX) study: design, rationale, and run-in phase. Am Heart J. 2006;151(6):1194–204.

    PubMed  Google Scholar 

  48. Pugliese F, Mollet NR, Runza G, et al. Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol. 2006;16(3):575–82.

    PubMed  Google Scholar 

  49. Raff GL, Gallagher MJ, O'Neill WW, Goldstein JA. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol. 2005;46(3):552–7.

    PubMed  Google Scholar 

  50. Ropers D, Rixe J, Anders K, et al. Usefulness of multidetector row spiral computed tomography with 64- × 0.6-mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol. 2006;97(3):343–8.

    PubMed  Google Scholar 

  51. Leschka S, Wildermuth S, Boehm T, et al. Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality. Radiology. 2006;241(2):378–85.

    PubMed  Google Scholar 

  52. Kido T, Kurata A, Higashino H, et al. Cardiac imaging using 256-detector row four-dimensional CT: preliminary clinical report. Radiat Med. 2007;25(1):38–44.

    PubMed  Google Scholar 

  53. Motoyama S, Anno H, Sarai M, et al. Noninvasive coronary angiography with a prototype 256-row area detector computed tomography system: comparison with conventional invasive coronary angiography. J Am Coll Cardiol. 2008;51(7):773–5.

    PubMed  Google Scholar 

  54. Rybicki FJ, Otero HJ, Steigner ML, et al. Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging. 2008;24(5):535–46.

    PubMed  Google Scholar 

  55. Scheffel H, Alkadhi H, Plass A, et al. Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol. 2006;16(12):2739–47.

    PubMed  Google Scholar 

  56. Leber AW, Johnson T, Becker A, et al. Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J. 2007;28(19):2354–60.

    PubMed  Google Scholar 

  57. Johnson TR, Nikolaou K, Busch S, et al. Diagnostic accuracy of dual-source computed tomography in the diagnosis of coronary artery disease. Invest Radiol. 2007;42(10):684–91.

    PubMed  Google Scholar 

  58. Ropers U, Ropers D, Pflederer T, et al. Influence of heart rate on the diagnostic accuracy of dual-source computed tomography coronary angiography. J Am Coll Cardiol. 2007;50(25):2393–8.

    PubMed  Google Scholar 

  59. Brodoefel H, Burgstahler C, Tsiflikas I, et al. Dual-source CT: effect of heart rate, heart rate variability, and calcification on image quality and diagnostic accuracy. Radiology. 2008;247(2):346–55.

    PubMed  Google Scholar 

  60. Leschka S, Scheffel H, Desbiolles L, et al. Combining dual-source computed tomography coronary angiography and calcium scoring: added value for the assessment of coronary artery disease. Heart. 2008;94(9):1154–61.

    PubMed  CAS  Google Scholar 

  61. Alkadhi H, Scheffel H, Desbiolles L, et al. Dual-source computed tomography coronary angiography: influence of obesity, calcium load, and heart rate on diagnostic accuracy. Eur Heart J. 2008;29(6):766–76.

    PubMed  Google Scholar 

  62. Tsiflikas I, Brodoefel H, Reimann AJ, et al. Coronary CT angiography with dual source computed tomography in 170 patients. Eur J Radiol. 2010;74(1):161–5.

    PubMed  Google Scholar 

  63. Matt D, Scheffel H, Leschka S, et al. Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability. AJR Am J Roentgenol. 2007;189(3):567–73.

    PubMed  Google Scholar 

  64. Leschka S, Scheffel H, Desbiolles L, et al. Image quality and reconstruction intervals of dual-source CT coronary angiography: recommendations for ECG-pulsing windowing. Invest Radiol. 2007;42(8):543–9.

    PubMed  Google Scholar 

  65. Ruzsics B, Lee H, Zwerner PL, Gebregziabher M, Costello P, Schoepf UJ. Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur Radiol. 2008;18(11):2414–24.

    PubMed  Google Scholar 

  66. Flohr T, Ohnesorge B. Heart rate adaptive optimization of spatial and temporal resolution for electrocardiogram-gated multislice spiral CT of the heart. J Comput Assist Tomogr. 2001;25(6):907–23.

    PubMed  CAS  Google Scholar 

  67. Wintersperger BJ, Nikolaou K, von Ziegler F, et al. Image quality, motion artifacts, and reconstruction timing of 64-slice coronary computed tomography angiography with 0.33-second rotation speed. Invest Radiol. 2006;41(5):436–42.

    PubMed  Google Scholar 

  68. Leschka S, Alkadhi H, Stolzmann P, et al. Mono- versus bisegment reconstruction algorithms for dual-source computed tomography coronary angiography. Invest Radiol. 2008;43(10):703–11.

    PubMed  Google Scholar 

  69. Achenbach S, Ulzheimer S, Baum U, et al. Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation. 2000;102(23):2823–8.

    PubMed  CAS  Google Scholar 

  70. Rist C, Johnson TR, Muller-Starck J, et al. Noninvasive coronary angiography using dual-source computed tomography in patients with atrial fibrillation. Invest Radiol. 2009;44(3):159–67.

    PubMed  Google Scholar 

  71. Leschka S, Oechslin E, Husmann L, et al. Pre- and postoperative evaluation of congenital heart disease in children and adults with 64-section CT. Radiographics. 2007;27(3):829–46.

    PubMed  Google Scholar 

  72. Goo HW, Yang DH. Coronary artery visibility in free-breathing young children with congenital heart disease on cardiac 64-slice CT: dual-source ECG-triggered sequential scan vs. single-source non-ECG-synchronized spiral scan. Pediatr Radiol. 2010;40(10):1670–80.

    PubMed  Google Scholar 

  73. Yang DH, Goo HW, Seo DM, et al. Multislice CT angiography of interrupted aortic arch. Pediatr Radiol. 2008;38(1):89–100.

    PubMed  Google Scholar 

  74. Scheffel H, Alkadhi H, Leschka S, et al. Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart. 2008;94(9):1132–7.

    PubMed  CAS  Google Scholar 

  75. Earls JP, Berman EL, Urban BA, et al. Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology. 2008;246(3):742–53.

    PubMed  Google Scholar 

  76. Lee JH, Chun EJ, Choi SI, et al. Prospective versus retrospective ECG-gated 64-detector coronary CT angiography for evaluation of coronary artery bypass graft patency: comparison of image quality, radiation dose and diagnostic accuracy. Int J Cardiovasc Imaging. 2011;27(5):657–67.

    PubMed  Google Scholar 

  77. Shuman WP, Branch KR, May JM, et al. Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology. 2008;248(2):431–7.

    PubMed  Google Scholar 

  78. Alkadhi H, Stolzmann P, Desbiolles L, et al. Low-dose, 128-slice, dual-source CT coronary angiography: accuracy and radiation dose of the high-pitch and the step-and-shoot mode. Heart. 2010;96(12):933–8.

    PubMed  Google Scholar 

  79. Dewey M, Zimmermann E, Deissenrieder F, et al. Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation. 2009;120(10):867–75.

    PubMed  Google Scholar 

  80. Husmann L, Valenta I, Gaemperli O, et al. Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J. 2008;29(2):191–7.

    PubMed  Google Scholar 

  81. Xu L, Yang L, Zhang Z, et al. Low-dose adaptive sequential scan for dual-source CT coronary angiography in patients with high heart rate: comparison with retrospective ECG gating. Eur J Radiol. 2010;76(2):183–7.

    PubMed  Google Scholar 

  82. Stolzmann P, Leschka S, Scheffel H, et al. Dual-source CT in step-and-shoot mode: noninvasive coronary angiography with low radiation dose. Radiology. 2008;249(1):71–80.

    PubMed  Google Scholar 

  83. Goo HW, Seo DM, Yun TJ, et al. Coronary artery anomalies and clinically important anatomy in patients with congenital heart disease: multislice CT findings. Pediatr Radiol. 2009;39(3):265–73.

    PubMed  Google Scholar 

  84. Feuchtner G, Gotti R, Plass A, et al. Dual-step prospective ECG-triggered 128-slice dual-source CT for evaluation of coronary arteries and cardiac function without heart rate control: a technical note. Eur Radiol. 2010;20(9):2092–9.

    PubMed  Google Scholar 

  85. Achenbach S, Marwan M, Ropers D, et al. Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J. 2010;31(3):340–6.

    PubMed  Google Scholar 

  86. Leschka S, Stolzmann P, Desbiolles L, et al. Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: first experience. Eur Radiol. 2009;19(12):2896–903.

    PubMed  Google Scholar 

  87. Goetti R, Leschka S, Baumuller S, et al. Low dose high-pitch spiral acquisition 128-slice dual-source computed tomography for the evaluation of coronary artery bypass graft patency. Invest Radiol. 2010;45(6):324–30.

    PubMed  Google Scholar 

  88. Earls JP, Leipsic J. Cardiac computed tomography technology and dose-reduction strategies. Radiol Clin North Am. 2010;48(4):657–74.

    PubMed  Google Scholar 

  89. Hausleiter J, Meyer T, Hermann F, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009;301(5):500–7.

    PubMed  CAS  Google Scholar 

  90. Bae KT, Hong C, Whiting BR. Radiation dose in multidetector row computed tomography cardiac imaging. J Magn Reson Imaging. 2004;19(6):859–63.

    PubMed  Google Scholar 

  91. Kocinaj D, Cioppa A, Ambrosini G, et al. Radiation dose exposure during cardiac and peripheral arteries catheterisation. Int J Cardiol. 2006;113(2):283–4.

    PubMed  CAS  Google Scholar 

  92. Hausleiter J, Meyer T, Hadamitzky M, et al. Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation. 2006;113(10):1305–10.

    PubMed  Google Scholar 

  93. Stolzmann P, Scheffel H, Schertler T, et al. Radiation dose estimates in dual-source computed tomography coronary angiography. Eur Radiol. 2008;18(3):592–9.

    PubMed  Google Scholar 

  94. Abada HT, Larchez C, Daoud B, Sigal-Cinqualbre A, Paul JF. MDCT of the coronary arteries: feasibility of low-dose CT with ECG-pulsed tube current modulation to reduce radiation dose. AJR Am J Roentgenol. 2006;186(6 Suppl 2):S387–90.

    PubMed  Google Scholar 

  95. Leschka S, Stolzmann P, Schmid FT, et al. Low kilovoltage cardiac dual-source CT: attenuation, noise, and radiation dose. Eur Radiol. 2008;18(9):1809–17.

    PubMed  Google Scholar 

  96. Alkadhi H, Stolzmann P, Scheffel H, et al. Radiation dose of cardiac dual-source CT: the effect of tailoring the protocol to patient-specific parameters. Eur J Radiol. 2008;68(3):385–91.

    PubMed  Google Scholar 

  97. McCollough CH. Maximizing dose reductions with cardiac CT. Int J Cardiovasc Imaging. 2009;25(6):647.

    PubMed  Google Scholar 

  98. Gopal A, Mao SS, Karlsberg D, et al. Radiation reduction with prospective ECG-triggering acquisition using 64-multidetector computed tomographic angiography. Int J Cardiovasc Imaging. 2009;25(4):405–16.

    PubMed  Google Scholar 

  99. Earls JP. How to use a prospective gated technique for cardiac CT. J Cardiovasc Comput Tomogr. 2009;3(1):45–51.

    PubMed  Google Scholar 

  100. Stolzmann P, Scheffel H, Leschka S, et al. Influence of calcifications on diagnostic accuracy of coronary CT angiography using prospective ECG triggering. AJR Am J Roentgenol. 2008;191(6):1684–9.

    PubMed  Google Scholar 

  101. Budoff MJ, Gopal A. Incidental findings on cardiac computed tomography. Should we look? J Cardiovasc Comput Tomogr. 2007;1(2):97–105.

    PubMed  Google Scholar 

  102. Leschka S, Kim CH, Baumueller S, et al. Scan length adjustment of CT coronary angiography using the calcium scoring scan: effect on radiation dose. AJR Am J Roentgenol. 2010;194(3):W272–7.

    PubMed  Google Scholar 

  103. Gopal A, Budoff MJ. A new method to reduce radiation exposure during multi-row detector cardiac computed tomographic angiography. Int J Cardiol. 2009;132(3):435–6.

    PubMed  Google Scholar 

  104. McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J. Strategies for reducing radiation dose in CT. Radiol Clin North Am. 2009;47(1):27–40.

    PubMed  Google Scholar 

  105. Fricke BL, Donnelly LF, Frush DP, et al. In-plane bismuth breast shields for pediatric CT: effects on radiation dose and image quality using experimental and clinical data. AJR Am J Roentgenol. 2003;180(2):407–11.

    PubMed  Google Scholar 

  106. Hopper KD, King SH, Lobell ME, TenHave TR, Weaver JS. The breast: in-plane x-ray protection during diagnostic thoracic CT – shielding with bismuth radioprotective garments. Radiology. 1997;205(3):853–8.

    PubMed  CAS  Google Scholar 

  107. Yilmaz MH, Yasar D, Albayram S, et al. Coronary calcium scoring with MDCT: the radiation dose to the breast and the effectiveness of bismuth breast shield. Eur J Radiol. 2007;61(1):139–43.

    PubMed  Google Scholar 

  108. Geleijns J, Salvado Artells M, Veldkamp WJ, Lopez Tortosa M, Calzado Cantera A. Quantitative assessment of selective in-plane shielding of tissues in computed tomography through evaluation of absorbed dose and image quality. Eur Radiol. 2006;16(10):2334–40.

    PubMed  CAS  Google Scholar 

  109. Kalender WA, Wolf H, Suess C, Gies M, Greess H, Bautz WA. Dose reduction in CT by on-line tube current control: principles and validation on phantoms and cadavers. Eur Radiol. 1999;9(2):323–8.

    PubMed  CAS  Google Scholar 

  110. Das M, Mahnken AH, Muhlenbruch G, et al. Individually adapted examination protocols for reduction of radiation exposure for 16-MDCT chest examinations. AJR Am J Roentgenol. 2005;184(5):1437–43.

    PubMed  Google Scholar 

  111. Fuchs TO, Kachelriess M, Kalender WA. System performance of multislice spiral computed tomography. IEEE Eng Med Biol Mag. 2000;19(5):63–70.

    PubMed  CAS  Google Scholar 

  112. Paul JF, Abada HT. Strategies for reduction of radiation dose in cardiac multislice CT. Eur Radiol. 2007;17(8):2028–37.

    PubMed  Google Scholar 

  113. Weustink AC, Mollet NR, Pugliese F, et al. Optimal electrocardiographic pulsing windows and heart rate: effect on image quality and radiation exposure at dual-source coronary CT angiography. Radiology. 2008;248(3):792–8.

    PubMed  Google Scholar 

  114. Thibault JB, Sauer KD, Bouman CA, Hsieh J. A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys. 2007;34(11):4526–44.

    PubMed  Google Scholar 

  115. Leipsic J, Labounty TM, Heilbron B, et al. Adaptive statistical iterative reconstruction: assessment of image noise and image quality in coronary CT angiography. AJR Am J Roentgenol. 2010;195(3):649–54.

    PubMed  Google Scholar 

  116. Leipsic J, Labounty TM, Heilbron B, et al. Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. AJR Am J Roentgenol. 2010;195(3):655–60.

    PubMed  Google Scholar 

  117. Jung B, Mahnken AH, Stargardt A, et al. Individually weight-adapted examination protocol in retrospectively ECG-gated MSCT of the heart. Eur Radiol. 2003;13(12):2560–6.

    PubMed  CAS  Google Scholar 

  118. Rogalla P, Blobel J, Kandel S, et al. Radiation dose optimisation in dynamic volume CT of the heart: tube current adaptation based on anterior-posterior chest diameter. Int J Cardiovasc Imaging. 2010;26(8):933–40.

    PubMed  Google Scholar 

  119. Starck G, Lonn L, Cederblad A, Forssell-Aronsson E, Sjostrom L, Alpsten M. A method to obtain the same levels of CT image noise for patients of various sizes, to minimize radiation dose. Br J Radiol. 2002;75(890):140–50.

    PubMed  CAS  Google Scholar 

  120. LaBounty TM, Earls JP, Leipsic J, et al. Effect of a standardized quality-improvement protocol on radiation dose in coronary computed tomographic angiography. Am J Cardiol. 2010;106(11):1663–7.

    PubMed  Google Scholar 

  121. Raff GL, Chinnaiyan KM, Share DA, et al. Radiation dose from cardiac computed tomography before and after implementation of radiation dose-reduction techniques. JAMA. 2009;301(22):2340–8.

    PubMed  CAS  Google Scholar 

  122. Larson DB, Rader SB, Forman HP, Fenton LZ. Informing parents about CT radiation exposure in children: it’s OK to tell them. AJR Am J Roentgenol. 2007;189(2):271–5.

    PubMed  Google Scholar 

  123. Nievelstein RA, van Dam IM, van der Molen AJ. Multidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol. 2010;40(8):1324–44.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Leschka MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leschka, S., Waelti, S., Wildermuth, S. (2014). Principles of CT Imaging. In: Saremi, F. (eds) Cardiac CT and MR for Adult Congenital Heart Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8875-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8875-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8874-3

  • Online ISBN: 978-1-4614-8875-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics