Skip to main content

Surface Science of the Terrestrial Planets

  • Chapter
  • First Online:
Solar System Astrophysics

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1573 Accesses

Abstract

In this chapter we explore the surfaces as well as the interiors of Mercury, Venus, and Mars, and compare their properties to those of the Earth and Moon, which we have already examined. In Milone and Wilson (2013, Chap. 10), we study the nature of atmospheres and ionospheres with tools of physics and chemistry; in Chap. 11 we consider the magnetospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Pluto, which is smaller than Mercury and the Earth’s moon, and may not be the largest icy body beyond the orbit of Neptune in the outer solar system, was reclassified as a “dwarf planet” by the International Astronomical Union in 2006 (see Milone and Wilson 2014, Chaps. 13–16).

  2. 2.

    The geometric albedo is defined in the Astronomical Almanac as the ratio of the illumination of the planet at zero phase angle (i.e., the brightness as viewed from the light source) to that of a pure white Lambert plane surface (or Lambertian surface) of the same radius and position as the planet. A Lambert plane surface is one for which the reflected radiant intensity (or the reflected luminous intensity), I, is directly proportional to the cosine of the angle, θ, between the observer’s line of sight and the surface normal: I(θ) = I(0) cos θ.

  3. 3.

    The word “tectonic” refers to any geologic process which involves the movement of solid rock. Large-scale tectonics in the crust generally is caused by processes in the underlying mantle. In plate tectonics on the Earth, solid lithospheric plates slide around on the surface in response to convection in the mantle. Plate tectonics does not seem to occur on Venus, but other tectonic processes do.

  4. 4.

    For a more general discussion of this principle, see Milone and Wilson 2014, Sect. 10.2.2.

  5. 5.

    Tectonic: pertaining to (or caused by or resulting from) structural deformation of the crust.

  6. 6.

    Fossa is the Latin word for a ditch or trench. Fossae is the plural. See Figs. 9.33 and 9.34 for examples on Mars.

References

  • Abell, G.: Exploration of the Universe, 2nd edn. Holt, Rinehart and Winston, New York (1969)

    Google Scholar 

  • Andrews-Hanna, J., Zuber, M.T., Banerdt, W.B.: The Borealis basin and the origin of the Martian crustal dichotomy. Nature 453, 1212–1215 (2008)

    Article  ADS  Google Scholar 

  • Blewett, D.T., Chabot, N.L., Denevi, B.W., Ernst, C.M., Head, J.W., Izenberg, N.R., Murchie, S.L., Solomon, S.C., Nittler, L.R., McCoy, T.J., Xiao, Z., Baker, D.M.H., Fassett, C.I., Braden, S.E., Oberst, J., Scholten, F., Preusker, F., Hurwitz, D.M.: Hollows on Mercury: MESSENGER evidence for geologically recent volatile-related activity. Science 333, 1856–1859 (2011)

    Article  ADS  Google Scholar 

  • Bondarenko, N.V., Head, J.W., Ivanov, M.A.: Present-day volcanism on Venus: evidence from microwave radiometry. Geophys. Res. Lett. 37, L23202 (2010) (5 pages)

    Article  ADS  Google Scholar 

  • Borg, L.E., Connelly, J.N., Nyquist, L.E., Shih, C.-Y., Wiesmann, H., Reese, Y.: The age of the carbonates in Martian meteorite ALH84001. Science 286, 90–94 (1999)

    Article  ADS  Google Scholar 

  • Bouvier, A., Blichert-Toft, J., Vervoort, J.D., Albarède, F.: The age of SNC meteorites and the antiquity of the Martian surface. Earth Planet. Sci. Lett. 240, 221–233 (2005)

    Article  ADS  Google Scholar 

  • Bradley, J.P., Harvey, R.P., McSweem Jr., H.Y.: No ‘nanofossils’ in Martian meteorite. Nature 390, 454 (1997)

    Article  ADS  Google Scholar 

  • Bullock, M.A., Grinspoon, D.H.: The recent evolution of climate on Venus. Icarus 150, 19–37 (2001)

    Article  ADS  Google Scholar 

  • Byrne, S., Dundas, C.M., Kennedy, M.R., Mellon, M.T., McEwen, A.S., Cull, S.C., Daubar, I.J., Shean, D.E., Seelos, K.D., Murchie, S.L., Cantor, B.A., Arvidson, R.E., Edgett, K.S., Reufer, A., Thomas, N., Harrison, T.N., Posiolova, L.V., Seelos, F.P.: Distribution of mid-latitude ground ice on Mars from new impact craters. Science 325, 1674–1676 (2009)

    Article  ADS  Google Scholar 

  • Carr, M.H.: Mars: surface and interior. In: Weissman, P.R., McFadden, L.-A., Johnson, T.V. (eds.) Encyclopedia of the Solar System, pp. 291–308. Academic, San Diego, CA (1999)

    Google Scholar 

  • Chabot, N.L., Ernst, C.M., Harmon, J.K., Murchie, S.L., Solomon, S.C., Blewett, D.T., Denevi, B.W.: Craters hosting radar-bright deposits in mercury’s north polar region, 43rd Lunar and planetary science conference, Abstract 1476 (2012)

    Google Scholar 

  • Chapman, M.G., Neukum, G., Dumke, A., Michael, G., van Gasselt, S., Kneissl, T., Zuschneid, W., Hauber, E., Ansan, V., Mangold, N., Masson, P.: Noachian–Hesperian geologic history of the Echus Chasma and Kasei Valles system on Mars: new data and interpretations. Earth Planet. Sci. Lett. 294, 256–271 (2010)

    Article  ADS  Google Scholar 

  • Charlier, B., Grove, T.L., Zuber, M.T.: Composition and differentiation of ‘basalts’ at the surface of mercury. 43rd Lunar and planetary science conference, Abstract 1400 (2012)

    Google Scholar 

  • Chevrier, V.F., Rivera-Valentin, E.G.: Formation of recurring slope lineae by liquid brines on present-day Mars. Geophys. Res. Lett. 39 (2012). doi: 10.1029/2012GL054119

  • Chevrier, V., Dehouck, E., Gaudin, A., Mangold, N., Mathe, P.E., Rochette, P.: Experimental verification of the “burns” hypothesis for the formation of meridiani planum sediments through weathering of sulfide-rich deposits. 41st Lunar and planetary science conference, Abstract 2440 (2010)

    Google Scholar 

  • Consolmagno, G.J., Schaefer, M.W.: Worlds Apart: A Textbook in the Planetary Sciences. Prentice Hall, Englewood Cliffs, NJ (1994)

    Google Scholar 

  • Cox, A.N. (ed.): Allen’s Astrophysical Quantities, 4th edn. Springer, New York (2000)

    Google Scholar 

  • Dauphas, N., Pourmand, A.: Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–493 (2011)

    Article  ADS  Google Scholar 

  • Denevi, B.W., Robinson, M.S., Solomon, S.C., Murchie, S.L., Blewett, D.T., Domingue, D.L., McCoy, T.J., Ernst, C.M., Head, J.W., Watters, T.R., Chabot, N.L.: The evolution of mercury’s crust: a global perspective from MESSENGER. Science 324, 613–618 (2009)

    ADS  Google Scholar 

  • Di Achille, G., Popa, C., Massironi, M., Ferrari, S., Giacomini, L., Mazzotta Epifani, E., Pozzobon, R., Zusi, M., Cremonese, G., and Palumbo, P.: Mapping Mercury’s tectonic features at the terminator: implications for radius change estimates and thermal history models. 43rd Lunar and planetary science conference, Abstract 2176 (2012)

    Google Scholar 

  • Dicke, R.H., Goldenberg, H.M.: Solar oblateness and general relativity. Phys. Rev. Lett. 18, 313–316 (1967)

    Article  ADS  Google Scholar 

  • Dickson, L., Head, J.W., Whitten, J.L., Fassett, C.I., Neumann, G.A., Smith, D.E., Zuber, M. T., Phillips, R.J.: Topographic rise in the northern smooth plains of Mercury: characteristics from MESSENGER image and altimetry data and candidate modes of origin. 43rd Lunar and planetary science conference, Abstract 2249 (2012)

    Google Scholar 

  • Diniega, S., Hansen, C.J., McElwaine, J.N., Hugenholtz, C.H., Dundas, C.M., McEwen, A.S., Bourke, M.C.: A new dry hypothesis for the formation of Martian linear gullies. Icarus 225, 526–537 (2013)

    Article  ADS  Google Scholar 

  • Dombard, A.J., Hauck, S.A., Solomon, S.C., Phillips, R.J.: Potential for long-wavelength folding on Mercury. 32nd Lunar and planetary science conference. Abstract 2035 (2001)

    Google Scholar 

  • Elkins-Tanton, L.T., Hess, P.C., Parmentier, E.M.: Possible formation of ancient crust on Mars through magma ocean processes. J. Geophys. Res. 93, E12S01 (2005). doi: 10.1029/2005JE002480

    ADS  Google Scholar 

  • Erkeling, G., Reiss, D., Hiesinger, H., Jaumann, R.: Morphologic, stratigraphic and morphometric investigations of valley networks in Eastern Libya Montes, Mars: implications for the Noachian/Hesperian climate change. Earth Planet. Sci. Lett. 294, 291–305 (2010)

    Article  ADS  Google Scholar 

  • Esposito, L.W., Copley, M., Eckert, R., Gates, L., Stewart, A.I.F., Worden, H.: Sulfur dioxide at the Venus cloud tops, 1978–1986. J. Geophys. Res. 93, 5267–5276 (1988)

    Article  ADS  Google Scholar 

  • Fegley Jr., B., Prinn, R.G.: Estimation of the rate of volcanism on Venus from reaction rate measurements. Nature 337, 55–58 (1989)

    Article  ADS  Google Scholar 

  • Fegley Jr., B., Klinglehöfer, G., Lodders, K., Widemann, T.: Geochemistry of surface-atmosphere interactions on Venus. In: Bougher, S.W., Hunten, D.M., Phillips, R.J. (eds.) Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, pp. 591–636. University of Arizona Press, Tucson, AZ (1997)

    Google Scholar 

  • Fivian, M.D., Hudson, H.S., Lin, R.P., Zahid, H.J.: A large excess in apparent solar oblateness due to surface magnetism. Science 322, 560–562 (2008)

    Article  ADS  Google Scholar 

  • Folkner, W.M., Yoder, C.F., Yuan, D.N., Standish, E.M., Preston, R.A.: Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars pathfinder. Science 178, 1749–1751 (1997)

    Article  ADS  Google Scholar 

  • Frey, H.V.: Impact constraints on, and a chronology for, major events in early Mars history. J. Geophys. Res. 111, E08S91 (2006). doi: 10.1029/2005JE002449

    Article  ADS  Google Scholar 

  • Fuller, E.R., Head III, J.W.: Amazonis Planitia: the role of geologically recent volcanism and sedimentation in the formation of the smoothest plains on Mars. J. Geophys. Res. 107, 5081 (2002). doi: 10.1029/2002JE001842 (25 pages)

    Article  Google Scholar 

  • Gardner, P.M., Robins, B.: The Olivine-Plagioclase reaction: geological evidence from the Sieland Petrographic Province, Northern Norway. Contrib. Mineral. Petrol. 44, 149–156 (1974)

    Article  ADS  Google Scholar 

  • Glaze, L.S., Stofan, E.R., Smrekar, S.E., Baloga, S.M.: Insights into Corona formation through statistical analyses. J. Geophys. Res. 107, 5135–5146 (2002)

    Article  Google Scholar 

  • Golden, D.C., Ming, D.W., Schwandt, C.S., Lauer, H.V., Socki, R.A., Morris, R.V., Lofgren, G.E., McKay, G.A.: A simple inorganic process for formation of carbonates, magnetites, and sulfides in Martian meteorite ALH84001. Am. Mineral. 86, 370–375 (2001)

    Google Scholar 

  • Halevy, I., Fischer, W.W., Eiler, J.M.: Carbonates in the Martian meteorite Allan Hills 84001 formed at 18 ± 4 °C in a near-surface aqueous environment. Proc. Natl. Acad. Sci. 108, 16895–16899 (2011)

    Article  ADS  Google Scholar 

  • Hansen, V.L.: LIPs on Venus. Chem. Geol. 241, 354–374 (2007)

    Article  Google Scholar 

  • Hansen, V.L., López, I.: Venus records a rich early history. Geology 38, 311–314 (2011)

    Article  Google Scholar 

  • Harmon, J.K., Slade, M.A., Rice, M.S.: Radar imagery of Mercury’s putative polar ice: 1999–2005 Arecibo results. Icarus 211, 37–50 (2011)

    Article  ADS  Google Scholar 

  • Head, J.W., Basilevsky, A.T.: Venus: surface and interior. In: Weissman, P.R., McFadden, L.-A., Johnson, T.V. (eds.) Encyclopedia of the Solar System, pp. 161–189. Academic, San Diego, CA (1999)

    Google Scholar 

  • Head, J.W., Chapman, C.R., Strom, R.G., Fassett, C.I., Denevi, B.W., Blewett, D.T., Ernst, C.M., Watters, T.R., Solomon, S.C., Murchie, S.L., Prockter, L.M., Chabot, N.L., Gillis-Davis, J.J., Whitten, J.L., Goudge, T.A., Baker, D.M.H., Hurwitz, D.M., Ostrach, L.R., Xiao, Z., Merline, W.J., Kerber, L., Dickson, J.L., Oberst, J., Byrne, P.K., Klimczak, C., Nittler, L.R.: Flood volcanism in the Northern high latitudes of Mercury revealed by MESSENGER. Science 333, 1853–1855 (2011)

    Article  ADS  Google Scholar 

  • Hoogenboom, T., Houseman, G.A.: Rayleigh–Taylor instability as a mechanism for corona formation on Venus. Icarus 180, 292–307 (2006)

    Article  ADS  Google Scholar 

  • Ivanov, M.A., Head, J.W.: Global geological map of Venus. Planet. Space Sci. 59, 1559–1600 (2011)

    ADS  Google Scholar 

  • Jull, A.J.T., Courtney, C., Jeffrey, D.A., Beck, J.W.: Isotopic evidence for a terrestrial source of organic compounds found in Martian meteorites Allan Hills84001 and Elephant Moraine 79001. Science 279, 366–369 (1997)

    Article  ADS  Google Scholar 

  • Kelley, D.H., Milone, E.F.: Exploring Ancient Skies, 2nd edn. Springer, New York (2011)

    Book  Google Scholar 

  • Kieffer, H.H., Christenson, P.R., Titus, T.N.: CO2 jets formed by sublimation beneath translucent slab ice in Mars’ seasonal south polar ice cap. Nature 442, 793–796 (2006)

    Article  ADS  Google Scholar 

  • Klein, H.P., Horowitz, N.H., Biemann, K.: The search for extant life on Mars. In: Keiffer, H.H., Jakosky, B.M., Snyder, C.W., Matthews, M.S. (eds.) Mars, pp. 1221–1233. University of Arizona Press, Tucson, AZ (1992)

    Google Scholar 

  • Konopliv, A.S., Asmar, S.W., Folkner, W.M., Karatekin, Ö., Nunes, D.C., Smrekar, S.E., Yoder, C.F., Zuber, M.T.: Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428 (2011)

    Article  ADS  Google Scholar 

  • Krassilnikov A.S., Head, J.W.: Arachnoids on Venus: structural analysis, classification and models of formation. 34th Lunar and planetary science conference, Abstract 1220 (2003)

    Google Scholar 

  • Kreslavsky, M.A., Head, J.W.: Fate of outflow effluents in the northern lowlands of Mars: the Vastitas Borealis formation as a sublimation residue from frozen ponded bodies of water. J. Geophys. Res. 107 (2002). doi: 10.1029/2001JE001831

  • Lane, M.D., Christensen, P.R., Hartmann, W.K.: Utilization of the THEMIS visible and infrared imaging data for crater population studies of the Meridiani Planum landing site. Geophys. Res. Lett. 30, 8071–8074 (2003)

    Article  Google Scholar 

  • Langevin, Y., Douté, S., Vincendon, M., Poulet, F., Bibring, J.-P., Gondet, B., Schnitt, B., Forget, F.: No signature of clear CO2 ice from the ‘cryptic’ regions in Mars’ south polar cap. Nature 442, 790–792 (2006)

    Article  ADS  Google Scholar 

  • Lapen, T.J., Righter, M., Brandon, A.D., Debaille, V., Beard, B.L., Shafer, J.T., Peslier, A.H.: A younger age for ALH84001 and its geochemical link to shergottite sources in Mars. Science 328, 347–351 (2010)

    Article  ADS  Google Scholar 

  • Levin, G.V., Straat, P.A.: Completion of the Viking labeled release experiment on Mars. J. Mol. Evol. 14, 167–183 (1979)

    Article  ADS  Google Scholar 

  • Margot, J.L., Peale, S.J., Jurgens, R.F., Slade, M.A., Holin, I.V.: Large longitude libration of Mercury reveals a molten core. Science 316, 710–714 (2007)

    Article  ADS  Google Scholar 

  • Margot, J.L., Peale, S.J., Solomon, S.C., Hauck II, S.A., Ghigo, F.D., Jurgens, R.F., Yseboodt, M., Giorgini, J.D., Padovan, S., Campbell, D.B.: Mercury’s moment of inertia from spin and gravity data. J. Geophys. Res. 117, E00L09 (2012). doi: 10.1029/2012JE004161 (11 pages)

    Article  ADS  Google Scholar 

  • McKay, D.S., Clemett, S.J., Gibson, E.K., Jr., Thomas-Keprta, K., Wentworth, S.J.: Are carbonate globules, magnetites, and PAHs in ALH84001 really terrestrial contaminants? Lunar Planet. Soc., XXXIII, Pdf. 1943 (2002)

    Google Scholar 

  • McKay, D.S., Gibson Jr., E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R., Zare, R.N.: Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273, 924–930 (1996)

    Article  ADS  Google Scholar 

  • McKay, D.S., Gibson Jr., E., Thomas-Keprta, K.: Reply to: no ‘nanofossils’ in Martain meteorites. Nature 390, 465–466 (1997)

    Article  Google Scholar 

  • McKinnon, W.B., Zahnle, K.J., Ivanov, B.A., Melosh, H.J.: Cratering on Venus: models and observations. In: Bougher, S.W., Hunten, D.M., Phillips, R.J. (eds.) Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, pp. 969–1014. University of Arizona Press, Tucson, AZ (1997)

    Google Scholar 

  • McMahon, S., Parnell, J., Ponicka, J., Boyce, A.: The habitability of vesicles in Martian basalt. Astron. Geophys. 54, 1.17–1.21 (2013)

    Article  Google Scholar 

  • McSween, H.Y., Taylor, G.J., Wyatt, M.B.: Elemental composition of the Martian crust. Science 324, 736–739 (2009)

    Article  ADS  Google Scholar 

  • Mellon, M.T., Feldman, W.C., Prettyman, T.H.: The presence and stability of ground ice in the southern hemisphere of Mars. Icarus 169, 324–340 (2004)

    Article  ADS  Google Scholar 

  • Meunier, A., Petit, S., Ehlmann, B.L., Dudoignon, P., Westall, F., Mas, A., El Albani, A., Ferrage, E.: Magmatic precipitation as a possible origin of Noachian clays on Mars. Nat. Geosci. 5, 739–743 (2012)

    Article  ADS  Google Scholar 

  • Milone, E.F., Wilson, W.J.F.: Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System, 2nd edn. Springer, New York (2014)

    Google Scholar 

  • Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco, CA (1973)

    Google Scholar 

  • Moroz, V.I., Ekonomov, A.P., Moshkin, B.E., Revercomb, H.E., Sromovsky, L.A., Schofield, J.T., Spänkuch, D., Taylor, F.W., Tomasko, M.G.: Solar and thermal radiation in the Venus atmosphere. Adv. Space Res. 5(11), 197–232 (1985)

    Google Scholar 

  • Navarro-González, R., Vargas, E., de la Rosa, J., Raga, A.C., McKay, C.P.: Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J. Geophys. Res. 115 (2010). doi: 10.1029/2010JE003599 (11 pages)

  • Neumann, G.A., Cavanagh, J.F., Sun, X., Mazarico, E., Smith, D.E., Zuber, M.T., Solomon, S. C., Paige, D.A.: Dark material at the surface of polar crater deposits on Mercury. 43rd Lunar and planetary science conference, Abstract 2651 (2012)

    Google Scholar 

  • Nittler, L.R., Starr, R.D., Weider, S.Z., McCoy, T.J., Boynton, W.V., Ebel, D.S., Ernst, C.M., Evans, L.G., Goldsten, J.O., Hamara, D.K., Lawrence, D.J., McNutt Jr., R.L., Schlemm II, C.E., Solomon, S.C., Sprague, A.L.: The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science 333, 1847–1850 (2011)

    Article  ADS  Google Scholar 

  • Nixon, S.L., Cousins, C.R., Cockell, C.S.: Plausible microbial metabolisms on Mars. Astron. Geophys. 54, 1.13–1.16 (2013)

    Article  Google Scholar 

  • Oberst, J., Preusker, F., Phillips, R.J., Watters, T.R., Head, J.W., Zuber, M.T., Solomon, S.C.: The morphology of Mercury’s Caloris basin as seen in MESSENGER stereo topographic models. Icarus 209, 230–238 (2010)

    Article  ADS  Google Scholar 

  • Ojha, L., McEwen, A., Dundas, C., Mattson, S., Byrne, S., Schaefer, E., Masse, M.: Recurring slope linneae on Mars: updated global survey results. 43rd Lunar and planetary science conference, Abstract 2591 (2012)

    Google Scholar 

  • Oyama, V.I., Berdahl, B.J.: The Viking gas exchange experiment results from Chryse and Utopia surface samples. J. Geophys. Res. 82, 4669–4676 (1977)

    Article  ADS  Google Scholar 

  • Paige, D.A., Siegler, M.A., Harmon, J.K., Smith, D.E., Zuber, M.T., Neumann, G.A., Solomon, S.C.: Thermal stability of frozen volatiles in the north polar region of mercury. 43rd Lunar and planetary science conference, Abstract 2875 (2012)

    Google Scholar 

  • Pasachoff, J.M., Sheehan, W.: A major discovery in doubt. Sky Telesc. 125(1), 86 (2013)

    Google Scholar 

  • Pasachoff, J.M., Schneider, G., Golub, L.: Space studies of the black-drop effect at a Mercury transit. Bull. Am. Astron. Soc. 35, 1202 (2003)

    ADS  Google Scholar 

  • Peplowski, P.N., Evans, L.G., Hauck II, S.A., McCoy, T.J., Boynton, W.V., Gillis-Davis, J.J., Ebel, D.S., Goldsten, J.O., Hamara, D.K., Lawrence, D.J., McNutt Jr., R.L., Nittler, L.R., Solomon, S.C., Rhodes, E.A., Sprague, A.L., Starr, R.D., Stockstill-Cahill, K.R.: Radioactive elements on Mercury’s surface from MESSENGER: implications for the planet’s formation and evolution. Science 333, 1850–1852 (2011)

    Article  ADS  Google Scholar 

  • Phillips, R.J., Raubertas, R.F., Arvidson, R.E., Sarkar, I.C., Herrick, R.R., Izenberg, N., Grimm, R.E.: Impact craters and Venus resurfacing history. J. Geophys. Res. 97, 15,923–15,948 (1992)

    Google Scholar 

  • Popa, R., Smith, A.R., Popa, R., Boone, J., Fisk, M.: Olivine-respiring bacteria isolated from the rock-ice interface in a lava-tube cave, a Mars analog environment. Astrobiology 12(1), 9–18 (2012)

    Article  ADS  Google Scholar 

  • Read, P.L., Lewis, S.R.: The Martian Climate Revisited. Springer, New York etc.; Praxis, Chichester (2004)

    Google Scholar 

  • Reese, C.C., Orth, C.P., Solomatov, V.S.: Impact megadomes and the origin of the martian crustal dichotomy. Icarus 213, 433–442 (2011)

    Article  ADS  Google Scholar 

  • Rivoldini, A., Van Hoolst, T., Verhoeven, O., Mocquet, A., Dehant, V.: Geodesy constraints on the interior structure and composition of Mars. Icarus 213, 451–472 (2011)

    Article  ADS  Google Scholar 

  • Robinson, M.S., Taylor, G.J.: Ferrous oxide in Mercury’s crust and mantle. Meteorit. Planet. Sci. 36, 841–847 (2001)

    Article  ADS  Google Scholar 

  • Ross, F.E.: Photographs of Venus. Astrophys. J. 68, 57–92 (1928)

    Article  ADS  Google Scholar 

  • Segura, T.L., Toon, O.B., Colaprete, A., Zahnle, K.: Environmental effects of large impacts on Mars. Science 298, 1977–1980 (2002)

    Article  ADS  Google Scholar 

  • Segura, T.L., Toon, O.B., Colaprete, A.: Modeling the environmental effects of moderate-sized impacts on Mars. J. Geophys. Res. 113, E11007 (2008)

    Article  ADS  Google Scholar 

  • Shiltsev, V.: Mikhail Lomonosov and the dawn of Russian science. Phys. Today 65(2), 40–46 (2012)

    Article  Google Scholar 

  • Smith, D.E., Zuber, M.T., Phillips, R.J., Solomon, S.C., Hauck II, S.C., Lemoine, F.G., Mazarico, E., Neumann, G.A., Peale, S.J., Margot, J.-L., Johnson, C.L., Torrence, M.H., Perry, M.E., Rowlands, D.D., Goossens, S., Head, J.W., Taylor, A.H.: Gravity field and internal structure of Mercury from MESSENGER. Science 336, 214–217 (2012)

    Article  ADS  Google Scholar 

  • Smrekar, S.E., Stofan, E.R.: Corona formation and heat loss on Venus by coupled upwelling and delamination. Science 277, 1289–1294 (1997)

    Article  ADS  Google Scholar 

  • Smrekar, S.E., Stofan, E.R., Mueller, N., Treiman, A., Elkins-Tanton, L., Helbert, J., Piccioni, G., Drossart, P.: Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328, 605–608 (2010)

    Article  ADS  Google Scholar 

  • Squyres, S.W., Janes, D.M., Baer, G., Bindschadler, D.L., Schubert, G., Sharpton, V.L., Stofan, E.R.: The morphology and evolution of coronae on Venus. J. Geophys. Res. 97, 13,611–13,634 (1992)

    Google Scholar 

  • Squyres, S.W., Arvidson, R.E., Bollen, D., Bell III, J.F., Brückner, J., Cabrol, N.A., Calvin, W.M., Carr, M.H., Christensen, P.R., Clark, B.C., Crumpler, L., Des Marais, D.J., d’Uston, C., Economou, T., Farmer, J., Farrand, W.H., Folkner, W., Gellert, R., Glotch,T.D., Golombek, M., Gorevan, S., Grant, J.A., Greeley, R., Grotzinger, J., Herkenhoff, K.E., Hviid, S., Johnson, J.R., Klingelhöfer, G., Knoll, A.H., Landis, G., Lemmon, M., Li, R., Madsen, M.B., Malin, M.C., McLennan, S.M., McSween, H.Y., Ming, D.W., Moersch, J., Morris, R.V., Parker, T., Rice Jr., J.W., Richter, L., Rieder, R., Schröder, C., Sims, M., Smith, M., Smith, P., Soderblom, L.A., Sullivan, R., Tosca, N.J., Wänke, H., Wdowiak, T., Wolff, M., Yen, A.: Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle Crater to Purgatory Ripple. J. Geophys. Res 111, (2006). doi:10.1029/2006JE002771

  • Stevenson, D.J., Spohn, T., Schubert, G.: Magnetism and thermal evolution of the terrestrial planets. Icarus 54, 466–489 (1983)

    Article  ADS  Google Scholar 

  • Stofan, E.R., Hamilton, V.E., Janes, D.M., Smrekar, S.E.: Coronae on Venus: morphology and origin. In: Bougher, S.W., Hunten, D.M., Phillips, R.J. (eds.) Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, pp. 931–965. University of Arizona Press, Tucson, AZ (1997)

    Google Scholar 

  • Strom, R.G., Sprague, A.L.: Exploring Mercury: The Iron Planet. Springer-Verlag, Berlin; Praxis, Chichester, UK (2003)

    Google Scholar 

  • Surkov, Y.A.: Studies of Venus rocks by Veneras 8, 9, and 10. In: Hunten, D.M., Colin, L., Donahue, T.M., Moroz, V.I. (eds.) Venus, pp. 154–158. University of Arizona Press, Tucson, AZ (1983)

    Google Scholar 

  • Taylor, S.R.: Solar System Evolution: A New Perspective. University Press, Cambridge (1992)

    Google Scholar 

  • Taylor, G.J., Scott, E.R.D.: Mercury: an end-member planet or a cosmic accident? Mercury: space environment, surface, and interior, Abstract 8065 (2001)

    Google Scholar 

  • Thomas-Keprta, K.L., Clemett, S.J., Bazylinski, D.A., Kirschvink, J.L., McKay, D.S., Wentworth, S.J., Vali, H., Gibson Jr., E.K., Romanek, C.S.: Magnetofossils from ancient Mars: a robust biosignature in the Martian meteorite ALH84001. Appl. Environ. Microbiol. 68(8), 3663–3672 (2002)

    Article  Google Scholar 

  • Toon, O.B., Segura, T., Zahnle, K.: The formation of Martian river valleys by impacts. Annu. Rev. Earth Planet. Sci. 38, 303–322 (2010)

    Article  ADS  Google Scholar 

  • Treiman, A.H.: Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: inorganic, abiotic formation by shock and thermal metamorphism. Astrobiology 3, 369–392 (2003)

    Article  ADS  Google Scholar 

  • Treiman, A.H., Amundsen, H.E.F., Blake, D.F., Bunch, T.: Hydrothermal origin for carbonate globules in Martian meteorite ALH84001: a terrestrial analogue from Spitzbergen (Norway). Earth Planet. Sci. Lett. 204, 323–332 (2002)

    Article  ADS  Google Scholar 

  • Turcotte, D.L., Morein, G., Roberts, D., Malamud, B.D.: Catastrophic resurfacing and episodic subduction on Venus. Icarus 139, 49–54 (1999)

    Article  ADS  Google Scholar 

  • Vaughan, W.M., Helbert, J., Blewett, D.T., Head, J.W., Murchie, S.L., Gwinner, K., McCoy, T.J., Solomon, S.C.: Hollow-forming layers in impact craters on Mercury: massive sulfide or chloride deposits formed by impact melt differentiation?” 43rd Lunar and planetary science conference, Abstract 1187 (2012)

    Google Scholar 

  • Veasey, M., Dumberry, M.: The influence of Mercury’s inner core on its physical libration. Icarus 214, 265–274 (2011)

    Article  ADS  Google Scholar 

  • Vincendon, M., Mustard, J., Forget, F., Kreslavsky, M., Spiga, A., Murchie, S., Bibring, J.-P.: Near-tropical subsurface ice on Mars. Geophys. Res. Lett. 37 (2010). doi: 10.1029/2009GL041426 (5 pages)

  • Watters, T.R., McGovern, P.J., Irwin, R.P.: Hemispheres apart: the crustal dichotomy on Mars. Annu. Rev. Earth Planet. Sci. 35, 621–652 (2007)

    Article  ADS  Google Scholar 

  • Watters, T.R., Solomon, S.C., Robinson, M.S., Head, J.W., André, S.L., Hauck, S.A., Murchie, S.L.: The tectonics of Mercury: the view after MESSENGER’s first flyby. Earth Planet. Sci. Lett. 285, 283–296 (2009)

    Article  ADS  Google Scholar 

  • Williams, R.M.E, Dietrich, W.E., Grotzinger, J.P., Gupta, S., Malin, M.C., Palucis, M.C., Rubin, D., Stack, K., Sumner, D.Y., Yingst, Y., Bridges, J.C., Goetz, W., Koefoed, A., Jensen, J.K., Madsen, M.B., Schwenzer, S.P., Deen, R.G., Pariser, O., The MSL Science Team.: Curiosity’s MastCam images reveal conglomerate outcrops with water-transported pebbles. 44th Lunar and planetary science conference, Abstract 1617 (2013)

    Google Scholar 

  • Zuber, M.T.: The crust and mantle of Mars. Nature 412, 220–227 (2001)

    Article  ADS  Google Scholar 

  • Zuber, M.T., Smith, D.E., Phillips, R.J., Solomon, S.C., Neumann, G.A., Hauck II, S.A., Peale, S.J., Barnouin, O.S., Head, J.W., Johnson, C.L., Lemoine, F.G., Mazarico, E., Sun, X., Torrence, M.H., Freed, A.M., Klimczak, C., Margot, J.-L., Oberst, J., Perry, M.E., McNutt Jr., R.L., Balcerski, J.A., Michel, N., Talpe, M.J., Yang, D.: Topography of the Northern hemisphere of Mercury from MESSENGER laser altimetry. Science 336, 217–220 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Challenges

Challenges

  1. [9.1]

    The root-mean-square (rms) speed, v rms, of atoms or molecules of mass m in a gas in thermal equilibrium at temperature T is given by the equation 1/2 m(v rms)2 = (3/2)kT, where k is Boltzmann’s constant (Milone & Wilson 2014, Sect. 10.1). If these atoms or molecules are a component of a planetary atmosphere, then this component escapes into space over a timescale of weeks if v rms = 1/3 v esc, where v esc is the escape velocity from the planet [equation (5.39)]; 104 years if v rms = 1/4 v esc, and 108 years if v rms = 1/5 v esc, Calculate (a) the escape velocity of an atom from the surface of Mercury and (b) the rms speeds of atoms of S and Fe vapor in thermal equilibrium with the surface of a magma ocean at a temperature of (i) 1,000 K; (ii) 1,500 K on the planet Mercury. (c) For each of these temperatures, comment on the retention of these atoms by Mercury if the ocean surface is molten for 105 years.

  2. [9.2]

    Compute the impact speed and specific impact energy for an asteroid colliding with each of the terrestrial planets and the Earth’s moon. Assume the asteroid to have an orbit with the same semi-major axis as the orbit of the planet.

  3. [9.3]

    Ignore atmospheric effects for the situation in [9.2] and comment on the size of the craters one would expect for each body for the same mass of impactor of a stony meteorite (say ρ = 3,500 kg/m3). Is it reasonable to suppose one should ignore atmospheric effects?

  4. [9.4]

    Estimate the mass of impactor required to create the Hellas basin on Mars. Show all reasoning.

  5. [9.5]

    Compare the observed and global equilibrium temperature of Venus. Is it reasonable to ignore internal heat sources on this planet? If the only source of heat on Venus were internal, compute its equilibrium temperature.

  6. [9.6]

    Solar evolution models suggest that the Sun will be 10 % more luminous ~1 Gy from now. If it were so, how would this affect the environments of Earth and Mars at that stage?

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milone, E.F., Wilson, W.J.F. (2014). Surface Science of the Terrestrial Planets. In: Solar System Astrophysics. Astronomy and Astrophysics Library. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8848-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8848-4_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8847-7

  • Online ISBN: 978-1-4614-8848-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics