Skip to main content

The Moon’s Surface, Structure, and Evolution

  • Chapter
  • First Online:
Solar System Astrophysics

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1577 Accesses

Abstract

The Moon! The nature of the lunar surface and the composition of the surface rocks are discussed first, making ample use of the many lunar missions that have visited our heavily cratered neighbor, including the discovery of water ice in the perpetually shadowed craters at the poles. The discussion then turns to lunar seismometry and models for the interior structure of the Moon. The geochemical evolution of the Moon and theories of its origin round out this detailed case study of one of the solar systems’ largest moons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mg# is the ratio of the number of moles of Mg in a sample to the sum of the number of moles of Mg plus the number of moles of Fe. A lower Mg# corresponds to a lower Mg content relative to Fe.

  2. 2.

    The Earth’s magnetosphere and geomagnetic tail are discussed in Chap. 11 of Milone and Wilson (2014).

  3. 3.

    The present phenomenon of evection, from Latin e + vehere (to carry away), was discovered by Ptolemy/Hipparchus and involves the effect of the perturbations in e and ω at the Moon’s perigee and apogee caused by the Sun’s position at those instants. The effect is to strongly perturb the Moon’s celestial longitude, λ m. The amplitude of perturbation on λ m at present is 1° 16′ and its period is 31 d 80747.

  4. 4.

    Named for the city of Nice, in France, where principal proponents of the theory work and live.

References

  • Andrews-Hanna, J.C., Asmar, S.W., Head III, J.W., Kiefer, W.S., Konopliv, A.S., Lemoine, F.G., Matsuyama, I., Mazarico, E., McGovern, P.J., Melosh, H.J., Neumann, G.A., Nimmo, F., Phillips, R.J., Smith, D.E., Solomon, S.C., Taylor, G.J., Wieczorek, M.A., Williams, J.G., Zuber, M.T. 2013: “Ancient Igneous Intrusions and Early Expansion of the Moon Revealed by GRAIL Gravity Gradiometry”. Science 339, 675–687

    Article  ADS  Google Scholar 

  • Benz, W., Slattery, W.L., Cameron, A.G.W. 1986: “The Origin of the Moon and the Single-Impact Hypothesis, I”. Icarus 66, 515–535

    Article  ADS  Google Scholar 

  • Bourdon, B., Touboul, M., Caro, G., Kleine, T. 2008: “Early differentiation of the Earth and the Moon”. Phil. Trans. R. Soc. 366, 4105–4128. doi:10.1098/rsta.2008.0125

    Article  ADS  Google Scholar 

  • Burkhardt, C., Kleine, T., Bourdon, B., Palme, H., Zipfel, J., Friedrich, J.M., Ebel, D.S. 2008: “Hf–W Mineral Isochron for Ca,Al-rich Inclusions: Age of the Solar System and the Timing of Core Formation in Planetesimals”. Geochim. Cosmochim. Acta. 72, 6177–6197

    Article  ADS  Google Scholar 

  • Cameron, A.G. 1985: “Formation of the Prelunar Accretion Disk”. Icarus 62, 319–327

    Article  ADS  Google Scholar 

  • Canup, R. (2004): Simulations of a late lunar-forming impact. Icarus 168, 433–456

    Article  ADS  Google Scholar 

  • Canup, R. (2012): Forming a moon with an earth-like composition via a giant impact. Science 338, 1052–1054

    Article  ADS  Google Scholar 

  • Chenet, H., Lognonné, P., Wieczorek, M., Mizutani, H. (2006): Lateral variations of lunar crustal thickness from the Apollo seismic data set. Earth Planet. Sci. Lett. 243, 1–14

    Article  ADS  Google Scholar 

  • Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., Shirley, M., Ennico, K., Hermalyn, B., Marshall, W., Ricco, A., Elphic, R.C., Goldstein, D., Summy, D., Bart, G.D., Asphaug, E., Korycansky, D., Landis, D., Sollitt, L. (2010): Detection of water in the LCROSS ejecta plume. Science 330, 463–468

    Article  ADS  Google Scholar 

  • Crotts, A.P.S. (2008): Lunar outgassing, transient phenomena, and the return to the moon. I. Existing data. Astrophys. J 687, 692–705

    Article  ADS  Google Scholar 

  • Ćuk, M., Stewart, S.T. (2012): Making the moon from a fast-spinning earth: a giant impact followed by resonant despinning. Science 338, 1047–1052

    Article  ADS  Google Scholar 

  • Ćuk, M., Stewart, S.T. Resonances and the Angular Momentum of the Earth-Moon System. Early Solar System Impact Bombardment II, Feb. 1-3, Houston, abstract 4006 (2012b)

    Google Scholar 

  • Darwin, G.H.: On the secular change in elements of the orbit of a satellite revolving around a tidally distorted planet. Phil. Trans. R. Soc. Lond. 171, 713–891 (1880)

    Article  MATH  Google Scholar 

  • Dauphas, N., Pourmand, A.: Hf–W–Th evidence for rapid growth of mars and its status as a planetary embryo. Nature 473, 489–493 (2011)

    Article  ADS  Google Scholar 

  • Elardo, S.M., Draper, D.S., Shearer Jr., C.K.: Lunar magma ocean crystallization revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite. Geochim. Cosmochim. Acta 75, 3024–3045 (2011)

    Article  ADS  Google Scholar 

  • Gagnepain-Beyneix, J., Lognonné, P., Chenet, H., Lombardic, D., Spohnd, T.: A seismic model of the lunar mantle and constraints on temperature and mineralogy. Physics of the Earth and Planetary Interiors 159, 140–166 (2006)

    Article  ADS  Google Scholar 

  • Garcia, R.F., Gagnepain-Beyneix, J., Chevrot, S., Lognonné, P.: Very preliminary reference Moon model. Physics of the Earth and Planetary Interiors 188, 96–113 (2011). Note: Erratum, ibid., 2012

    Article  ADS  Google Scholar 

  • Garrick-Bethell, I., Fernandes, V.A., Weiss, B.P., Shuster, D.L., Becker, T.A. 4.2 Billion Year Old Ages from Apollo 16, 17, and the Lunar Farside: Age of the South Pole-Aitken Basin? in Workshop on the Early Solar System Impact Bombardment, p. 34–35. LPI Contribution No. 1439, Lunar and Planetary Institute, Houston (2008)

    Google Scholar 

  • Gomes, R., Levison, K., Tsiganis, K., Mobidelli, A.: Origin of the late heavy bombardment period of the terrestrial planets. Nature 435, 466–469 (2005)

    Article  ADS  Google Scholar 

  • Hiesinger, H., van der Bogert, C.H., Pasckert, J.H., Schmedemann, N., Robinson, M.S., Jolliff, B., and Petro, N. New Crater Size-Frequency Distribution Measurements of the South Pole-Aitken Basin. 43rd Lunar and Planetary Science Conference, held March 19–23, 2012 at The Woodlands, Texas. LPI Contribution No. 1659, id.2863 (2012)

    Google Scholar 

  • Hiesinger, H., Head III, J.W., Wolf, U., Jaumann, R., Neukum, G.: Ages and stratigraphy of mare basalts in Oceanus procellarum, mare nubium, mare cognitum, and mare insularum. J. Geophys. Res. 108(E7), 5065 (2003). doi:10.1029/2002JE001985 (27 pp.)

    Article  Google Scholar 

  • Hood, L.L., Mitchell, D.L., Lin, R.P., Acuna, M.H., Binder, A.B..: Initial measurements of the lunar induced magnetic dipole moment using lunar prospector magnetometer data. Geophys. Res. Lett. 26, 2327–2330 (1999)

    Article  ADS  Google Scholar 

  • Hauie, E.H., Weinreich, T., Saal, A.E., Rutherford, M.C., Van Orman, J.A.: High Pre-eruptive water contents preserved in lunar melt inclusions. Science 333, 213–215 (2011)

    Article  ADS  Google Scholar 

  • Hui, H., Peslier, A.H., Zhang, Y., Neal, C.R.: Water in lunar anorthosites and evidence for a wet early moon. Nature Geoscience (2013). doi:10.1038/ngeo1735 (4 pages)

    Google Scholar 

  • Jolliff, B.L., Gillis, J.J., Haskin, L., Korotev, R.L., Wieczorek, M.A.: Major lunar crustal terranes: surface expressions and crust-mantle origins. J. Geophys. Res. 105, 4197–4216 (2000)

    Article  ADS  Google Scholar 

  • Kelley, D.H., Milone, E.F.: Exploring Ancient Skies Springer, New York (2011)

    Book  Google Scholar 

  • Korotev, R.L.: The great lunar hotspot and the composition and origin of the Apollo mafic (“LKFM”) impact-melt breccias. J. Geophys. Res. 105, 4317–4345 (2000)

    Article  ADS  Google Scholar 

  • Korotev, R.L., Gillis, J.J.: A New look at the Apollo 11 regolith and KREEP. J. Geophys. Res. 106, 12,339–12,353 (2001)

    Google Scholar 

  • Liu, Y., Guan, Y., Zhang, Y., Rossman, G.R., Eiler, J.M., Taylor, L.A.: Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water. Nature Geoscience 5, 779–781 (2012)

    Article  ADS  Google Scholar 

  • Milone, E.F., Wilson, W.J.F. 2014: Solar System Sstrophysics: Planetary Atmospheres and the Outer Solar System. Springer, New York

    Google Scholar 

  • Morbidelli, A., Levison, H.K., Tsiganis, K., Gomes, R.: Chaotic capture of Jupiter’s Trojan asteroids in the early solar system. Nature 435, 462–465 (2005)

    Article  ADS  Google Scholar 

  • Nakamura, Y.: Farside deep moonquakes and deep interior of the moon. J. Geophys. Res. 110, E01001 (2005). doi:10.1029/2004JE002332 (12 pp.)

    ADS  Google Scholar 

  • Öpik, E.J.: Comments of lunar origin. Irish Astr. J. 10, 190–238 (1972)

    ADS  Google Scholar 

  • Ringwood, A.E.: Chemical evolution of the terrestrial planets. Geochima. Cosmochim. Acta. 30, 41–104 (1966)

    Article  ADS  Google Scholar 

  • Ruskol, E.L.: Origin of the moon. I. Soviet. Astronomy, AJ 4, 657–668 (1960)

    ADS  Google Scholar 

  • Stephenson, F.R.: Historical eclipses and Earth’s rotation. University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  • Stevenson, D.J.: Origin of the moon—the collision hypothesis. Annu. Rev. Earth Planet. Sci. 15, 271–315 (1987)

    Article  ADS  Google Scholar 

  • Stoffler, D., Knoll, H.D., Marvin, U.B., Simonds, C.H., and Warren, P.H. Recommended Classification and Nomenclature of Lunar Highland Rocks: a Committee Report. in Proceedings of the Conference on the Lunar Highland Crust (Pergamon, New York), 51–70 (1980)

    Google Scholar 

  • Sunshine, J.M., Farnham, T.L., Feaga, L.M., Groussin, O., Merlin, F., Milliken, R.E., A’Hearn, M.F.: Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft. Science 326, 565–568 (2009)

    Article  ADS  Google Scholar 

  • Touboul, M., Kleine, T., Bourdon, B., Palme, H., Wieler, R.: Late formation and prolonged differentiation of the moon inferred from W isotopes in lunar metals. Nature 450, 1206–1209 (2007)

    Article  ADS  Google Scholar 

  • Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F.: Origin of the orbital architecture of the giant planets of the solar system. Nature 435, 459–461 (2005)

    Article  ADS  Google Scholar 

  • Warren, P.H.: The moon. Treatise on Geochemistry 1, 559–599 (2003)

    Article  ADS  Google Scholar 

  • Weber, R.C., Lin, P.-Y., Garnero, E.J., Williams, Q., Lognonné, P.: Seismic detection of the lunar core. Science 331, 309–312 (2011)

    Article  ADS  Google Scholar 

  • Wieczorek, M.A., Jolliff, B.L., Khan, A., Pritchard, M.E., Weiss, B.P., Williams, J.G., Hood, L.L., Righter, K., Neal, C.R., Shearer, C.K., McCallum, I.S., Tompkins, S., Ray Hawke, B., Peterson, C., Gillis, J.J., Bussey, B.: The constitution and structure of the lunar interior. Reviews in Mineralogy & Geochemistry. 60, 221–364 (2006)

    Article  Google Scholar 

  • Wieczorek, M.A., Neumann, G.A., Nimmo, F., Kiefer, W.S., Taylor, G.J., Melosh, H.J., Phillips, R.J., Solomon, S.C., Andrews-Hanna, J.C., Asmar, S.W., Konopliv, A.S., Lemoine, F.G., Smith, D.E., Watkins, M.M., Williams, J.G., Zuber, M.T.: The crust of the moon as seen by GRAIL. Science 339, 671–675 (2013)

    Article  ADS  Google Scholar 

  • Wilcox, B.B., Robinson, M.S., Thomas, P.C., Hawke, B.R.: Constraints on the depth and variability of the lunar regolith. Meteoritics & Planetary Science 40, 695–710 (2005)

    Article  ADS  Google Scholar 

  • Williams, J.G., et al.: Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106, 27,933–27,968 (2001)

    Google Scholar 

  • Wood, J.A., Lunar Sample Analysis Planning Team: Third lunar science conference: primal igneous activity in the outer layers of the Moon generated a Feldspathic crust 40 kilometers thick. Science 176, 975–981 (1972). No. 4038

    Article  ADS  Google Scholar 

  • Yokoyama, T., Vieira Neto, E., Cabo Winter, O., Merguizo Sanchez, D., de Oliveira Brasil, P.I.. On the Evection Resonance and Its Connection to the Stability of Outer Satellites. in Mathematical Problems in Engineering Hindawi Publishing Corporation (16 pages) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Challenges

Challenges

  1. [8.1]

    Calculate the lunar crater diameter expected from the impact of an object with a 100 m diameter and density of 3,400 kg/m3. Suppose that the object is overtaken by the Moon with a net orbital speed difference of 5 km/s.

  2. [8.2]

    The crater frequency is higher over the highlands than over the lowlands of the Moon. Why? Discuss the situation in the light of the time-line of selenological history.

  3. [8.3]

    The moment of inertia of the Moon is 0.391; what does this imply about the structure of the Moon?

  4. [8.4]

    The angular momentum of the Earth-Moon system is 3.41 × 1034 kgm2/s. Assuming no loss of angular momentum to the Earth-Moon system over time, find the rotation speed of the two bodies when they were in contact, under the fission theory for the Moon’s origin. What can you conclude assuming the impact theory for the Moon’s origin?

  5. [8.5]

    If the acceleration of gravity is matched by the centrifugal acceleration in a critically rotating contact Earth-Moon binary, compute the breakup speed. Is the speed computed in [8.4] sufficient for fission to have occurred?

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milone, E.F., Wilson, W.J.F. (2014). The Moon’s Surface, Structure, and Evolution. In: Solar System Astrophysics. Astronomy and Astrophysics Library. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8848-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8848-4_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8847-7

  • Online ISBN: 978-1-4614-8848-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics