Skip to main content

Salt Stress and Sugar Beet Improvement: Challenges and Opportunities

  • Chapter
  • First Online:
Improvement of Crops in the Era of Climatic Changes

Abstract

Drought and salinity are the major abiotic stresses limiting the production of crops including sugar beet in water-limited environments of the world. With an annual precipitation of 240 mm, Iran is classified as a dry region. Furthermore, more than 21 % of the country’s area is occupied by saline soil. Therefore, it is necessary to adopt strategies that will maximize yields and economic returns from stressful environments while minimizing environmental impacts. Among these are improved cultural practices; breeding of new varieties, which involves screening and selection of the existing germplasm; utilization of novel genes through transgenic modification; application of exogenous osmoprotectants, etc. Although conventional selection and breeding programs are making achievement in enhancing the abiotic stress tolerance of crops, breeding for stress tolerance should be given high research priority to accelerate these efforts. However, the extent and rate of progress gained through conventional breeding programs is limited due to the interplay of mechanisms of abiotic stress tolerance that are controlled by the expression of many genes. Furthermore, current techniques employed for selecting tolerant plants are often time-consuming and expensive. Using advanced molecular techniques, some researchers are showing promising results in understanding the molecular basis of tolerance to abiotic stress and increasing stress tolerance in model species and some crops. These findings emphasize that future research should focus on physiological, molecular, and metabolic dimensions of tolerance to stress to facilitate the development of crops with an inherent capacity to withstand abiotic stresses. Additionally, testing the performance of elite genetic materials under realistic field conditions cannot be overlooked. In this chapter, the challenges and opportunities for improvement of salt tolerance in sugar beet (Beta vulgaris L.) are discussed. Many of the principles, however, apply to most crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi, Z, Rezaei M (2014) Development of sugar beet salt tolerant triploid hybrids. Sugar Tech. DOI:10.1007/s12355-014-0309-2.

    Google Scholar 

  • Abbasi Z, Arzani A, Majidi MM (2014) Evaluation of genetic diversity of sugar beet (Beta vulgaris L.) crossing parents using agro - morphological traits and molecular markers. J Agric Sci Technol (Accepted).

    Google Scholar 

  • Abdel MSE, Zanovny I (2004) Response of sugar beet (Beta vulgaris) to potassium application and irrigation with saline water. Ass Univ Bull Environ Res 7(1):123–136

    Google Scholar 

  • Abrol IP, Yadav JSP, Massoud FI (1988) Crops in saline soils in: salt-affected soils and their management. FAO soils bulletin 39. http://www.fao.org/docrep/x5871e/x5871e00.htm#Accessed 15 August 2013

  • Ahmad P, Sharma S (2008) Salt stress and phyto-biochemical responses of plants—a review. Plant Soil Environ 54:89–99

    Google Scholar 

  • Ahmad P, Umar S (2011) Antioxidants: oxidative stress management in plants. Studium, New Delhi, p 369

    Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51(3):167–173

    CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010a) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    CAS  Google Scholar 

  • Ahmad P, Umar S, Sharma S (2010b). Mechanism of free radical scavenging and role of phytohormones during abiotic stress in plants. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Dordrecht, pp 99–108

    Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011a) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South Afr J Bot 77:36–44

    CAS  Google Scholar 

  • Ahmad P, Nabi G, Jeleel CA, Umar S (2011b) Free radical production, oxidative damage and antioxidant defense mechanisms in plants under abiotic stress. In: Ahmad P, Umar S (eds) Oxidative stress: role of antioxidats in plants. Studium, New Delhi, pp 19–53

    Google Scholar 

  • Ahmad P, Hakeem K, Kumar A, Ashraf M, Akram NA (2012a) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol 11(11):2694–2703

    CAS  Google Scholar 

  • Ahmad P, Ozturk M, Gucel S (2012b) Oxidative damage and antioxidants induced by heavy metal stress in two cultivars of mustard plants. Fresen Environ Bull 21(10):2953–2961

    CAS  Google Scholar 

  • Ahmad P, Ashraf M, Azooz MM, Rasool S, Akram NA (2013) Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea. J Plant Interact (In Press, doi:10.1080/17429145.2012.747629)

    Google Scholar 

  • Ahmadi M, Majidi Heravan E, Sadeghian SY, Mesbah M, Darvish F (2011) Drought tolerance variability in S1 pollinator lines developed from a sugar beet open population. Euphytica 178:339–349

    Google Scholar 

  • Akbar M, Yabuno T (1977) Breeding saline-resistant varieties of rice. IV. Inheritance of delayed type panicle sterility induced by salinity. Jap J Breed 27:237–240

    Google Scholar 

  • Akbar M, Khush GS, Hille Ris Lambers D (1986) Genetics of salt tolerance in rice. Proceedings of the international rice genetics symposium IRRI 399–409

    Google Scholar 

  • Ammar MHM, Pandit A, Singh RK, Sameena S, Chauhan MS, Singh AK, Sharma PC, Gaikwad K, Sharma TR, Mohapatra T, Singh NK (2004) Mapping of QTLs controlling Na+, K+ and Cl ion concentrations in salt tolerant indica rice variety CSR27. J Plant Biochem Biotechnol 18:139–150

    Google Scholar 

  • Apostolides G, Goulas C (1998) Seed crop environment and processing effects on sugar beet (Beta vulgaris L.) certified by hybrid variety seed quality. Seed Sci Technol 26:223–235

    Google Scholar 

  • Arzani A (2008) Improving salinity tolerance in crop plants: a biotechnological view. Vitro Cell Dev Biol Plant 44:373–383

    CAS  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Ashraf M, Nawazish SH, Athar HUR (2007) Are chlorophyll fluorescence and photosynthetic capacity potential physiological determinants of drought tolerance in Maize (Zea mays L.). Pak J Bot 39(4):1123–1131

    Google Scholar 

  • Azhar FM, McNeilly T (1988) The genetic basis for salt tolerance in Sorghum bicolor (L.) Moench seedlings. Plant Breed 101:114–121

    CAS  Google Scholar 

  • Azzazy NB (2004) Yield and quality of some sugar beet varieties as affected by water quality and nitrogen fertilization. Egypt J Agric Res 82:1733–1745

    Google Scholar 

  • Bernstein N, Läuchli A, Silk WK (1993) Kinematics and dynamics of sorghum (Sorghum bicolor L.) leaf development at various Na/Ca salinities. Plant Physiol 103:1107–1114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biancardi E, McGrath JM, Panella LW, Lewellen RT, Stevanato P (2010) Sugar Beet. In: Bradshaw JE (ed) Root and tuber crops. Springer, New York, pp 173–219

    Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Metabolic engineering for increased salt tolerance-the next step. Aust J Plant Physiol 23:661–666

    Google Scholar 

  • Bosemark NO (2006) Genetics and breeding. In: Draycott S (ed) Sugar beet. Blackwell, Oxford, pp 50–88

    Google Scholar 

  • Cakmac I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530

    Google Scholar 

  • Carillo P, Annunziata MG, Pontecorvo G, Fuggi A, Woodrow P (2011) Salinity stress and salt tolerance. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants: mechanisms and adaptations. InTech, Rijeka, pp 21–38

    Google Scholar 

  • Choluj D, Karwowska R, Ciszewska A, Jasinska M (2008) Influence of long-term drought stress on osmolyte accumulation in sugar beet (Beta vulgaris L.) plants. Acta Physiol Plant 30:679–687

    Google Scholar 

  • Coello P, Hey SJ, Halford NG (2011) The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot 62:883–893

    CAS  PubMed  Google Scholar 

  • Colmer TD, Fan TW-M, Higashi RM, Läuchli A (1996) Interactive effects of Ca2+ and NaCl salinity on the ionic relations and proline accumulation in the primary root tip of Sorghum bicolor. Physiol Plantarum 97:421–424

    CAS  Google Scholar 

  • Condon AG, Richards RA (1992) Broad-sense heritability and genotype × environment interaction for carbon isotope discrimination in field-grown wheat. Aust J Agric Res 43:921–934

    Google Scholar 

  • Delfine S, Alvino A, ConcettaVilani M, Loreto F (1999) Restriction to carbon dioxide conductance and photosynthesis in spinach leaves recovering from salt stress. Plant Physiol 119:1101–1106

    CAS  PubMed Central  PubMed  Google Scholar 

  • De los Reyes BG, McGrath JM (2003) Cultivar-specific seedling vigor and expression of a putative oxalate oxidase germin-like protein in sugar beet (Beta vulgaris L.). Theor Appl Genet 107:54–61

    Google Scholar 

  • De Vos AC, Broekman R, Groot MP, Rozema J (2010) Ecophysiological response of Crambe maritima to airborne and soil-borne salinity. Ann Bot 105(6):925–937

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duan D, Liu X, Ajmal Khan M, Gul B (2004) Effect of salt and water stress on the germination of Chenopodium glaucum L. seed. Pak J Bot 36(4):793–800

    Google Scholar 

  • Durrant MJ, Draycott AP, Payne PA (1974) Some effect of sodium chloride on germination and seedling growth of sugar beet. Ann Bot 38:1045–1051

    CAS  Google Scholar 

  • Ebrahimian HR, Ranji ZA, Rezaee MA, Abbasi Z (2008) Screening sugar beet genotypes under salinity stress in the greenhouse and field conditions. J Sugar Beet 24(1):1–21 (In Persian)

    Google Scholar 

  • Farquhar GD, Richard RA (1984) Isotopic composition of plant carbon correlates with water use efficiency of wheat genotypes. Aust J Plant Physiol 11:539–552

    CAS  Google Scholar 

  • Fayer MD (2012) Dynamics of water interacting with interfaces, molecules and ions. Acc Chem Res 45:3–14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319

    CAS  PubMed  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants-where next? Aust J Plant Physiol 22:875–884

    Google Scholar 

  • Foolad MR (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue Org Culture 76:101–119

    CAS  Google Scholar 

  • Fotuhi K, Mesbah M, Sadeghian SY, Ranji ZA, Orazizadeh MR (2006) Assessment salt tolerance in sugar beet lines. J Sugar Beet 22(2):1–18 (In Persian)

    Google Scholar 

  • Gahoonia TS, Nielsen NE (2004) Root traits as tools for creating phosphorus efficient crop varieties: new challenges for rhizosphere research at the entrance of the 21st Century. Plant Soil 260:47–57

    Google Scholar 

  • Geissler N, Hussin S, Koyro HW (2009) Interactive effect of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environ Exp Bot 65:220–231

    CAS  Google Scholar 

  • Ghoulam C, Fares K (2001) Effect of salinity on seed germination and early seedling growth of sugar beet (Beta vulgaris L.). Seed Sci Technol 29:357–364

    Google Scholar 

  • Ghoulam C, Ahmed F, Fares K (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47(1):1–93

    Google Scholar 

  • Gidner S, Lennefors BL, Nilsson NO, Bensenfelt J, Johansson E, Gyllenspetz U, Kraft T (2005) QTL mapping of BNYVV resistance from the WB41 source in sugar beet. Genome 48:279–285

    CAS  PubMed  Google Scholar 

  • Gordon TR, Duniway JM (1982) Effects of Powdery Mildew infection on the efficiency of CO2 fixation and light utilization by sugar beet leaves. Plant Physiol 69:139–142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grimmer MK, Bean KMR, Asher MJC (2007) Mapping of five resistance genes to sugar-beet powdery mildew using AFLP and anchored SNP markers. Theor Appl Genet 115:67–75

    CAS  PubMed  Google Scholar 

  • Gzik A (1996) Accumulation of proline and pattern of α amino acids in sugar beet plants in response to osmotic water and salt stress. Environ Exp Bot 36(1):29–38

    CAS  Google Scholar 

  • Habibi D (1993) Selection of sugar beet tolerant progenies to drought and salt stress in germination phase. MSc Thesis. Islamic Azad University, Science and Research Branch (In Persian)

    Google Scholar 

  • Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian SY, Ober ES, Salekdeh GH (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics 5(4):950–960

    CAS  PubMed  Google Scholar 

  • Hajiboland R, Joudmand A, Fotouhi K (2009) Mild salinity improves sugar beet (Beta vulgaris L.) quality. Acta Agric Scand Sect B Soil Plant Sci 59:295–305

    CAS  Google Scholar 

  • Hall A, Rivhards RA, Condon AG, Wright GC, Farquhar GD (1994) Carbon isotope discrimination and plant breeding. In: Janick J (ed) Plant breeding reviews, vol. 12. Wiley, New York, pp 81–113

    Google Scholar 

  • Harley PC, Loreto F, Dimacro G, Sharkey TD (1992) Theoretical consideration when estimating the mesophyll conductance to CO2 flux by analysis of the responses of photosynthesis to CO2. Plant Physiol 98:1429–1436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ 2000. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51(1):463–499

    CAS  PubMed  Google Scholar 

  • Hasthanasombut S, Ntui V, Supaibulwatana K, Mii M, Nakamura I (2010) Expression of Indica rice OsBADH1 gene under salinity stress in transgenic tobacco. Plant Biotechnol Rep 4:75–83

    Google Scholar 

  • Heuer B, Plaut Z (1989) Photosynthesis and osmotic adjustment of two sugar beet cultivars grown under saline condition. J Exp Bot 40:437–440

    Google Scholar 

  • Hisano H, Kimoto Y, Hayakawa H, Takeichi J, Domae T, Hashimoto R, Abe J, Asano S, Kanazawa A, Shimamoto Y (2004) High frequency Agrobacterium-mediated transformation and plant regeneration via direct shoot formation from leaf explants in Beta vulgaris and Beta maritima. Plant Cell Rep 22:910–918

    CAS  PubMed  Google Scholar 

  • Isla R, Aragues R, Royo A (2003) Spatial variability of salt-affected soils in the middle Ebro valley (Spain) and implications in plant breeding for increased productivity. Euphytica 134:325–334

    Google Scholar 

  • Jafarzadeh AA, Aliasgharzadeh N (2007) Salinity and salt composition effects on seed germination and root length of four sugar beet cultivars. Biol Bratislava 62(5):562–564

    Google Scholar 

  • James RA, Rivelli AR, Munns R, von Caemmerer S (2002) Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct Plant Biol 29:1393–1403

    CAS  Google Scholar 

  • Jamil M, Lee DB, Jung KY, Ashraf M, Lee SC, Rha ES (2006) Effects of salt (NaCl) stress on germination and early seedling growth of four vegetables species. J Cent Eur Agric 7(2):273–282

    Google Scholar 

  • Jampeetong A, Brix H (2008). Effects of NaCl salinity on growth, morphology, and photosynthesis and proline accumulation of Salvinia natans. Aquatic Bot. doi:10.1016/j.aquabot.2009.05.003

    Google Scholar 

  • Jewell M, Campbell B, Godwin I (2010) Transgenic plants for abiotic stress resistance. In: Kole C, Michler C, Abbott A, Hall T (eds) Transgenic crop plants. Springer, Berlin, pp 67–132

    Google Scholar 

  • Joshi AK (2011) Genetic factors affecting abiotic stress tolerance in crops. In: Pessarakli M (ed). Handbook of plant and crop stress. CRC, Boca Raton, pp 803–850

    Google Scholar 

  • Kafi M, Asadi H, Ganjeali A (2010) Possible utilization of high-salinity waters and application of low amounts of water for production of the halophyte Kochia scoparia as an alternative fodder in saline agroecosystems. Agric Water Manag 97:139–147

    Google Scholar 

  • Kalia RK, Rai M, Kalia K, Singh S, Dhawan RAK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334

    CAS  Google Scholar 

  • Katerji N, Vanhoorn JW, Hamdy A, Matrorilli M, Karzel EM (1997) Osmotic adjustment of sugar beets in response to soil salinity and its influence on stomatal conductance, growth and yield. Agric Water Manag 34:57–69

    Google Scholar 

  • Katerji N, Van Hoorn TW, Hamdy A, Mastroilli M (2003) Salinity effect on crop development and yield, Analysis of salt tolerance according to several classification methods. Agric Water Manag 62:37–66

    Google Scholar 

  • Khavari-Nejad RA, Najafi F, Khavari-Nejad S (2008) Growth and some physiological parameters of four sugar beet (Beta vulgaris L.) cultivars as affected by salinity. Pak J Biol Sci 11 (10):1390–1393

    CAS  PubMed  Google Scholar 

  • Khayamim S (2010) Study on some physiological parameters of sugar beet lines in salt stress and nonstress conditions. PhD thesis University of Tehran Iran (In Persian)

    Google Scholar 

  • Khayamim S, Tavakkol Afshar R, Sadeghian SY, Poustini K, Rouzbeh F, Abbasi Z (2014) Seed germination, plant establishment and yield in sugar beet genotypes under salinity stress. J Agric Sci Technol 16(4):779–790.

    Google Scholar 

  • Kovar M, Brestic M, Olsovska K (2001) Chlorophyll a fluorescence as a bioindicator of the plant environmental stress. Acta fytothechnica Et zootechnicavol 4. Special number. Proceedings of the international scientific conference on the occasion of the 55th anniversary of Slovak Agricultural University in Nitra

    Google Scholar 

  • Krens FA, Trifonova A, Keizer LCP, Hall RD (1996) The effect of exogenously-applied phytohormones on gene transfer efficiency in sugar beet (Beta vulgaris L.). Plant Sci 116:97–106

    CAS  Google Scholar 

  • Kuznetsov VIV, Shevyakova NI (1999) Proline under stress: biological role, metabolism and regulation. Russ J Plant Physiol 46:274–278

    CAS  Google Scholar 

  • Lee G, Carrow RN, Duncan RR, Eiteman MA, Rieger MW (2008) Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environ Exp Bot 63:19–27

    CAS  Google Scholar 

  • Lein JC, Asbach K, Tian Y, Schulte D, Li C, Koch G, Jung C, Cai DG (2007) Resistance gene analogues are clustered on chromosome 3 of sugar beet and cosegregate with QTL for rhizomania resistance. Genome 50:61–71

    CAS  PubMed  Google Scholar 

  • Lein JC, Sagstetter CM, Schulte D, Thurau T, Varrelmann M, Saal B, Koch G, Borchardt DC, Jung C (2008) Mapping of rhizoctonia root rot resistance genes in sugar beet using pathogen response-related sequences as molecular markers. Plant Breed 127:602–611

    CAS  Google Scholar 

  • Leonforte A, Forster JW, Redden RJ, Nicolas ME, Salisbury PA (2013) Sources of high tolerance to salinity in pea (Pisum sativum L.). Euphytica 189:203–216

    CAS  Google Scholar 

  • Lewellen RT (1992) Use of plant introductions to improve populations and hybrids of sugarbeet. Use of plant introductions in cultivar development Part 2 Crop Science Society of America Madison WI (USA), pp 117–135

    Google Scholar 

  • Lindsey K, Gallois P (1990) Transformation of sugar beet (Beta vulgaris L.) by Agrobacterium tumefaciens. J Exp Bot 41:529–536

    CAS  Google Scholar 

  • Linh LH, Linh TH, Xuan TD, Ham LH, Ismail AM, Khanh TD (2012) Molecular breeding to improve salt tolerance of rice (Oryza sativa L.) in the Red River Delta of Vietnam. Int J Plant Genomics. doi:10.1155/2012/949038

    Google Scholar 

  • Liu H, Wang Q, Yu M, Zhang Y, Wu Y, Zhang H (2008) Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. Plant Cell Environ 31:1325–1334

    CAS  PubMed  Google Scholar 

  • Lyon C (1941) Responses of two species of tomatoes and the F1 generation to sodium sulphate in the nutrient medium. Bot Gaz 103:107–122

    CAS  Google Scholar 

  • Marschner H, Kylin A, Kuiper PJC (1981a) Differences in salt tolerance of three sugar beet genotypes. Physiol Plant 51(2):234–238

    CAS  Google Scholar 

  • Marschner H, Kuiper PJC, Kylin A (1981b) Genotypic differences in the response of sugar beet plants to replacement of potassium by sodium. Physiol Plant 51(2):239–244

    CAS  Google Scholar 

  • McGrath JM (2010) Assisted breeding in sugar beets. Sugar Tech. 12: 187–193.

    Google Scholar 

  • McGrath JM, Derrico CA, Morales M, Copeland LO, Christenson DR (2000) Germination of sugar beet (Beta vulgaris L.) seed submerged in hydrogen peroxide and water as a means to discriminate cultivar and seedlot vigor. Seed Sci Technol 28:607–620

    Google Scholar 

  • McGrath JM, Elawady A, El-Khishin D, Naegele RP, Carr KM, de los Reyes B (2008) Sugar beet germination: phenotypic selection and molecular profiling to identify genes involved in abiotic stress response. Proceedings of the IVth International Sympoium on Seed Transplant and Stand Establishment of Hort Crops Acta Hort 782 ISHS

    Google Scholar 

  • Meiri A, Plaut Z (1985) Crop production and management under saline conditions. Plant Soil 89:253–271

    Google Scholar 

  • Mittova V, Theodoulou FL, Kiddle G, Gomez L, Volokita M, Tal M, Foyer CH, Guy M (2003) Coordinate induction of glutathione biosynthesis and glutathione-metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Lett 554:417–421

    CAS  PubMed  Google Scholar 

  • Mohammadian R (1995) Effects of seed exhaustion on germination and establishment of seven sugar beet genotypes under salinity stress. Ms Thesis Tabriz University Iran (In Persain)

    Google Scholar 

  • Mohammadian R, Rahimian H, Moghaddam M, Sadeghian SY (2003) The effect of early season drought on chlorophyll a fluorescence in sugar beet (Beta vulgaris L.). Pak J Biol Sci 6(20):1763–1769

    Google Scholar 

  • Monreal JA, Jim´enez ET, Remesal E, Morillo-Velarde R, Garc´ıa-Maurino S, Echevarrıa C (2007) Proline content of sugar beet storage roots: response to water deficit and nitrogen fertilization at field conditions. Environ Exp Bot 60:257–267

    CAS  Google Scholar 

  • Morillo-Velarde R, Ober ES (2006) Water use and irrigation. In: Draycott P (ed) Sugar beet. Blackwell Oxford, pp 50–255

    Google Scholar 

  • Mostafavi Kh (2012) Effect of salt stress on germination and early seedling growth stage of sugar beet cultivars. Am-Eur J Sust Agric 6(2):120–125

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167(3):645–663

    CAS  PubMed  Google Scholar 

  • Munns R (2011) Plant adaptations to salt and water stress: differences and commonalities. In: Ismail T (ed) Advances in botanical research. Academic, New York, pp 1–32

    Google Scholar 

  • Munns R, James R, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043

    CAS  PubMed  Google Scholar 

  • Mutasa-Göttgens E, Qi A, Mathews A, Thomas S, Phillips A, Hedden P (2009) Modification of gibberellin signalling (metabolism & signal transduction) in sugar beet: analysis of potential targets for crop improvement. Transgenic Res 18:301–308

    PubMed  Google Scholar 

  • Nagesh Babu R, Devaraj VR (2008) High temperature and salt stress response in French bean (Phaseolus vulgaris). Aust J Crop Sci 2:40–48

    Google Scholar 

  • Nazar R, Iqbal N, Masood A, Syeed S, Khan NA (2011) Understanding the significance of sulfur in improving salinity tolerance in plants. Environ Exp Bot 70(2-3):80–87

    CAS  Google Scholar 

  • Negrão S, Courtois B, Ahmadi N, Abreu I, Saibo N, Oliveira MM (2011) Recent updates on salinity stress in rice: from physiological to molecular responses. Crit Rev Plant Sci 30(4):329–377

    Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811

    Google Scholar 

  • Niazi BH, Broekman RA, Salim M (2000) Dynamics of growth and water relations of fodder beet and sea beet in response to salinity. J Agron Crop Sci 184:101–109

    Google Scholar 

  • Niazi BH, Athar M, Rozema J (2004) Salt tolerance in the fodder beet and sea beet: analysis of biochemical relations. Bulg J Plant Physiol 30(1–2):78–88

    CAS  Google Scholar 

  • Noble CL, Rogers ME (2004) Arguments for the use of physiological criteria for improving the salt tolerance in crops. Plant Soil 146(1-2): 99–107

    Google Scholar 

  • Ober ES, Rajabi A (2010) Abiotic stress in sugar beet. Sugar Tech 12 (3-4): 294–298

    CAS  Google Scholar 

  • Ober ES, Sharp RE (1994) Proline accumulation in maize (Zea mays L.) primary roots at low water potentials. I. Requirement for increased levels of abscisic acid. Plant Physiol 105:981–987

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ober ES, Clark CJA, Le Bloa M, Royal A, Jaggard KW, Pidgeon JD (2004) Assessing the genetic resources to improve drought tolerance in sugar beet: agronomic traits of diverse genotypes under drought and irrigated conditions. Field Crop Res 90:213–234

    Google Scholar 

  • Ober ES, Le Bloa M, Clark CJA, Royal A, Jaggard KW, Pidgeon JD (2005) Evaluation of physiological traits as indirect selection criteria for drought tolerance in sugar beet. Field Crops Res 91:231–249

    Google Scholar 

  • Oliveira AB, Alencar NLM, Gomes-Filho E (2013) Comparison between the water and salt stress effects on plant growth and development. In: Akinic S (ed) Response of organisms to water stress. InTech, Rijeka, pp 67–94

    Google Scholar 

  • Orcutt DM, Nilsen ET (2000) Physiology of plants under stress: soil and biotic factors. Wiley, New York, pp 683

    Google Scholar 

  • Pakniyat H, Armion M (2007) Sodium and proline accumulation as osmoregulators in tolerance of sugar beet genotypes to salinity. Pak J Biol Sci 10:4081–4086

    CAS  PubMed  Google Scholar 

  • Pandit A, Rai V, Bal S, Sinha S, Kumar V, Chauhan M, Gautam RK, Singh R, Sharma PC, Singh AK, Gaikwad K, Sharma TR, Mohapatra T, Singh NK (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Genet Genom 284:121–136

    CAS  Google Scholar 

  • Panella L, Lewellen RT (2005) Plant introduction and genetic diversity. In: Biancardi E, Campbell LG, Skaracis GN, De Biaggi M (eds) Genetics and breeding of sugar beet. Science Publishers, Enfield, pp 34–38

    Google Scholar 

  • Panella L, Lewellen RT (2007) Broadening the genetic base of sugar beet: introgression from wild relatives. Euphytica 154:383–400

    CAS  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161:531–542

    CAS  PubMed  Google Scholar 

  • Park SJ, Lee JY, Lee SE, Yoo SY, Shim MY (2006) Detection of salt tolerance using chlorophyll fluorescence photometer. 18th World Congress of Soil Science, pp 104–106

    Google Scholar 

  • Pavli OI, Skaracis GN (2010). Fast and efficient genetic transformation of sugar beet by Agrobacterium rhizogenes. Nature Protocol Exchange Year published. doi:10.1038/nprot.2010.98

    Google Scholar 

  • Pitman MG (1984) Transport across the root and shoot/root interactions. In: Staples RC, Toerniessen GH (eds) Salinity tolerance in plants-strategies for crop improvement. Wiley, New York, pp 93–124

    Google Scholar 

  • Plaut Z, Heuer B (1985) Adjustment, growth, photosynthesis and transpiration of sugar beet plants exposed to saline conditions. Field Crops Res 10:1–13

    Google Scholar 

  • Rajabi A (2010) Abiotic stresses (drought and salinity) of sugar beet in Iran: physiology, breeding, agronomy and biotechnology. Research final report Sugar Beet Seed Institute Karaj Iran No: 90.123. p 75 (In Persian)

    Google Scholar 

  • Rajabi A, Ober ES (2012) Breeding for improved drought tolerance. In: Ashraf M, Ozturk M, Aqil Ahmad MS, Aksoy A (eds) Crop production for agricultural improvement. Springer, London, p 796

    Google Scholar 

  • Rajabi A, Griffiths H, Ober ES, Kromdijk W, Pidgeon JD (2008) Genetic characteristics of water-use related traits in sugar beet. Euphytica 160:175–187

    Google Scholar 

  • Rajabi A, Ober ES, Griffiths H (2009) Genotypic variation for water use efficiency, carbon isotope discrimination, and potential surrogate measures in sugar beet. Field Crops Res 112:172–181

    Google Scholar 

  • Rajabi A, Ober ES, Norouzi P, Razavi Kh, Sadeghzade Hemayati S, Sadeghian SY (2013a) Molecular aspects of crop response to abiotic stress with an emphasis on drought and salinity. In: Guar RK, Sharma P (eds) Molecular approaches in plant abiotic stress. CRC Press, Boca Raton

    Google Scholar 

  • Rajabi A, Vahidi H, Haj S Hadi MR, Fathollah Taleghani D (2013b) Study on drought tolerance and interrelationships among some agronomic and morphophysiological traits in sugar beet lines. Int J Agric Crop Sci 5-7:761–768

    Google Scholar 

  • Ranji ZA, Parvizi M (1996) Selection of sugar beet progeny hybrid to salinity stress with comparison of potential production and sensitivity index in saline and normal soil. Sugar beet J 12(1–2):19–29 (In Persian)

    Google Scholar 

  • Ranji ZA, Parvizi M, Yavari N (1996) Evaluation of sugar beet progeny hybrid response for proline synthesis in salt stress. Research final report Sugar Beet Seed Research Institute Karaj Iran No: 75.310. p 23 (In Persian)

    Google Scholar 

  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P (2013) Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant 35(4):1039–1050

    CAS  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    CAS  PubMed  Google Scholar 

  • Robinson SP, John W, Downton S, Millhouse JA (1983) Photosynthesis and ion content of leaves and isolated chloroplasts of salt stressed spinach. Plant Physiol 73:238–242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sadat Noori SA, McNeilly T (2000) Assessment of variability in salt tolerance based on seedling growth in Triticum durum Desf. Genet Res Crop E 47:285–291

    Google Scholar 

  • Sadeghian SY, Khodaii A (1998) Diallel crosses analysis of seed germination traits in sugar beet. Euphytica 103:259–263

    Google Scholar 

  • Sadeghian SY, Yavari N (2004) Effect of water deficit stress on germination and early seedling growth in sugar beet. J Agron Crop Sci 190:138–144

    Google Scholar 

  • Salekdeh GH, Komatsu S (2007) Crop proteomics: aim at sustainable agriculture of tomorrow. Proteomics 7:2976–2996

    CAS  PubMed  Google Scholar 

  • Sayfzadeh S, Habibi D, Fathollah Taleghani D, Kashani A, Vazan S, Sadre Qaen SH, Habib Khodaei A, Mashhadi A Boojar M, Rashidi M (2011) Response of antioxidant enzyme activities and root yield in sugar beet to drought stress. Int J Agric Biol 13(3):357–362

    CAS  Google Scholar 

  • Schneider K, Schäfer-Pregl R, Borchardt DC, Salamini F (2002) Mapping QTLs for sucrose content, yield and quality in a sugar beet population fingerprinted by EST-related markers. Theor Appl Genet 104:1107–1113

    CAS  PubMed  Google Scholar 

  • Schneider K, Kulosa D, Soerensen TR, Heine SMHM, Durstewitz G, Polley A, Weber E, Jamsari Lein J, Hohmann U, Tahiro E, Weisshaar B, Schulz B, Koch G, Jung Cand Ganal M (2007) Analysis of DNA polymorphisms in sugar beet (Beta vulgaris L.) and development of an SNP-based map of expressed genes. Theor Appl Genet 115:601–615

    CAS  PubMed  Google Scholar 

  • Seaman J (2007) Mechanisms of salt tolerance in halophytes: can crop plant resistance to salinity be improved. APS 402 Dissertation. Candidate no: 000124971, pp 1–11

    Google Scholar 

  • Serrano R, Culiañz-Macia FA, Moreno V (1999) Genetic engineering of salt and drought tolerance with yeast regulatory genes. Sci Hort 78:261–269

    CAS  Google Scholar 

  • Setiawan A, Koch G, Barnes SR, Jung C (2000) Mapping quantitative trait loci (QTLs) for resistance to Cercospora leaf spot disease (Cercospora beticola Sacc.) in sugar beet (Beta vulgaris L.). Theor Appl Genet 100:1176–1182

    CAS  Google Scholar 

  • Shaheen R, Hood-Nowotny RC (2008) Carbon isotope discrimination: potential for screening salinity tolerance in rice at the seedling stage using hydroponics. Plant Breed 124(3):220–224

    Google Scholar 

  • Shannon MC (1985) Principles and strategies in breeding for higher salt tolerance. Plant Soil 89:227–241

    Google Scholar 

  • Shannon MC (1996) New insights in plant breeding efforts for improved salt tolerance. Hort Tech 6(2):96–99

    Google Scholar 

  • Sharma S, Villamor JG, Verslues PE (2011) Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol 157:292–304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shoresh M, Spivak M, Bernstein N (2011) Involvement of calcium-mediated effects on ROS metabolism in the regulation of growth improvement under salinity. Free Radic Biol Med 51(6):1221–1234

    CAS  PubMed  Google Scholar 

  • Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648

    CAS  PubMed  Google Scholar 

  • Singh RK (2006) Plant breeding course. PBGB, International Rice Research Institute (IRRI)

    Google Scholar 

  • Singh RK, Redona E, Refuerzo L (2010) Varietal improvement for abiotic stress tolerance in crop plants: special reference to salinity in rice. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee, N (eds). Abiotic stress adaptations in plants: physiological, molecular and genomic foundation. Springer, The Netherlands, pp 385–415

    Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9:214–219

    CAS  PubMed  Google Scholar 

  • Stevanato P, Trebbi D, Saccomani M (2010) Root traits and yield in sugar beet: identification of AFLP markers associated with root elongation rate. Euphytica 173:289–298

    Google Scholar 

  • Stich B, Piepho HP, Schulz B, Melchinger AE (2008a) Multi-trait association mapping in sugar beet (Beta vulgaris L.). Theor Appl Genet 117:947–954

    Google Scholar 

  • Stich B, Melchinger AE, Heckenberger M, Mohring J, Schechert A, Piepho HP (2008b) Association mapping in multiple segregating populations of sugar beet (Beta vulgaris L.). Theor Appl Genet 117:1167–1179

    Google Scholar 

  • Subbarao GV, Johansen CMK (1999) Strategies and scope for improving salinity tolerance in crop plants. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 1069–1082

    Google Scholar 

  • Subbarao GV, Johansen C, Kumar Rao JVDK, Jana MK (1990) Salinity tolerance in F1 hybrids of pigeonpea and a tolerant wild relative. Crop Sci 30:785–788

    CAS  Google Scholar 

  • Tal M (1985) Genetics of salt tolerance in higher plants: theoretical and practical considerations. Plant Soil 89:199–226

    Google Scholar 

  • Talei D, Valdiani A, Yusop MK, Abdullah MP (2013) Estimation of salt tolerance in Andrographis paniculata accessions using multiple regression model. Euphytica 189:147–160

    CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    CAS  PubMed  Google Scholar 

  • Thomson MJ, Ocampo DM, Egdane J, Katimbang M, Singh RK, Gregorio G, Ismail M (2007) QTL mapping and marker assisted backcrossing for improved salinity tolerance in rice. Plant and animal genomes XV conference, 13–17 January 2007, San Diego CA

    Google Scholar 

  • Tsialtas JT, Maslaris N (2009) Selective absorption of K+ over Na+ in sugar beet cultivars and its relationship with yield and quality in two contrasting environments of central Greece. J Agron Crop Sci 195(5):384–392

    CAS  Google Scholar 

  • Turan S, Cornish K, Kumar S (2012) Salinity tolerance in plants: breeding and genetic engineering. Aust J Crop Sci 6(9):1337–1348

    Google Scholar 

  • Uno Y, Kanechi M, Inagaki N, Sugimoto M, Maekawa S (1996) The evaluation of salt tolerance during germination and vegetative growth of asparagus, table beet and sea aster. J Japan Soc Hort Sci 65:579–585

    CAS  Google Scholar 

  • Voznesenskaya EV, Koteyeva NK, Edwards GE, Ocampo G (2010) Revealing diversity in structural and biochemical forms of C4 photosynthesis and a C3–C4 intermediate in genus Portulaca L. (Portulacaceae). J Exp Bot 61:3647–3662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wakeel A, Asif AR, Pitann B, Schubert S (2011) Proteome analysis of sugar beet (Beta vulgaris L.) elucidates constitutive adaptation during the first phase of salt stress. J Plant Physiol 168(6):519–526

    CAS  PubMed  Google Scholar 

  • Weber WE, Borchardt DC, Koch G (1999) Combined linkage maps and QTLs in sugar beet (Beta vulgaris L.) from different populations. Plant Breed 118:193–204

    CAS  Google Scholar 

  • Weber WE, Borchardt DC, Koch G (2000) Marker analysis for quantitative traits in sugar beet. Plant Breed 119:97–106

    CAS  Google Scholar 

  • Würschum T, Maurer H, Schulz B, Möhring J, Reif J (2011) Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet. Theor Appl Genet 123(1):109–118

    PubMed  Google Scholar 

  • Xia T, Apse MP, Aharona GS, Blumwald E (2002) Identification and characterization of a NaCl-inducible vacuolar Na+/H+ antiporter in Beta vulgaris. Physiol Plantarum 116:206–212

    CAS  Google Scholar 

  • Yamada N, Promden W, Yamane K, Tamagake H, Hibino T, Tanaka Y, Takabe T (2009) Preferential accumulation of betaine uncoupled to choline monoxygenase in young leaves of sugar beet-importance of long-distance translocation of betaine under normal and salt-stressed conditions. J Plant Physiol 166(18):2058–2070

    CAS  PubMed  Google Scholar 

  • Yancey PH (1994) Compatible and counteracting solutes. In: Strange K (ed) Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, pp 81–109

    Google Scholar 

  • Yang AF, Duan AG, Gu XF, Gao F, Zhang JR (2005) Efficient transformation of beet (Beta vulgaris) and production of plants with improved salt-tolerance. Plant Cell Tiss Org Culture 83:259–270

    CAS  Google Scholar 

  • Yang L, Ma C, Wang L, Chen L, Li H (2012) Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14. J Plant Physiol 169(9):839–850

    CAS  PubMed  Google Scholar 

  • Yeo AR, Yeo ME, Flowers SA, Flowers TJ (1988) Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance and their relationship to overall performance. Theor Appl Genet 79:377–384

    Google Scholar 

  • Zein FI, El-Yamani MS, Moustafa ATA, El-Abaseri MA (2002) Tolerance of some sugar beet cultivars to soil salinity. Egypt J Soil Sci 42(2):319–330

    Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnol 19:765–768

    CAS  Google Scholar 

  • Zhang N, Si H, Wen G, Du H, Liu B, Wang D (2011) Enhanced drought and salinity tolerance in transgenic potato plants with a BADH gene from spinach. Plant Biotechnol Rep 5:71–77

    Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abazar Rajabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rajabi, A., Khayamim, S., Abbasi, Z., Ober, E. (2014). Salt Stress and Sugar Beet Improvement: Challenges and Opportunities. In: Ahmad, P., Wani, M., Azooz, M., Phan Tran, LS. (eds) Improvement of Crops in the Era of Climatic Changes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8824-8_5

Download citation

Publish with us

Policies and ethics