Skip to main content

Multiphoton Brain Imaging

  • Protocol
  • First Online:
Current Laboratory Methods in Neuroscience Research

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 5325 Accesses

Abstract

Imaging approaches have revolutionized neuroscience research. The discovery and development of dyes, fluorescent proteins, light-activated proteins (optogenetics), as well as transgenic animals with subset of cells expressing fluorescent proteins allows scientists to probe the structure and function of neurons with ever-increasing specificity. The ability to perform such investigations in intact animals affords linkages between cellular form and function to the dynamics of neural networks, animal behavior, and disease. Two-photon laser scanning microscopy (TPLSM) is amongst the best approaches available for high-resolution imaging of neurons and other cells that provides spatiotemporal information in the intact brain not feasible by other methods.

The objective of this chapter is to address the following questions:

  1. 1.

    Why is there a need for TPLSM for in vivo imaging?

  2. 2.

    How does TPLSM work?

  3. 3.

    What are its common applications?

  4. 4.

    How to perform in vivo imaging of the brain using TPLSM?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brown CE, Li P, Boyd JD, Delaney KR, Murphy TH (2007) Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. J Neurosci 27:4101–4109

    Article  CAS  PubMed  Google Scholar 

  • Christensen DJ, Nedergaard M (2011) Two-photon in vivo imaging of cells. Pediatr Nephrol 26:1483–1489

    Article  PubMed  Google Scholar 

  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  CAS  PubMed  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  PubMed  Google Scholar 

  • Drobizhev M, Makarov NS, Tillo SE, Hughes TE, Rebane A (2011) Two-photon absorption properties of fluorescent proteins. Nat Methods 8:393–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grewe BF, Langer D, Kasper H, Kampa BM, Helmchen F (2010) High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat Methods 7:399–405

    Article  CAS  PubMed  Google Scholar 

  • Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420:812–816

    Article  CAS  PubMed  Google Scholar 

  • Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    Article  CAS  PubMed  Google Scholar 

  • Hirase H, Qian L, Bartho P, Buzsaki G (2004) Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol 2:E96

    Article  PubMed  PubMed Central  Google Scholar 

  • Holtmaat AJ, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang X, Knott GW, Svoboda K (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45:279–291

    Article  CAS  PubMed  Google Scholar 

  • Lee WC, Huang H, Feng G, Sanes JR, Brown EN, So PT, Nedivi E (2006) Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex. PLoS Biol 4:e29

    Article  PubMed  Google Scholar 

  • Marker DF, Tremblay ME, Lu SM, Majewska AK, Gelbard HA (2010) A thin-skull window technique for chronic two-photon in vivo imaging of murine microglia in models of neuroinflammation. J Vis Exp Jove Sep 19;(43).

    Google Scholar 

  • Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGavern DB, Kang SS (2011) Illuminating viral infections in the nervous system. Nat Rev Immunol 11:318–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi J, Nagaoka A, Watanabe S, Ellis-Davies GC, Kitamura K, Kano M, Matsuzaki M, Kasai H (2011) In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice. J Physiol 589:2447–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawley J (2005) Handbook of biological confocal microscopy, 3rd edn. Springer, Berlin

    Google Scholar 

  • Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420:788–794

    Article  CAS  PubMed  Google Scholar 

  • Ustione A, Piston DW (2011) A simple introduction to multiphoton microscopy. J Microsc 243:221–226

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lou N, Xu Q, Tian GF, Peng WG, Han X, Kang J, Takano T, Nedergaard M (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9:816–823

    Article  CAS  PubMed  Google Scholar 

  • Williams RM, Piston DW, Webb WW (1994) Two-photon molecular excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry. FASEB J 8:804–813

    Article  CAS  PubMed  Google Scholar 

  • Xu HT, Pan F, Yang G, Gan WB (2007) Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10:549–551

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Yu X, Perlik AJ, Tobin WF, Zweig JA, Tennant K, Jones T, Zuo Y (2009) Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462:915–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Pan F, Parkhurst CN, Grutzendler J, Gan WB (2011) Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc 5:201–208

    Article  Google Scholar 

  • Yuste R, Denk W (1995) Dendritic spines as basic functional units of neuronal integration. Nature 375:682–684

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Dunaevsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dunaevsky, A. (2014). Multiphoton Brain Imaging. In: Xiong, H., Gendelman, H.E. (eds) Current Laboratory Methods in Neuroscience Research. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8794-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8794-4_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8793-7

  • Online ISBN: 978-1-4614-8794-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics