Skip to main content

Noninvasive Neurophysiological Imaging with Magnetoencephalography

  • Protocol
  • First Online:
Current Laboratory Methods in Neuroscience Research

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 5244 Accesses

Abstract

Magnetoencephalography (MEG) is a noninvasive neurophysiological recording technique that is primarily utilized in human studies of system-level brain function. Although the seminal MEG measurements occurred more than 40 years ago, the precision of the instruments and the analytical sophistication of the field have dramatically increased over the past decade. At present, MEG is the only noninvasive high-resolution neurophysiological imaging technique and the only functional brain imaging method to offer both high temporal (<1 ms) and spatial (2–5 mm) resolution. The current chapter will provide a brief historical introduction to MEG and functional magnetic resonance imaging (fMRI), which is the most common method of functional brain imaging. Description of the physical and physiological bases of the signals measured in noninvasive functional imaging will follow, with an emphasis on the neuromagnetic signals quantified in human MEG measurements. An introduction to the most common MEG analysis methods will be presented; and thereafter, several examples of MEG applications will be discussed to illustrate the type of questions often pursued in MEG research and the general areas of study where MEG measurements are making an impact. The chapter will conclude by presenting some new applications for MEG-based functional brain imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahonen AI, Hamalainen MS, Kajola MJ, Knuutila JET, Laine PP, Lounasmaa OV, Parkkonen LT, Simola JT, Tesche CD (1993) 122-channel SQUID instrument for investigating the magnetic signals from the human brain. Physica Scripta T49:198–205

    Article  Google Scholar 

  • Aubert A, Pellerin L, Magistretti PJ, Costalat R (2007) A coherent neurobiological framework for functional neuroimaging provided by a model integrating compartmentalized energy metabolism. Proc Natl Acad Sci U S A 104:4188–4193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baillet S (2010) The dowser in the fields: searching for MEG sources. In: Hansen PC, Kringelbach ML, Salmelin R (eds) MEG: an introduction to the methods. Oxford University Press, New York, pp 83–123

    Chapter  Google Scholar 

  • Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal Process Mag 18(6):14–30

    Article  Google Scholar 

  • Bandettini PA, Ungerleider LG (2001) From neuron to BOLD: new connections. Nat Neurosci 4:864–866

    Article  CAS  PubMed  Google Scholar 

  • Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397

    Article  CAS  PubMed  Google Scholar 

  • Cohen DS (1968) Magnetoencephalography: evidence of magnetic fields produced by alpha rhythm currents. Science 161:784–786

    Article  CAS  PubMed  Google Scholar 

  • Goense JB, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18:631–640

    Article  CAS  PubMed  Google Scholar 

  • Hämäläinen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32(1):35–42

    Article  PubMed  Google Scholar 

  • Hämäläinen MS, Sarvas J (1989) Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans Biomed Eng 36(2):165–171

    Article  PubMed  Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65(2):413–495

    Article  Google Scholar 

  • Hansen PC, Kringelbach ML, Salmelin R (eds) (2010) MEG: an introduction to the methods. Oxford University Press, New York

    Google Scholar 

  • Heeger DJ, Rees D (2002) What does fMRI tell us about neuronal activity? Nat Rev Neurosci 3:142–151

    Article  CAS  PubMed  Google Scholar 

  • Heeger DJ, Huk AC, Geisler WS, Albrecht DG (2000) Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? Nat Neurosci 3:631–633

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand A, Barnes GR (2002) A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. Neuroimage 16:638–650

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand A, Singh KD, Holliday IE, Furlong PL, Barnes GR (2005) A new approach to neuroimaging with magnetoencephalography. Hum Brain Mapp 25:199–211

    Article  PubMed  Google Scholar 

  • Huettel SA, Song AW, McCarthy G (2008) Functional magnetic resonance imaging, 2nd edn. Sinauer, Sunderland, MA

    Google Scholar 

  • Humm JL, Rosenfeld A, Del Guerra A (2003) From PET detectors to PET scanners. Eur J Nucl Med Mol Imaging 30:1574–1597

    Article  PubMed  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leahy RM, Mosher JC, Spencer ME, Huang MX, Lewine JD (1998) A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Clin Neurophysiol 107:159–173

    Article  CAS  Google Scholar 

  • Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23:3963–3971

    CAS  PubMed  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  CAS  PubMed  Google Scholar 

  • Lopes da Silva FH (2010) Electrophysiological basis of MEG signals. In: Hansen PC, Kringelbach ML, Salmelin R (eds) MEG: an introduction to the methods. Oxford University Press, New York, pp 1–23

    Google Scholar 

  • Lopes da Silva FH, van Rotterdam A (2005) Biophysical aspects of EEG and magnetoencephalographic generation. In: Niedermeyer E, Lopes da Silva FH (eds) Electroencephalography, basic principles, clinical applications and related fields, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1165–1198

    Google Scholar 

  • Lu ZL, Kaufman L (eds) (2003) Magnetic source imaging of the human brain. Lawrence Erlbaum Associates, Mahwah, NJ

    Google Scholar 

  • Magistretti PJ, Pellerin L (1999) Astrocytes couple synaptic activity to glucose utilization in the brain. News Physiol Sci 14:177–182

    CAS  PubMed  Google Scholar 

  • Mosher JC, Baillet S, Leahy RM (1999) EEG source localization and imaging using multiple signal classification approaches. J Clin Neurophysiol 16(3):225–238

    Article  CAS  PubMed  Google Scholar 

  • Murakami S, Okada Y (2006) Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. J Physiol 575:925–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H et al (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89:5951–5955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada YC, Wu J, Kyuhou S (1997) Genesis of MEG signals in a mammalian CNS structure. Clin Neurophysiol 103:474–485

    Article  CAS  Google Scholar 

  • Parkkonen L (2010) Instrumentation and data processing. In: Hansen PC, Kringelbach ML, Salmelin R (eds) MEG: an introduction to the methods. Oxford University Press, New York, pp 24–64

    Chapter  Google Scholar 

  • Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476

    Article  CAS  PubMed  Google Scholar 

  • Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 3:716–723

    Article  CAS  PubMed  Google Scholar 

  • Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32(1):11–22

    Article  CAS  PubMed  Google Scholar 

  • van Veen BD, van Drongelen W, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44:867–880

    Article  PubMed  Google Scholar 

  • Vrba J, Robinson S (2001) Signal processing in magnetoencephalography. Methods 25:249–271

    Article  CAS  PubMed  Google Scholar 

  • Wagner H, Eiselt M, Zwienger U (1997) Exactness of source analysis of biomagnetic signals of epileptiform spikes by the method of spatial filtering: a computer simulation. Med Biol Eng Comput 35:708–714

    Article  CAS  PubMed  Google Scholar 

  • Wilson TW, Slason E, Hernandez OO, Asherin RM, Reite ML, Teale PD, Rojas DC (2009) Aberrant high frequency desynchronization of cerebellar cortices in early-onset psychosis. Psychiatry Res 174:47–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson TW, Slason E, Asherin RM, Kronberg E, Reite ML, Teale PD, Rojas DC (2010) An extended motor network generates beta and gamma oscillatory perturbations during development. Brain Cogn 73:75–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson TW, Slason E, Asherin RM, Kronberg E, Teale PD, Reite ML, Rojas DC (2011) Abnormal gamma and beta MEG activity during finger movements in early-onset psychosis. Dev Neuropsychol 36:596–613

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony W. Wilson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wilson, T.W. (2014). Noninvasive Neurophysiological Imaging with Magnetoencephalography. In: Xiong, H., Gendelman, H.E. (eds) Current Laboratory Methods in Neuroscience Research. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8794-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8794-4_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8793-7

  • Online ISBN: 978-1-4614-8794-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics