Skip to main content

Endocrine Function

  • Chapter
  • First Online:
High Altitude

Abstract

Adaptation to a stressful environment such as altitude hypoxia will affect most hormonal systems. Stress hormones (cortisol, epinephrine, norepinephrine, prolactin) are stimulated in acute hypoxia but adrenergic system is down-regulated in prolonged hypoxia. Thyroid hormone is increased in hypoxia, with no change in TSH. Parathromone is stimulated and parathromone receptors desensitized with prolonged exposure. Leptin is increased and ghrelin decreased with exposure to hypoxia. Growth hormone is poorly affected by acute hypoxia and exercise-induced GH response is potentiated by acute hypoxia. LH and FSH decrease with acute hypoxia. The hypophyseal response to hypothalamic factors is not substantially modified in altitude hypoxia. The possible role of hypoxia-inducible factors in the regulation of hormones at high altitude remains to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This paragraph was written in collaboration with Didier Chapelot.

References

  1. Jenq W, Rabb H, Wahe M, Ramirez G. Hypoxic effects on the expression of mineralocorticoid and glucocorticoid receptors in human renal cortex epithelial cells. Biochem Biophys Res Commun. 1996;218:444–8.

    PubMed  CAS  Google Scholar 

  2. Kacimi R, Moalic JM, Aldashev A, et al. Differential regulation of G protein expression in rat hearts exposed to chronic hypoxia. Am J Physiol. 1995;38:H1865–73.

    Google Scholar 

  3. Richalet JP. Oxygen sensors in the organism. Examples of regulation under altitude hypoxia in mammals. Comp Biochem Physiol. 1997;118A:9–14.

    CAS  Google Scholar 

  4. Ayres PJ, Hurter WG, Williams ES. Aldosterone excretion and potassium retention in subjects living at high altitude. Nature. 1961;191:78–80.

    PubMed  CAS  Google Scholar 

  5. Frayser R, Rennie ID, Gray GW, Houston CS. Hormonal and electrolyte response to exposure to 17,500ft. J Appl Physiol. 1975;38:636–42.

    PubMed  CAS  Google Scholar 

  6. Heyes MP, Farber MO, Manfredi F, et al. Acute effects of hypoxia on renal and endocrine function in normal humans. Am J Physiol 1982; 243 (Reg Int Comp Physiol 12): R265-70.

    Google Scholar 

  7. Humpeler E, Skrabal F, Bartsch G. Influence of exposure to moderate altitude on the plasma concentration of cortisol, aldosterone, renin, testosterone, and gonadotropins. Eur J Appl Physiol. 1980;45:167–76.

    CAS  Google Scholar 

  8. Sutton JR, Viol GW, Gray GW, et al. Renin, aldosterone, electrolyte, and cortisol responses to hypoxic decompression. J Appl Physiol. 1977;43:421–4.

    PubMed  CAS  Google Scholar 

  9. Sawhney RC, Malhotra AS, Singh T. Glucoregulatory hormones in man at high altitude. Eur J Appl Physiol. 1991;62:286–91.

    CAS  Google Scholar 

  10. Anand IS, Chandrashekhar Y, Rao SK, et al. Body fluid compartments, renal blood flow, and hormones at 6,000m in normal subjects. J Appl Physiol. 1993;74:1234–9.

    PubMed  CAS  Google Scholar 

  11. Marinelli M, Roi GS, Giacometti M, et al. Cortisol, testosterone and free testosterone in athletes performing a marathon at 4000m altitude. Horm Res. 1994;41:225–9.

    PubMed  CAS  Google Scholar 

  12. Panjwani U, Thakur L, Anand JP, et al. Effect of simulated ascent to 3500 meter on neuro-endocrine functions. Indian J Physiol Pharmacol. 2006;50:250–6.

    PubMed  CAS  Google Scholar 

  13. Larsen JJ, Hansen JM, Olsen NV, et al. The effect of altitude hypoxia on glucose homeostasis in men. J Physiol. 1997;504:241–91.

    PubMed  CAS  Google Scholar 

  14. Colice GL, Ramirez G. Effect of hypoxemia on the renin-angiotensin-aldosterone system in humans. J Appl Physiol. 1985;58:724–30.

    PubMed  CAS  Google Scholar 

  15. Bouissou P, Fiet J, Guezennec CY, Pesquies PC. Plasma adrenocorticotrophin and cortisol responses to acute hypoxia at rest and during exercise. Eur J Appl Physiol. 1988;57:110–3.

    CAS  Google Scholar 

  16. Tunny TJ, van Gelder J, Gordon RD, et al. Effects of altitude on atrial natriuretic peptide, the bicentennial Mount Everest Expedition. Clin Exp Pharmacol Physiol. 1989;16:287–91.

    PubMed  CAS  Google Scholar 

  17. Vuolteenaho O, Koistinen P, Martikkala V, et al. Effect of physical exercise in hypobaric conditions on atrial natriuretic peptide secretion. Am. J. Physiol. 1992; 263 (Reg. Int. Comp. Physiol. 32): 647–52.

    Google Scholar 

  18. Benso A, Broglio F, Aimaretti G, et al. Endocrine and metabolic responses to extreme altitude and physical exercise in climbers. Eur J Endocrinol. 2007;157:733–40.

    PubMed  CAS  Google Scholar 

  19. Imoberdorf R, Garlick PJ, McNurlan MA, et al. Skeletal muscle protein synthesis after active or passive ascent to high altitude. Med Sci Sports Exerc. 2006;38:1082–7.

    PubMed  CAS  Google Scholar 

  20. Bärtsch P, Shaw S, Francioli M, et al. Atrial natriuretic peptide in acute mountain sickness. J Appl Physiol. 1988;65:1929–37.

    PubMed  Google Scholar 

  21. Richalet JP, Rutgers V, Bouchet P, et al. Diurnal variations of acute mountain sickness, colour vision, and plasma cortisol and ACTH at high altitude. Aviat Space Environ Med. 1989;60:105–11.

    PubMed  CAS  Google Scholar 

  22. Richalet JP, Antezana AM, Bienvenu A, et al. Physiological factors in survival at extreme altitude. In: Sutton JR, Houston CS, Coates G, editors. Hypoxia and molecular medicine. Burlington: Quenn City Printers; 1993. p. 235–51.

    Google Scholar 

  23. Richalet JP, Déchaux M, Bienvenu A, et al. Erythropoiesis and renal function at the altitude of 6,542 m. Jpn J Mount Med. 1995;15:135–50.

    Google Scholar 

  24. Raff H, Tzankoff SP, Fitzgerald RS. ACTH and cortisol responses to hypoxia in dogs. J Appl Physiol. 1981;51:1257–60.

    PubMed  CAS  Google Scholar 

  25. Honig A. Peripheral arterial chemoreceptors and reflex control of sodium and water homeostasis. Am J Physiol. 1989;257:R1282–302.

    PubMed  CAS  Google Scholar 

  26. Richalet JP, Mehdioui H, Rathat C, et al. Acute hypoxia decreases cardiac response to catecholamines in exercising humans. Int J Sports Med. 1988;9:157–62.

    PubMed  CAS  Google Scholar 

  27. Antezana AM, Kacimi R, Le Trong JL, et al. Adrenergic status of humans during prolonged exposure to the altitude of 6542 m. J Appl Physiol. 1994;76:1055–9.

    PubMed  CAS  Google Scholar 

  28. Mazzeo RS, Wolfel EE, Butterfield GE, Reeves JT. Sympathetic response during 21 days at high altitude (4,300 m) as determined by urinary and arterial catecholamines. Metabolism. 1994;43:1226–32.

    PubMed  CAS  Google Scholar 

  29. Bestle MH, Olsen NV, Poulsen TD, et al. Prolonged hypobaric hypoxemia attenuates vasopressin secretion and renal response to osmostimulation in men. J Appl Physiol. 2002;92:1911–22.

    PubMed  CAS  Google Scholar 

  30. Richalet JP, Letournel M, Souberbielle JC. Effects of high altitude hypoxia on the hormonal response to hypothalamic factors. Am J Physiol Regul Integr Comp Physiol. 2010;299:R1685–92.

    PubMed  CAS  Google Scholar 

  31. Fischetti F, Fabris B, Zaccaria M, et al. Effects of prolonged high-altitude exposure on peripheral adrenergic receptors in young healthy volunteers. Eur J Appl Physiol. 2000;82:439–45.

    PubMed  CAS  Google Scholar 

  32. Olsen NV, Hansen JM, Kanstrup IL, et al. Renal hemodynamics, tubular function, and the response to low-dose dopamine during acute hypoxia in humans. J Appl Physiol. 1993;74:2166–73.

    PubMed  CAS  Google Scholar 

  33. Calbet JA. Chronic hypoxia increases blood pressure and noradrenaline spillover in healthy humans. J Physiol. 2003;551:379–86.

    PubMed  CAS  Google Scholar 

  34. Antezana AM, Richalet JP, Noriega I, et al. Hormonal changes in normal and polycythemic high altitude natives. J Appl Physiol. 1995;79:795–800.

    PubMed  CAS  Google Scholar 

  35. Richalet JP. The heart and adrenergic system in hypoxia. In: Sutton JR, Coates G, Remmers JE, editors. Hypoxia. The adaptations. Toronto: B.C. Dekker; 1990. p. 231–40.

    Google Scholar 

  36. Favret F, Richalet JP. Exercise and hypoxia, the role of the autonomic nervous system. Respir Physiol Neurobiol. 2007;158:280–6.

    PubMed  Google Scholar 

  37. Lundby C, Araoz M, van Hall G. Peak heart rate decreases with increasing severity of acute hypoxia. High Alt Med Biol. 2001;2:369–76.

    PubMed  CAS  Google Scholar 

  38. Richalet JP, Le Trong JL, Rathat C, et al. Reversal of hypoxia-induced decrease in human cardiac response to isoproterenol infusion. J Appl Physiol. 1989;67:523–7.

    PubMed  CAS  Google Scholar 

  39. León-Velarde F, Richalet JP, Chavez JC, et al. Hypoxia- and normoxia-induced reversibility of autonomic control in Andean guinea pig heart. J Appl Physiol. 1996;81:2229–34.

    PubMed  Google Scholar 

  40. Kacimi R, Richalet JP, Corsin A, et al. Hypoxia-induced downregulation of b-adrenergic receptors in rat heart. J Appl Physiol. 1992;73:1377–82.

    PubMed  CAS  Google Scholar 

  41. Voelkel NF, Hegstrand L, Reeves JT, et al. Effects of hypoxia on density of β-adrenergic receptors. J Appl Physiol. 1981;50:363–6.

    PubMed  CAS  Google Scholar 

  42. Kacimi R, Richalet JP, Crozatier B. Hypoxia-induced differential modulation of adenosinergic and muscarinic receptors in rat heart. J Appl Physiol. 1993;75:1123–8.

    PubMed  CAS  Google Scholar 

  43. León-Velarde F, Richalet JP, Molinatti G, Crozatier B. Up-regulation of cardiac a-adrenergic receptors (a-AR) in rats exposed to prolonged hypoxia. Tenth hypoxia symposium. Lake Louise, Canada, Feb 18–22, 1997.

    Google Scholar 

  44. Bao X, Kennedy BP, Hopkins SR, et al. Human autonomic activity and its response to acute oxygen supplement after high altitude acclimatization. Auton Neurosci. 2002;102:54–9.

    PubMed  Google Scholar 

  45. Richalet JP, Kacimi R, Antezana AM. The control of chronotropic function in hypobaric hypoxia. Int J Sports Med. 1992;13:S22–4.

    PubMed  Google Scholar 

  46. de Glisezinski I, Crampes F, Harant I, et al. Decrease of subcutaneous adipose tissue lipolysis after exposure to hypoxia during a simulated ascent of Mt Everest. Pflugers Arch. 1999;439:134–40.

    PubMed  Google Scholar 

  47. Surks MI. Elevated PBI, free thyroxine and plasma protein concentration in man at high altitude. J Appl Physiol. 1966;21:1185–90.

    PubMed  CAS  Google Scholar 

  48. Rawal SB, Singh MV, Tyagi AK, Chaudhuri BN. Thyroidal handling of radioiodine in sea level residents exposed to hypobaric hypoxia. Eur J Nucl Med. 1993;20:16–9.

    PubMed  CAS  Google Scholar 

  49. Basu M, Pal K, Malhotra AS, et al. Free and total thyroid hormones in humans at extreme altitude. Int J Biometeorol. 1995;39:17–21.

    PubMed  CAS  Google Scholar 

  50. Chakraborty S, Samaddar J, Batabyal SK. Thyroid status of humans at high altitude. Clin Chim Acta. 1987;166:111–3.

    PubMed  CAS  Google Scholar 

  51. Férézou J, Richalet JP, Sérougue C, et al. Reduction of postprondial lipemia after acute exposure to high altitude hypoxia. Int J Sports Med. 1993;14:78–85.

    PubMed  Google Scholar 

  52. Kotchen TA, Mougey EH, Hogan RP, et al. Thyroid responses to simulated altitude. J Appl Physiol. 1973;34:165–8.

    PubMed  CAS  Google Scholar 

  53. Mordes JP, Blume FD, Boyer S, et al. High-altitude pituitary-thyroid dysfunction on Mount Everest. N Engl J Med. 1983;308:1135–8.

    PubMed  CAS  Google Scholar 

  54. Ramirez G, Herrera R, Pineda D, et al. The effects of high altitude on hypothalamic-pituitary secretory dynamics in men. Clin Endocrinol (Oxf). 1995;43:11–8.

    CAS  Google Scholar 

  55. Sawhney RC, Malhotra AS. Thyroid function in sojourners and acclimatised low landers at high altitude in man. Horm Metab Res. 1991;23:81–4.

    PubMed  CAS  Google Scholar 

  56. Surks MI, Beckwitt HJ, Chidsey CA. Changes in plasma thyroxine concentration and metabolism, catecholamine excretion and basal oxygen consumption in man during acute exposure to high altitude. J Clin Endocrinol Metab. 1967;27:789–99.

    PubMed  CAS  Google Scholar 

  57. Wright AD. Birmingham Medical Research Expeditionary Society 1977 Expedition, Thyroid function and acute mountain sickness. Postgrad Med J. 1979;55:483–6.

    PubMed  CAS  Google Scholar 

  58. Hackney AC, Feith S. Pozos, Seale J. Effects of altitude and cold exposure on resting thyroid hormone concentrations. Aviat Space Environ Med. 1995;66:325–9.

    PubMed  CAS  Google Scholar 

  59. Savourney G, Caravel JP, Barnavol B, Bittel JHM. Thyroid hormone changes in a cold air environment after local cold acclimation. J Appl Physiol. 1994;76:1963–7.

    Google Scholar 

  60. Barnholt KE, Hoffman AR, Rock PB, et al. Endocrine responses to acute and chronic high-altitude exposure (4,300 meters), modulating effects of caloric restriction. Am J Physiol Endocrinol Metab. 2006;290:E1078–88.

    PubMed  CAS  Google Scholar 

  61. Savourey G, Launay JC, Besnard Y, et al. Control of erythropoiesis after high altitude acclimatization. Eur J Appl Physiol. 2004;93:47–56.

    PubMed  CAS  Google Scholar 

  62. Bhargava M, Runyon MR, Smirnov D, et al. Triiodo-L-thyronine rapidly stimulates alveolar fluid clearance in normal and hyperoxia-injured lungs. Am J Respir Crit Care Med. 2008;178:506–12.

    PubMed  CAS  Google Scholar 

  63. Krapf R, Jaeger P, Hulter HN, et al. Chronic respiratory alkalosis induces renal PTH-resistance, hyperphosphatemia and hypocalcemia in humans. Kidney Int. 1992;42:727–34.

    PubMed  CAS  Google Scholar 

  64. Lopez I, Rodriguez M, Felsenfeld AJ, et al. Direct suppressive effect of acute metabolic and respiratory alkalosis on parathyroid hormone secretion in the dog. J Bone Miner Res. 2003;18:1478–85.

    PubMed  CAS  Google Scholar 

  65. Souberbielle JC, Richalet JP, Garabedian M, et al. Effect of high altitude hypoxia on calcium metabolism and bone markers. XII Int. Conf. on calcium regulating hormones. Bone. 1995;16:210S.

    Google Scholar 

  66. Sawhney RC, Malhotra AS, Singh T, et al. Insulin secretion at high altitude in man. Int J Biometeorol. 1986;30:231–8.

    PubMed  CAS  Google Scholar 

  67. Brooks GA, Butterfield GE, Wolfe RR, et al. Increased dependence on blood glucose after acclimatization to 4,300 m. J Appl Physiol. 1991;70:919–27.

    PubMed  CAS  Google Scholar 

  68. Roberts AC, Reeves JT, Butterfield GE, et al. Altitude and β-blockade augment glucose utilization during submaximal exercise. J Appl Physiol. 1996;80:605–15.

    PubMed  CAS  Google Scholar 

  69. Young PM, Rose MS, Sutton JR, et al. Operation Everest II, plasma lipid and hormonal responses during a simulated ascent of Mont Everest. J Appl Physiol. 1989;66:1430–5.

    PubMed  CAS  Google Scholar 

  70. Richalet JP, Souberbielle JC, Antezana AM, et al. Control of erythropoiesis in humans during prolonged exposure to the altitude of 6542 m. Am J Physiol 1994;266 (Reg Int Comp Phys 35) R756–64.

    Google Scholar 

  71. Kullmer T, Gabriel H, Jungmann E, et al. Increase of serum insulin and stable C-peptide concentrations with exhaustive incremental graded exercise during acute hypoxia in sedentary subjects. Exp Clin Endocrinol. 1995;103:156–61.

    CAS  Google Scholar 

  72. Sutton JR. Effects of acute hypoxia on the hormonal response to exercise. J Appl Physiol. 1977;42:587–92.

    PubMed  CAS  Google Scholar 

  73. Baum D. Stress hyperglycemia and the adrenergic regulation of pancreatic hormones in hypoxia. Metabolism. 1980;29:1176–85.

    PubMed  CAS  Google Scholar 

  74. Lee WC, Chen SM, Wu MC, et al. The role of dehydroepiandrosterone levels on physiologic acclimatization to chronic mountaineering activity. High Alt Med Biol. 2006;7:228–36.

    PubMed  CAS  Google Scholar 

  75. Tschöp M, Strasburger CJ, Hartmann G, et al. Raised leptin concentrations at high altitude associated with loss of appetite. Lancet. 1998;352:1119–20.

    PubMed  Google Scholar 

  76. Shukla V, Singh SN, Vats P, et al. Ghrelin and leptin levels of sojourners and acclimatized lowlanders at high altitude. Nutr Neurosci. 2005;8:161–5.

    PubMed  CAS  Google Scholar 

  77. Vats P, Singh VK, Singh SN, Singh SB. High altitude induced anorexia, effect of changes in leptin and oxidative stress levels. Nutr Neurosci. 2007;10:243–9.

    PubMed  CAS  Google Scholar 

  78. Zaccaria M, Ermolao A, Bonvicini P, et al. Decreased serum leptin levels during prolonged high altitude exposure. Eur J Appl Physiol. 2004;92:249–53.

    PubMed  CAS  Google Scholar 

  79. Morel OE, Aubert R, Richalet JP, Chapelot D. Simulated high altitude selectively decreases protein intake and lean mass gain in rats. Physiol Behav. 2005;86:145–53.

    PubMed  CAS  Google Scholar 

  80. Sierra-Johnson J, Romero-Corral A, Somers VK, Johnson BD. Effect of altitude on leptin levels, does it go up or down? J Appl Physiol. 2008;105:1684–5.

    PubMed  Google Scholar 

  81. Ye J. Regulation of leptin by hypoxia. J Appl Physiol. 2008;105:1687–90.

    PubMed  Google Scholar 

  82. Snyder EM, Carr RD, Deacon CF, Johnson BD. Overnight hypoxic exposure and glucagon-like peptide-1 and leptin levels in humans. Appl Physiol Nutr Metab. 2008;33:929–35.

    PubMed  CAS  Google Scholar 

  83. Yingzhong Y, Droma Y, Rili G, Kubo K. Regulation of body weight by leptin, with special reference to hypoxia-induced regulation. Intern Med. 2006;45:941–6.

    PubMed  Google Scholar 

  84. Santos JL, Perez-Bravo F, Albala C, et al. Plasma leptin and insulin levels in Aymara natives from Chile. Ann Hum Biol. 2000;27:271–9.

    PubMed  CAS  Google Scholar 

  85. Cabrera de León A, González DA, Méndez LI, et al. Leptin and altitude in the cardiovascular diseases. Obes Res 2004;12: 1492–8.

    Google Scholar 

  86. Simler N, Grosfeld A, Peinnequin A, et al. Leptin receptor-deficient obese Zucker rats reduce their food intake in response to hypobaric hypoxia. Am J Physiol Endocrinol Metab. 2006;290:E591–7.

    PubMed  CAS  Google Scholar 

  87. Cummings DE, Purnell JQ, Frayo RS, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50:1714–9.

    PubMed  CAS  Google Scholar 

  88. Cummings DE, Frayo RS, Marmonier C, et al. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. Am J Physiol Endocrinol Metab. 2004;287:E297–304.

    PubMed  CAS  Google Scholar 

  89. Drazen DL, Vahl TP, D’Alessio DA, et al. Effects of a fixed meal pattern on ghrelin secretion, evidence for a learned response independent of nutrient status. Endocrinology. 2006;147:23–30.

    PubMed  CAS  Google Scholar 

  90. Chaiban JT, Bitar FF, Azar ST. Effect of chronic hypoxia on leptin, insulin, adiponectin, and ghrelin. Metabolism. 2008;57:1019–22.

    PubMed  CAS  Google Scholar 

  91. Schwenke DO, Tokudome T, Shirai M, et al. Exogenous ghrelin attenuates the progression of chronic hypoxia-induced pulmonary hypertension in conscious rats. Endocrinology. 2008;149:237–44.

    PubMed  CAS  Google Scholar 

  92. Sawhney RC, Chhabra PC, Malhotra AS, et al. Hormone profiles at high altitude in man. Andrologia. 1985;17:178–84.

    PubMed  CAS  Google Scholar 

  93. Knudtzon J, Bogsnes A, Norman N. Changes in prolactin and growth hormone levels during hypoxia and exercise. Horm Metab Res. 1989;21:453–4.

    PubMed  CAS  Google Scholar 

  94. Gonzales GF, Carrillo CE. Low serum prolactin levels in native women at high altitude. Int J Gynecol Obstet. 1993;43:169–75.

    CAS  Google Scholar 

  95. Brisson GR, Boisvert P, Péronnet F, et al. Face cooling-induced reduction of plasma prolactin response to exercise as part of an integrated response to thermal stress. Eur J Appl Physiol. 1989;58:816–20.

    CAS  Google Scholar 

  96. Bouissou P, Brisson GR, Péronnet F, et al. Inhibition of exercise-induced blood prolactin response by acute hypoxia. Can J Sport Sci. 1987;12:I49–50.

    Google Scholar 

  97. Strüder HK, Hollmann W, Platen P. Increased prolactin response to hyperoxia at rest and during endurance exercise. Int J Sports Med. 1996;17:390–2.

    PubMed  Google Scholar 

  98. Gardner DG, Newman ED, Nakamura KK, Nguyen PT. Endothelin increases the synthesis and secretion of atrial natriuretic peptide in neonatal rat cardiocytes. Am J Physiol. 1991;261:E177–82.

    PubMed  CAS  Google Scholar 

  99. Moe O, Tejedor A, Campbell WB, et al. Effects of endothelin on in vitro renin secretion. Am J Physiol. 1991;260:E521–5.

    PubMed  CAS  Google Scholar 

  100. Rakugi H, Tabuchi Y, Nakamaru M, et al. Evidence for Endothelin-1 release from resistance vessels of rats in response to hypoxia. Biochem Biophys Res Commun. 1990;169:973–7.

    PubMed  CAS  Google Scholar 

  101. Kourembanas S, Marsden PA, McQuilan LP, Faller DV. Hypoxia induces endothelin gene expression and secretion in cultured human endothelium. J Clin Invest. 1991;88:1054–7.

    PubMed  CAS  Google Scholar 

  102. Li H, Chen SJ, Chen YF, et al. Enhanced endothelin-1 and endothelin receptor gene expression in chronic hypoxia. J Appl Physiol. 1995;77:1451–9.

    Google Scholar 

  103. Goerre S, Wenk M, Bärtsch P, et al. Endothelin-1 in pulmonary hypertension associated with high-altitude exposure. Circulation. 1995;91:359–64.

    PubMed  CAS  Google Scholar 

  104. Modesti PA, Vanni S, Morabito M, et al. Role of endothelin-1 in exposure to high altitude, Acute Mountain Sickness and Endothelin-1 (ACME-1) study. Circulation. 2006;114:1410–6.

    PubMed  CAS  Google Scholar 

  105. Berger MM, Dehnert C, Bailey DM, et al. Transpulmonary plasma ET-1 and nitrite differences in high altitude pulmonary hypertension. High Alt Med Biol. 2009;10:17–24.

    PubMed  CAS  Google Scholar 

  106. Raynaud J, Drouet L, Martineaud JP, et al. Time course of plasma growth hormone during exercise in humans at altitude. J Appl Physiol. 1981;50:229–33.

    PubMed  CAS  Google Scholar 

  107. Sawhney RC, Malhotra AS. Circadian rhythmicity of growth hormone at high altitude in man. Indian J Physiol Pharmacol. 1991;35:55–7.

    PubMed  CAS  Google Scholar 

  108. Viru A. Plasma hormones and physical exercise. A review. Int J Sports Med. 1992;13:201–9.

    PubMed  CAS  Google Scholar 

  109. Cappon J, Brasel JA, Mohan S, Cooper DM. Effects of brief exercise on circulating insulin-like growth factor I. J Appl Physiol. 1994;76:2490–6.

    PubMed  CAS  Google Scholar 

  110. Schmidt W, Doré S, Hilgendorf A, et al. Effects of exercise during normoxia and hypoxia on the growth hormone-insulin-like growth factor I axis. Eur J Appl Physiol. 1995;71:424–30.

    CAS  Google Scholar 

  111. Gutiérrez A, Gonzalez-Gross M, Ruiz JR, et al. Acute exposure to moderate high altitude decreases growth hormone response to physical exercise in untrained subjects. J Sports Med Phys Fitness. 2003;43:554–8.

    PubMed  Google Scholar 

  112. Kjær M, Banhsbo J, Lortie G, Galbo H. Hormonal response to exercise in humans, influence of hypoxia and physical training. Am J Physiol. 1988;254:R197–203.

    PubMed  Google Scholar 

  113. Banfi G, Marinelli M, Roi GS, et al. Growth hormone and insulin-like growth factor I in athletes performing a marathon at 4000 m of altitude. Growth Regul. 1994;4:82–6.

    PubMed  CAS  Google Scholar 

  114. Bouissou P, Péronnet F, Brisson G, et al. Metabolic and endocrine responses to graded exercise under acute hypoxia. Eur J Appl Physiol. 1986;55:290–4.

    CAS  Google Scholar 

  115. Hackney AC, Premo MC, McMurray RG. Influence of aerobic versus anaerobic exercise on the relationship between reproductive hormones in men. J Sports Sci. 1995;13:305–11.

    PubMed  CAS  Google Scholar 

  116. Vasankari TJ, Rusko H, Kujala UM, Huhtaniemi IT. The effects of ski training at altitude and racing on pituitary, adrenal and testicular function in men. Eur J Appl Physiol. 1993;66:221–5.

    CAS  Google Scholar 

  117. Friedl KE, Plymate SR, Bernhard WN, Mohr LC. Elevation of plasma estradiol in healthy men during a mountaineering expedition. Horm Metab Res. 1988;20:239–42.

    PubMed  CAS  Google Scholar 

  118. Garmendia F, Valdivia H, Castillo O, et al. Hypothalamo-hypophyso-gonadal response to clomiphene citrate at median high altitude. Horm Metab Res. 1982;14:679–80.

    PubMed  CAS  Google Scholar 

  119. Fellmann N, Bedu M, Spielvogel H, et al. Anaerobic metabolism during pubertal development at high altitude. J Appl Physiol. 1988;64:1382–6.

    PubMed  CAS  Google Scholar 

  120. Beall CM, Worthman CM, Stallings J, et al. Salivary testosterone concentration of Aymara men native to 3600m. Ann Hum Biol. 1992;19:67–78.

    PubMed  CAS  Google Scholar 

  121. Kryger M, Glas R, Jackson D, et al. Impaired oxygenation during sleep in excessive polycythemia of high altitude, improvement with respiratory stimulation. Sleep. 1978;1:3–17.

    PubMed  CAS  Google Scholar 

  122. Moore LG, McCullough RE, Weil JV. Increased HVR in pregnancy, relationship to hormonal and metabolic changes. J Appl Physiol. 1987;62:158–63.

    PubMed  CAS  Google Scholar 

  123. Bangham CRM, Hackett PH. Effects of high altitude on endocrine function in the sherpas of Nepal. J Endocrinol. 1978;79:147–8.

    PubMed  CAS  Google Scholar 

  124. Basu M, Pal K, Prasad R, et al. Pituitary, gonadal and adrenal hormones after prolonged residence at extreme altitude in man. Int J Androl. 1997;20:153–8.

    PubMed  CAS  Google Scholar 

  125. Okumura A, Fuse H, Kawauchi Y, et al. Changes in male reproductive function after high altitude mountaineering. High Alt Med Biol. 2003;4:349–53.

    PubMed  Google Scholar 

  126. León-Velarde F, Rivera-Chira M, et al. Relationship of ovarian hormones to hypoxemia in women residents of 4,300 m. Am J Physiol Regul Integr Comp Physiol. 2001;280:R488–93.

    PubMed  Google Scholar 

  127. Escudero F, Gonzales GF, Góñez C. Hormone profile during the menstrual cycle at high altitude. Int J Gynaecol Obstet. 1996;55:49–58.

    PubMed  CAS  Google Scholar 

  128. Gonzales GF, Góñez C, Villena A. Adrenopause or decline of serum adrenal androgens with age in women living at sea level or at high altitude. J Endocrinol. 2002;173:95–101.

    PubMed  CAS  Google Scholar 

  129. Lhuissier F, Canouï-Poitrine F, Richalet JP. Ageing and cardiorespiratory response to hypoxia. J Physiol (London). 2012;590:5461–74.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Richalet M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Richalet, JP. (2014). Endocrine Function. In: Swenson, E., Bärtsch, P. (eds) High Altitude. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8772-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8772-2_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8771-5

  • Online ISBN: 978-1-4614-8772-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics