Skip to main content

Renal Function and Fluid Homeostasis

  • Chapter
  • First Online:
High Altitude

Abstract

Hypoxia can directly affect the kidneys, but more importantly, its effects on systemic acid-base balance, ventilation, neuroendocrine reflexes, and hemodynamics all play a far greater part in altering renal function and fluid balance. Acute and chronic effects of hypoxia and their magnitude may differ and these will be highlighted. These changes will be related to the common diseases of high altitude and to their impact on patients with chronic renal disease. Other features of high altitude separate from hypoxia, either alone or in combination, including hypobaria, exercise, and cold may also significantly perturb renal function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krapf R, Beeler I, Hertner D, et al. Chronic respiratory alkalosis: the effect of sustained hyperventilation on renal regulation of acid–base regulation. N Engl J Med. 1991;324:1394–401.

    PubMed  CAS  Google Scholar 

  2. Tucker A, Reeves J, Robertshaw D, et al. Cardiopulmonary response to acute altitude exposure: H2O loading and denitrogenation. Respir Physiol. 1983;54:363–80.

    PubMed  CAS  Google Scholar 

  3. Loeppky JA, Roach RC, Maes D, et al. Role of hypobaria in fluid balance response to hypoxia. High Alt Med Biol. 2004;6:60–71.

    Google Scholar 

  4. Ledderhos C, Pongratz H, Exner J, et al. Reduced tolerance of simulated altitude (4200 m) in young men with borderline hypertension. Aviat Space Environ Med. 2002;73:1063–6.

    PubMed  CAS  Google Scholar 

  5. Neylon M, Marshall JM, Johns EJ. The effects of chronic hypoxia on renal function in the rat. J Physiol. 1997;501:243–50.

    PubMed  CAS  Google Scholar 

  6. Ashack R, Farber MO, Weinberger MH, et al. Renal and hormonal responses to acute hypoxia in normal individuals. J Lab Clin Med. 1985;106:12–6.

    PubMed  CAS  Google Scholar 

  7. Armstrong HG. Principles and practice of aviation medicine. Baltimore: Williams & Wilkins; 1939. p. 193–261.

    Google Scholar 

  8. Hildebrandt W, Offenbacher A, Schuster M, et al. Diuretic effect of hypoxia, hypocapnia, and hyperpnea in humans. Relation to hormones and O2 chemosensitivity. J Appl Physiol. 2000;88:599–610.

    PubMed  CAS  Google Scholar 

  9. Olsen NV, Christiansen H, Klausen T, et al. Effects of hyperventilation and hypocapnic/normocapnic hypoxemia on renal function and lithium clearance in humans. Anesthesiology. 1998;89:1389–400.

    CAS  Google Scholar 

  10. Olsen NV, Hansen JM, Kanstrup I-L, et al. Renal hemodynamics, tubular function, and response to low dose dopamine during acute hypoxia in humans. J Appl Physiol. 1993;74:2166–73.

    PubMed  CAS  Google Scholar 

  11. Olsen NV. Kanstrup 1-L, Richalet J-P, et al. Effects of acute hypoxia on renal and endocrine function at rest and during graded exercise in hydrated humans. J Appl Physiol. 1992;73:2036–43.

    PubMed  CAS  Google Scholar 

  12. Bestle MH, Olsen NV, Poulsen TD, et al. Prolonged hypobaric hypoxemia attenuates vasopressin secretion and the renal response to osmostimulation in men. J Appl Physiol. 2002;92:1911–22.

    PubMed  CAS  Google Scholar 

  13. Pichler J, Risch L, Hefti U, et al. Glomerular filtration rate estimates decrease during high altitude expedition but increase with Lake Louise acute mountain sickness scores. Acta Physiol (Oxf). 2008;192:443–50.

    CAS  Google Scholar 

  14. Jankowska AH, Whitten BK, Shields JL, et al. Electrolyte patterns and regulation in man during acute exposure to high altitude. Fed Proc. 1969;28:1185–9.

    Google Scholar 

  15. Singh MV, Salhan AK, Rawal SB, et al. Blood gases, hematology and renal blood flow during prolonged mountain sojourns at 3500 and 5800 m. Aviat Space Environ Med. 2003;74:533–6.

    PubMed  CAS  Google Scholar 

  16. Rennie D, Lozano R, Monge C, et al. Renal oxygenation in male Peruvian natives living at high altitude. J Appl Physiol. 1971;30:450–6.

    PubMed  CAS  Google Scholar 

  17. Anand IS, Chandrashenkar Y, Rao SK, et al. Body fluid compartments, renal blood flow, and hormones at 6000 m in normal subjects. J Appl Physiol. 1993;74:1234–9.

    PubMed  CAS  Google Scholar 

  18. Lozano R, Monge C. Renal function in high altitude natives and in high altitude natives with chronic mountain sickness. J Appl Physiol. 1965;20:1026–7.

    PubMed  CAS  Google Scholar 

  19. Blantz RC, Deng A, Miracle CM, et al. Regulation of kidney function and metabolism: a question of supply and demand. Trans Am Clin Climatol Assoc. 2007;118:23–43.

    PubMed  Google Scholar 

  20. Brezis M, Heyman SN, Dinour D, et al. Role of nitric oxide in renal medullary oxygenation; studies in isolated and intact rat kidneys. J Clin Invest. 1991;88:390–5.

    PubMed  CAS  Google Scholar 

  21. Neylon M, Marshall JM. The role of adenosine in the respiratory and cardiovascular response to systemic hypoxia in the rat. J Physiol. 1991;440:529–45.

    PubMed  CAS  Google Scholar 

  22. Marshall JM, Metcalfe JD. Influences of the cardiovascular response to graded levels of systemic hypoxia of the accompanying hypocapnia in the rat. J Physiol. 1989;410:381–94.

    PubMed  CAS  Google Scholar 

  23. Brezis M, Rosen S. Hypoxia of the renal medulla—its implications for disease. N Engl J Med. 1995;332:647–55.

    PubMed  CAS  Google Scholar 

  24. Evans RG, Gardiner BS, Smith DW, et al. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. Am J Physiol. 2008;295:F1259–70.

    CAS  Google Scholar 

  25. Schurek HJ, Jost U, Baumgartl H, et al. Evidence for a glomerular O2 diffusion limitation shunt in rat renal cortex. Am J Physiol. 1990;259:F910–5.

    PubMed  CAS  Google Scholar 

  26. Leichtweiss H-P, Lubbers DW, Weiss C, et al. The oxygen supply of the rat kidney: measurement of intrarenal PO2. Pflugers Arch. 1969;309:328–49.

    PubMed  CAS  Google Scholar 

  27. Erslev AJ, Caro J, Besarab A. Why the kidney? Nephron. 1985;41:213–6.

    PubMed  CAS  Google Scholar 

  28. Cowley AW. Renal medullary oxidative stress, pressure-natriuresis, and hypertension. Hypertension. 2008;52:777–86.

    PubMed  CAS  Google Scholar 

  29. Michel CC. Renal medullary microcirculation: architecture and exchange. Microcirculation. 1995;2:125–39.

    PubMed  CAS  Google Scholar 

  30. Baines AD, Adamson G, Wojciechowski P, et al. Effect of modifying O2 diffusivity and delivery on glomerular and tubular function in hypoxic perfused kidney. Am J Physiol. 1998;274:F744–52.

    PubMed  CAS  Google Scholar 

  31. Brezis M, Agmon Y, Epstein FH. Determinants of intrarenal oxygenation. Effects of diuretics. Am J Physiol. 1994;267:F1059–62.

    PubMed  CAS  Google Scholar 

  32. Johannes T, Mik EG, Ince C. Dual-wavelength phosphorimetry for determination of cortical and subcortical microvascular oxygenation in rat kidney. J Appl Physiol. 2006;100:1301–10.

    PubMed  Google Scholar 

  33. Ruegg CE, Mandel LJ. Bulk isolation of renal PCT and PST: differential responses to anoxia and hypoxia. Am J Physiol. 1990;259:F176–85.

    PubMed  CAS  Google Scholar 

  34. Gunaratnam L, Bonventre JV. HIF in kidney disease and development. J Am Soc Nephrol. 2009;20:1877–87.

    PubMed  CAS  Google Scholar 

  35. Leonard MO, Cotell DC, Goodson C, et al. The role of HIF-1alpha in transcriptional regulation of the renal tubular epithelial cell response to hypoxia. J Biol Chem. 2003;278:40296–304.

    PubMed  CAS  Google Scholar 

  36. Nangaku M, Rosenberger C, Heyman SN, Eckardt K-U. HIF regulation in kidney disease. Clin Exp Pharmacol Physiol. 2013;40(2):148–57.

    PubMed  CAS  Google Scholar 

  37. Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev. 2009;89:1025–78.

    PubMed  CAS  Google Scholar 

  38. Yang CC, Ma MC, Chien CT, et al. Hypoxic preconditioning attenuates LPS-induced oxidative stress in rat kidneys. J Physiol. 2007;582:407–19.

    PubMed  CAS  Google Scholar 

  39. Adachi S, Zelenin S, Matsuo Y, et al. Cellular response to renal hypoxia is different in adolescent and infant rats. Pediatr Res. 2004;55:485–91.

    PubMed  CAS  Google Scholar 

  40. Ibla JC, Khoury J, Kong T, et al. Transcriptional repression of Na-K-2Cl cotransporter KKCC1 by hypoxia inducible factor-1. Am J Physiol. 2006;291:C282–90.

    CAS  Google Scholar 

  41. Cohen JJ. Relationship between energy requirements for Na+ reabsorption and other renal functions. Kidney Int. 1986;29:32–40.

    PubMed  CAS  Google Scholar 

  42. Prasad PV, Epstein FH. Changes in renal medullary PO2 during water diuresis as evaluated by blood oxygenation dependent magnetic resonance imaging: effects of aging and cycloxygenase inhibition. Kidney Int. 1999;55:294–8.

    PubMed  CAS  Google Scholar 

  43. Gotshall RW, Miles DS, Sexson WR. Renal oxygen consumption during progressive hypoxemia in anesthetized dogs. Proc Soc Exp Biol Med. 1983;174:363–7.

    PubMed  CAS  Google Scholar 

  44. Ramirez G, Pineda DO, Bittle PA, et al. Salt excretory capacity in natives adapted to moderate high altitude living after acute mobilization to sea level. Aviat Space Environ Med. 1995;66:1063–70.

    PubMed  CAS  Google Scholar 

  45. Winslow RM, Monge C. Renal Function in high-altitude polycythemia. In: Winslow RM, Monge C, editors. Hypoxia, Polycythemia, and Chronic Mountain Sickness. Baltimore: Johns Hopkins University Press; 1987. p. 119–41.

    Google Scholar 

  46. Claybaugh JR, Wade CE, Cucinelli SA. Fluid and electrolyte balance and hormonal response to the hypoxic environment. In: Claybaugh JR, Wade CE, editors. Hormonal regulation of fluid and electrolytes. New York: Plenum; 1989. p. 187–214.

    Google Scholar 

  47. Westerterp KR, Robach P, Wouters L, et al. Water balance and acute mountain sickness before and after arrival at high altitude of 4350 m. J Appl Physiol. 1996;80:1968–72.

    PubMed  CAS  Google Scholar 

  48. Robach P, Lafforgue E, Olsen NV, et al. Recovery of plasma volume after one week of exposure to 4,350 m. Pflugers Arch. 2002;444:821–8.

    PubMed  CAS  Google Scholar 

  49. Durkot MJ, Hoyt RW, Darigrand A, et al. Chronic hypobaric hypoxia decreases intracellular and total body water in microswine. Comp Biochem Physiol. 1996;114A:117–21.

    CAS  Google Scholar 

  50. Claybaugh JR, Wade CE, Sato AK, et al. Antidiuretic hormone responses to eucapnic and hypocapnic hypoxia in humans. J Appl Physiol. 1982;53:815–23.

    PubMed  CAS  Google Scholar 

  51. Blume FD, Boyer SJ, Braverman LE, et al. Impaired osmoregulation at high altitude: studies on Mt Everest. JAMA. 1984;252:524–6.

    PubMed  CAS  Google Scholar 

  52. Bestle MH, Olsen NV, Roach RC, et al. Renal sensitivity to vasopressin in man in acute hypoxia. FASEB J. 1998;12:A722.

    Google Scholar 

  53. Ramirez G, Hammond M, Bittle PA, et al. Sodium excretion and hormonal changes during salt loading at moderately high altitude and acute hypoxemia at sea level. Aviat Space Environ Med. 1992;63:891–8.

    PubMed  CAS  Google Scholar 

  54. Colice G, Ramirez G. Aldosterone response to angiotensin II during hypoxemia. J Appl Physiol. 1986;61:150–4.

    PubMed  CAS  Google Scholar 

  55. Gledhill N, Beirne GJ, Dempsey JA. Renal response to short-term hypocapnia in man. Kidney Int. 1975;8:376–86.

    PubMed  CAS  Google Scholar 

  56. Heyes MP, Farber MO, Manfredi F, et al. Acute effects of hypoxia on renal and endocrine function in normal humans. Am J Physiol. 1982;243:R265–70.

    PubMed  CAS  Google Scholar 

  57. Ge RL, Babb TG, Sivieri M, et al. Urine acid–base composition at simulated moderate high altitude. High Alt Med Biol. 2006;7:64–71.

    PubMed  CAS  Google Scholar 

  58. Wagner PD, Araoz M, Calbert JL, et al. Pulmonary gas exchange and acid–base state at 5260 m in high-altitude Bolivians and acclimatized lowlanders. J Appl Physiol. 2002;93:1393–400.

    Google Scholar 

  59. Behm R, Gerber B, Habeck J-O, et al. Effect of hypobaric hypoxia and almitrine on voluntary salt and water intake in carotid body–denervated spontaneously hypertensive rats. Biomed Biochim Acta. 1989;48:689–95.

    PubMed  CAS  Google Scholar 

  60. Honig A. Peripheral arterial chemoreceptors and reflex control of sodium and water homeostasis. Am J Physiol. 1989;257:R1282–302.

    PubMed  CAS  Google Scholar 

  61. Bardsley PA, Johnson BF, Barer GR. Natriuresis secondary to carotid chemoreceptor stimulation with almitrine bismethylate in the rat: the effect on kidney function and the response to renal denervation and deficiency of antidiuretic hormone. Biomed Biochim Acta. 1991;50:175–82.

    PubMed  CAS  Google Scholar 

  62. Gomori P, Kovacs AGB, Takacs L, et al. The control of the renal circulation in hypoxia. Acta Med Hung. 1960;16:43–60.

    PubMed  CAS  Google Scholar 

  63. Koller EA, Schopen M, Keller M, et al. Ventilatory, circulatory, endocrine, and renal effects of almitrine infusion in man. A contribution to high altitude physiology. Eur J Appl Physiol. 1989;58:419–25.

    CAS  Google Scholar 

  64. Swenson ER, Duncan TB, Goldberg SV, et al. Diuretic effect of acute hypoxia in humans: relationship to hypoxic ventilatory responsiveness and renal hormones. J Appl Physiol. 1995;78:377–83.

    PubMed  CAS  Google Scholar 

  65. Valli G, Bonardi D, Campigotto F, et al. Relationship between individual ventilatory response and acute renal water excretion at high altitude. Respir Physiol Neurobiol. 2008;162:103–8.

    PubMed  Google Scholar 

  66. Brauer H, Gens H, Lederhos C, et al. Cardiorespiratory and renal responses to arterial chemoreceptor stimulation by hypoxia or almitrine in men. Clin Exp Pharmacol Physiol. 1996;23:1021–7.

    PubMed  CAS  Google Scholar 

  67. DiBona G, Kopp E. Neural control of renal function. Physiol Rev. 1997;77:75–197.

    PubMed  CAS  Google Scholar 

  68. Marshall JM. Peripheral chemoreceptors and cardiovascular regulation. Physiol Rev. 1994;74:543–94.

    PubMed  CAS  Google Scholar 

  69. Fox WC, Watson R, Lockette W. Acute hypoxemia increases cardiovascular baroreceptor sensitivity in humans. Am J Hypertens. 2006;19:958–63.

    PubMed  CAS  Google Scholar 

  70. Fukoda Y, Sato A, Suzuki A, et al. Autonomic nerve and cardiovascular responses to changing oxygen and carbon dioxide levels in the rat. J Auton Nerv Syst. 1989;28:61–74.

    Google Scholar 

  71. Sun M-K, Reis DJ. Hypoxia selectively excites vasomotor neurons of rostral ventrolateral medulla in rats. Am J Physiol. 1994;266:R245–56.

    PubMed  CAS  Google Scholar 

  72. Shibamato T, Uematsu H, Matsuda Y, et al. Acute effect of hypobaria and hypoxia on renal nerve activity in anaesthetized rabbits. Acta Physiol Scand. 1992;144:47–53.

    Google Scholar 

  73. Hallows KR, Mount PF, Pastor-Soler NM, Power DA. Role of the energy sensor AMP activated protein kinase in renal physiology and disease. Am J Physiol. 2010;298:F1067–77.

    CAS  Google Scholar 

  74. Haase VH. Hypoxia-inducible factors in the kidney. Am J Physiol. 2006;291:F271–81.

    CAS  Google Scholar 

  75. Heidenreich S, Rahn KH, Zideck W. Direct vasopressor effect of erythropoietin on renal resistance vessels. Kidney Int. 1991;39:259–65.

    PubMed  CAS  Google Scholar 

  76. Lundby C, Thomsen JJ, Boushel R, et al. Erythropoietin treatment elevates haemoglobin concentration by increasing red cell volume and depressing plasma volume. J Physiol. 2007;578:309–14.

    PubMed  CAS  Google Scholar 

  77. Joyeux-Faure M. Cellular protection by erythropoietin: new therapeutic implications? J Pharmacol Exp Ther. 2007;323:759–62.

    PubMed  CAS  Google Scholar 

  78. Stella A, Zanchetti A. Functional role of renal afferents. Physiol Rev. 1991;71:659–99.

    PubMed  CAS  Google Scholar 

  79. du Souich P, Saunier C, Hartemann D, et al. Effect of moderate hypoxia on atrial natriuretic factor and arginine vasopressin in normal man. Biochem Biophys Res Commun. 1987;148:906–12.

    PubMed  Google Scholar 

  80. Maresh CM, Kraemer WJ, Judelson DA, et al. Effects of high altitude and water deprivation on arginine vasopression release in man. Am J Physiol. 2004;286:E20–4.

    CAS  Google Scholar 

  81. Hackett PH, Forsling ML, Milledge J, et al. Release of vasopressin in man at altitude. Horm Metab Res. 1978;10:571.

    PubMed  CAS  Google Scholar 

  82. Koller EA, Bischoff M, Buhrer A, et al. Respiratory, circulatory, and neuropsychological responses to acute hypoxia in acclimatized and non acclimatized subjects. Eur J Appl Physiol. 1991;62:67–72.

    CAS  Google Scholar 

  83. Share L, Levy MN. Effect of carotid chemoreceptor stimulation on plasma antidiuretic hormone titer. Am J Physiol. 1966;210:157–61.

    CAS  Google Scholar 

  84. Raff H, Shinsako J, Keil LC, et al. Feedback inhibition of adrenocorticotropin and vasopressin responses to hypoxia by physiological increases in endogenous corticosteroids in dogs. Endocrinology. 1984;114:1245–9.

    PubMed  CAS  Google Scholar 

  85. Raff H, Shinsako J, Keil LC, et al. Vasopressin, ACTH, and corticosteroids during hypercapnia and graded hypoxia in dogs. Am J Physiol. 1983;244:E453–8.

    PubMed  CAS  Google Scholar 

  86. Millar EA, Angus RM, Nally JE, et al. Effect of hypoxia and beta agonists on the activity of the renin-angiotensin system in normal subjects. Clin Sci. 1995;89:273–6.

    PubMed  CAS  Google Scholar 

  87. Zaccaria M, Rocco S, Noventa D, et al. Sodium regulating hormones at high altitude: basal and post exercise levels. J Clin Endocrinol Metab. 1999;83:570–4.

    Google Scholar 

  88. Colice G, Ramirez G. Effects of hypoxemia on the renin-angiotensin-aldosterone system in humans. J Appl Physiol. 1985;58:724–30.

    PubMed  CAS  Google Scholar 

  89. Milledge JS, Catley DM. Angiotensin converting enzyme activity and hypoxia. Clin Sci. 1987;72:149.

    PubMed  CAS  Google Scholar 

  90. Milledge JS, Catley DM. Renin, aldosterone and converting enzyme during exercise and acute hypoxia in humans. J Appl Physiol. 1982;52:320–3.

    PubMed  CAS  Google Scholar 

  91. Bärtsch P, Maggiorini M, Schobersberger W, et al. Enhanced exercise-induced rise of aldosterone and vasopressin preceding mountain sickness. J Appl Physiol. 1991;71:136–41.

    PubMed  Google Scholar 

  92. Shigeoka JW, Colice GL, Ramirez G. Effect of normoxic and hypoxic exercise on renin and aldosterone. J Appl Physiol. 1985;59:142–8.

    PubMed  CAS  Google Scholar 

  93. Honig A, Wedler B, Opperman H, et al. Effect of arterial chemoreceptor stimulation with almitrine bismethylate on plasma renin activity, aldosterone, ACTH and cortisol in anaesthetized, artificially ventilated cats. Clin Exp Pharmacol Physiol. 1996;23:106–10.

    PubMed  CAS  Google Scholar 

  94. Milledge JS, Catley DM, Williams ES, et al. Effect of prolonged exercise at altitude on the renin-aldosterone system. J Appl Physiol. 1983;55:413–8.

    PubMed  CAS  Google Scholar 

  95. Raff H, Ball DL, Goodfriend TL. Low oxygen selectively inhibits aldosterone secretion from bovine adrenocortical cells in vitro. Am J Physiol. 1989;256:E640–4.

    PubMed  CAS  Google Scholar 

  96. Young D. Analysis of long term potassium regulation. Endocrinol Rev. 1985;6:24–45.

    CAS  Google Scholar 

  97. Raff H, Jankowska B. Effect of CO2/pH on the aldosterone response to hypoxia in bovine adrenal cells in vitro. Am J Physiol. 1993;265:R820–5.

    PubMed  CAS  Google Scholar 

  98. Ramirez G, Bittle PA, Hammond M, et al. Regulation of aldosterone secretion during hypoxemia at sea level and moderately high altitude. J Clin Endocrinol Metab. 1988;67:1162–5.

    PubMed  CAS  Google Scholar 

  99. Jenq W, Rabb H, Wahe M, et al. Hypoxic effects on the expression of mineralo-corticoid and glucocorticoid receptors in human renal cortex epithelial cells. Biochem Biophys Res Commun. 1996;218:444–8.

    PubMed  CAS  Google Scholar 

  100. Arjamaa O, Nikinmaa M. Natriuretic peptides in hormonal regulation of hypoxia responses. Am J Physiol. 2009;296:R257–64.

    CAS  Google Scholar 

  101. Baertschi AJ, Teague WG. Alveolar hypoxia is a powerful stimulus for ANF release in conscious lambs. Am J Physiol. 1989;256:H990–8.

    PubMed  CAS  Google Scholar 

  102. Bärtsch P, Shaw S, Franciolli M, et al. Atrial natriuretic peptide in acute mountain sickness. J Appl Physiol. 1988;65:1929–37.

    PubMed  Google Scholar 

  103. Metzler CH, Ramsey DJ. Physiological doses of atrial peptide inhibit angiotensin II stimulated aldosterone secretion. Am J Physiol. 1989;256:R1155–9.

    PubMed  CAS  Google Scholar 

  104. Garvin JL. ANF inhibits norepinephrine-stimulated fluid absorption in rat proximal straight tubules. Am J Physiol. 1992;263:F581–5.

    PubMed  CAS  Google Scholar 

  105. Iitake K, Share L, Crofton JT, et al. Central atrial natriuretic factor reduces vasopressin secretion in rats. Endocrinology. 1986;119:438–40.

    PubMed  CAS  Google Scholar 

  106. Kawashima A, Kubo K, Matsuzawa Y, et al. Hypoxia-induced ANP secretion in subjects susceptible to high altitude pulmonary edema. Respir Physiol. 1992;89:309–17.

    PubMed  CAS  Google Scholar 

  107. Ebert TJ, Groban L, Muzi M, et al. ANP-mediated volume depletion attenuates renal responses in humans. Am J Physiol. 1992;263:R1303–8.

    PubMed  CAS  Google Scholar 

  108. Sarelius IH, Huxley VH. A direct effect of atrial peptide on arterioles of the terminal microvasculature. Am J Physiol. 1990;258:R1224–9.

    PubMed  CAS  Google Scholar 

  109. La Villa G, Stefani L, Zurli C, et al. Acute effects of physiological increments of brain natriuretic peptide in humans. Hypertension. 1995;26:628–33.

    PubMed  Google Scholar 

  110. Hill NS, Klinger JR, Warburton RR, et al. Brain natriuretic peptide: possible role in the modulation of hypoxic pulmonary hypertension. Am J Physiol. 1994;266:L308–15.

    PubMed  CAS  Google Scholar 

  111. Woods D, Hooper T, Mellor A, et al. Brain natriuretic peptide and acute hypobaric hypoxia in humans. J Physiol Sci. 2011;61:217–20.

    PubMed  CAS  Google Scholar 

  112. Toscher MR, Thompson AAR, Irving JB, et al. NT-proBNP does not rise on acute ascent to high altitude. High Alt Med Biol. 2008;9:307–10.

    Google Scholar 

  113. Feddersen B. AussererH, Haditsch B, et al. Brain natriuretic peptide at altitude: relationship to diuresis, natriuresis and mountain sickness. Aviat Space Environ Med. 2009;80:108–11.

    PubMed  CAS  Google Scholar 

  114. Woods D, Begley J, Stacey M, et al. Severe acute mountain sickness, brain natriuretic peptide and NT-proBNP in humans. Acta Physiol (Oxf). 2012; 205:349–55.

    CAS  Google Scholar 

  115. Woods D, Hooper T, Hodkinson P, et al. Effects of altitude exposure on brain natriuretic peptide in humans. Eur J Appl Physiol. 2011;111:2687–93.

    PubMed  CAS  Google Scholar 

  116. Goetz K, Drummer C, Ahu JL, et al. Evidence that urodilatin, rather than ANP, regulates renal sodium excretion. J Am Soc Nephrol. 1990;1:867–74.

    PubMed  CAS  Google Scholar 

  117. Koller EA, Lesniewska B, Buhrer A, et al. The effects of acute altitude exposure in Swiss highlanders and lowlanders. Eur J Appl Physiol. 1993;66:146–54.

    CAS  Google Scholar 

  118. Sartori C, Vollenweider L, Loffler B-M, et al. Exaggerated endothelin-1 release in high altitude pulmonary edema. Circulation. 1999;99:2665–8.

    PubMed  CAS  Google Scholar 

  119. Modesti PA, Cecioni I, Miglioniri A, et al. Increased renal endothelin formation is associated with sodium retention and increased free water clearance. Am J Physiol. 1998;275:H1070–7.

    PubMed  CAS  Google Scholar 

  120. Sandgaard NCF, Bie F. Natriuretic effect of non-pressor doses of endothelin-1 in conscious dogs. J Physiol. 1996;494:809–18.

    PubMed  CAS  Google Scholar 

  121. Ziedel ML, Brady HR, Kone BC, et al. Endothelin, a peptide inhibitor of Na+-K+-ATPase in intact renal tubular epithelial cells. Am J Physiol. 1989;257:C1101–7.

    Google Scholar 

  122. Nakano D, Pollock JS, Pollack DM. Renal medullary ETB receptors produce diuresis and natriuresis via NOS1. Am J Physiol. 2008;294:F1205–11.

    CAS  Google Scholar 

  123. Schnermann I, Lorena IN, Briggs JP, et al. Induction of water diuresis by endothelin in rats. Am J Physiol. 1992;263:F516–26.

    PubMed  CAS  Google Scholar 

  124. Scholz H, Kramer BK, Hamann M, et al. Effects of endothelins on renin secretion from rat kidneys. Acta Physiol Scand. 1995;155:173–82.

    PubMed  CAS  Google Scholar 

  125. Rubinstein I, Gurbanov K, Hoffman A, et al. Differential effect of endothelin-l on renal regional blood flow: role of nitric oxide. J Cardiovasc Pharmacol. 1995;26 Suppl 3:S208–10.

    PubMed  CAS  Google Scholar 

  126. Modesti PA, Vanni S, Morabito M, et al. Role of endothelin-1 in exposure to high altitude. Acute mountain sickness and endotheli-1 (ACME-1) study. Circulation. 2006;114:1410–6.

    PubMed  CAS  Google Scholar 

  127. Richalet J-P, Rutgers V, Bouchet P. Diurnal variation of acute mountain sickness, color vision and plasma cortisol and ACTH at high altitude. Aviat Space Environ Med. 1989;60:105–11.

    PubMed  CAS  Google Scholar 

  128. Marotta SF. Roles of aortic and carotid chemoreceptors in activating the hypothalamic-hypophysial-adrenocortical system during hypoxia. Proc Soc Exp Biol Med. 1972;141:915–27.

    PubMed  CAS  Google Scholar 

  129. Raff H. Glucocorticoid inhibition of hypophysial vasopressin secretion. Am J Physiol. 1987;252:R635–44.

    PubMed  CAS  Google Scholar 

  130. Lewis RA, Thorn GW, Koept GF, et al. The role of the adrenal cortex in acute anoxia. J Clin Invest. 1942;21:33–46.

    PubMed  CAS  Google Scholar 

  131. DeAngelis C, Haupert GT. Hypoxia triggers release of an endogenous inhibitor of Na+-K+-ATPase from midbrain and adrenal. Am J Physiol. 1998;274:F182–8.

    CAS  Google Scholar 

  132. Murrell JR, Randall JD, Rosoff J, et al. Endogenous ouabain. Circulation. 2005;112:1301–8.

    PubMed  CAS  Google Scholar 

  133. Cruz JC, Bonagamba LG, Machado BH, et al. Intermittent activation of peripheral chemoreceptors in awake rats induces Fos expression in rostral ventrolateral medulla-projecting neurons in the paraventricular nucleus of the hypothalamus. Neuroscience. 2008;157:463–72.

    PubMed  CAS  Google Scholar 

  134. Ferri C, Bellini C, Coassin S, et al. Plasma endogenous-like substance levels are dependent on blood O2 in man. Clin Sci. 1994;87:447–51.

    PubMed  CAS  Google Scholar 

  135. DeAngelis C, Farrace S, Urbani L, et al. Effects of high altitude exposure on plasma and urinary digoxin-like immunoreactive substance. Am J Hypertens. 1992;5:600–7.

    CAS  Google Scholar 

  136. Mazzeo RS, Wolfel EE, Butterfield GE, et al. Sympathetic response during 21 days at high altitude (4300 m) as determined by urinary and arterial catecholamines. Metabolism. 1994;43:1226–32.

    PubMed  CAS  Google Scholar 

  137. Rostrup M. Catecholamines, hypoxia and high altitude. Acta Physiol Scand. 1998;162:389–99.

    PubMed  CAS  Google Scholar 

  138. Young PM, Rose MS, Sutton JR. Operation Everest II: plasma lipid and hormonal responses during a simulated ascent of Mt Everest. J Appl Physiol. 1989;66:1430–5.

    PubMed  CAS  Google Scholar 

  139. Wang T, Chan YI. Neural control of distal tubular bicarbonate and fluid transport. Am J Physiol. 1989;257:F72–6.

    PubMed  CAS  Google Scholar 

  140. Sandner P, Hofbaure KH, Tinel H, et al. Expression of adrenomedullin in hypoxic and ischemic rat kidneys and human kidneys with arterial stenosis. Am J Physiol. 2004;286:R942–51.

    CAS  Google Scholar 

  141. Hofbauer K-H, Jensen BL, Kurtz A, et al. Tissue hypoxygenation activities of the adrenomedullin system in vivo. Am J Physiol. 2000;278:R513–9.

    CAS  Google Scholar 

  142. Mazzocchi G, Refubbat P, Gottardo G, et al. Adrenomedullin and calcitonin related gene peptide inhibit aldosterone secretion in rats, acting via a common receptor. Life Sci. 1996;58:839–44.

    PubMed  CAS  Google Scholar 

  143. Haditsch B, Roessler A, Hinghofer-Szalkay HG. Renal adrenomedullin and high altitude diuresis. Physiol Res. 2007;56:779–87.

    PubMed  CAS  Google Scholar 

  144. Toepfer M, Hartman G, Schlosshauer M, et al. Adrenomedullin: a player at high altitude? Chest. 1998;113:1428.

    PubMed  CAS  Google Scholar 

  145. Hasbek P, Lundby C, Olsen NV, et al. Calcitonin gene-related peptide and adrenomedullin release in humans: effects of exercise and hypoxia. Regul Pept. 2002;108:89–95.

    Google Scholar 

  146. Ruszchitzka FT, Wenger RH, Stallach T, et al. Nitric oxide prevents cardiovascular disease and determines survival in polyglobulic mice over expressing erythropoietin. Proc Natl Acad Sci. 2000;97: 11609–13.

    Google Scholar 

  147. Heyman SN, Goldfarb M, Darmon D, et al. Tissue oxygenation modifies nitric oxide bioavailability. Microcirculation. 1999;6:199–203.

    PubMed  CAS  Google Scholar 

  148. Baumann JE, Persson PB, Ehmke H, et al. Role of endothelium-derived relaxing factor in renal autoregulation in conscious dogs. Am J Physiol. 1992; 263:F208–13.

    Google Scholar 

  149. Thomson SC, Vallon V. Alpha 2 adrenoreceptors determine the renal response to nitric oxide in rat glomerulus and proximal tubule. J Am Soc Nephrol. 1995;6:1482–90.

    PubMed  CAS  Google Scholar 

  150. McLay JS, Chatterje PK, Mistry SK, et al. Atrial natriuretic factor and angiotensin II stimulate nitric oxide release from human proximal tubular cells. Clin Sci. 1995;89:527–31.

    PubMed  CAS  Google Scholar 

  151. Perella MA, Edell ES, Krowka MJ, et al. Endothelium-derived relaxing factor in pulmonary and renal circulations during hypoxia. Am J Physiol. 1992;263:R45–50.

    Google Scholar 

  152. Raij L, Baylis C. Glomerular actions of nitric oxide. Kidney Int. 1995;48:20–32.

    PubMed  CAS  Google Scholar 

  153. Deng A, Miracle CM, Suarez JM, et al. Oxygen consumption in the kidney: effects of nitric oxide synthase isoforms and angiotensin II. Kidney Int. 2005;68:723–30.

    PubMed  CAS  Google Scholar 

  154. Romero JC, Lahera V, Salom MG, et al. Role of the endothelium-dependent relaxing factor nitric oxide on renal function. J Am Soc Nephrol. 1992;2:1371–87.

    PubMed  CAS  Google Scholar 

  155. Stoos BA, Garcia NH, Garvin JL. Nitric oxide inhibits sodium reabsorption in the isolated perfused cortical collecting duct. J Am Soc Nephrol. 1995;6:89–94.

    PubMed  CAS  Google Scholar 

  156. He X-R, Greenberg SG, Briggs JP, et al. Effect of nitric oxide on renin secretion II: studies in the perfused juxtaglomerular apparatus. Am J Physiol. 1995;268:F953–9.

    PubMed  CAS  Google Scholar 

  157. Tripatara P, Patel NS, Webb A, et al. Nitrite-derived nitric oxide protects the rat kidney against ischemia/reperfusion injury in vivo: role for xanthine oxidoreductase. J Am Soc Nephrol. 2007;18:570–80.

    PubMed  CAS  Google Scholar 

  158. Nistala R, Whaley-Connell A, Sowers JR. Redox control of renal function. Antioxid Redox Signal. 2008;10:2047–89.

    PubMed  CAS  Google Scholar 

  159. Nahmod VE, Lanari A. Abolition of autoregulation of renal blood flow by acetylcholine. Am J Physiol. 1964;207:123–7.

    PubMed  CAS  Google Scholar 

  160. Jackson KE, Jackson DW, Quadi S, Reitzell MJ, Navar LG. Inhibition of heme oxygenase augments tubular sodium reabsorption. Am J Physiol. 2011;300(4):F941–6.

    CAS  Google Scholar 

  161. Wang T, Sterling H, Shao WA, Yan Q, Bailey MA, Giebisch G, et al. Inhibition of heme oxygenase decreases sodium and fluid absorption in the loop of Henle. Am J Physiol. 2003;285:F484–90.

    Google Scholar 

  162. Althaus M. Gasotransmitters: novel regulators of epithelial Na+ transport. Front Physiol. 2012;3:1–10.

    Google Scholar 

  163. Beltowski J. Hypoxia in the renal medulla: implications for hydrogen sulfide signaling. J Pharmacol Exp Ther. 2010;334:358–63.

    PubMed  CAS  Google Scholar 

  164. Kai S, Tanaka T, Daijo H, Harade H, Kishimoto S, Suzuki K, et al. Hydrogen sulfide inhibits hypoxia- but not anoxia-induced hypoxia inducible factor 1 activation in a von Hippel-Lindau- and mitochondria-dependent manner. Antioxid Redox Signal. 2012;16:203–16.

    PubMed  CAS  Google Scholar 

  165. Folkow B. Secretory renal functions—Tigerstedt, renin and its neglected antagonist medullipin. Acta Physiol (Oxf). 2007;190:99–102.

    CAS  Google Scholar 

  166. Roszinski S, Jelkmann W. Effect of PO2 on prostaglandin E2 production in renal cell cultures. Respir Physiol. 1987;70:131–41.

    PubMed  CAS  Google Scholar 

  167. Roman RJ, Cowley AJ, Garcia-Estan J, Lombard H. Pressure-diuresis in volume-expanded rats: cortical and medullary hemodynamics. Hypertension. 1988;12:168–72.

    PubMed  CAS  Google Scholar 

  168. Garcia-Estan J, Roman RJ. Role of renal interstitial hydrostatic pressure in the pressure diuresis response. Am J Physiol. 1989;256:F63–70.

    PubMed  CAS  Google Scholar 

  169. Roman RJ, Zou A-P. Influence of the medullary circulation on the control of sodium excretion. Am J Physiol. 1993;265:R963–73.

    PubMed  CAS  Google Scholar 

  170. Leonard BG, Malpas SC, Denton KM, et al. Differential control of intrarenal blood flow during reflex measures in sympathetic nerve activity. Am J Physiol. 2001;280:R62–8.

    CAS  Google Scholar 

  171. Ledderhos C, Gross V, Cowley AW. Pharmacological stimulation of arterial chemoreceptors in conscious rats produces different responses in renal cortical and medullary blood flow. Clin Exp Pharmacol Physiol. 1998;25:536–40.

    PubMed  CAS  Google Scholar 

  172. Karim F, Poucher SM, Summerill RA. The effects of stimulating carotid chemoreceptors on the renal hemodynamics and function in dogs. J Physiol. 1987;392:451–62.

    PubMed  CAS  Google Scholar 

  173. Ledderhos C, Queis W, Schuster R, et al. Renal hemodynamics and excretory function of healthy young men during stimulation of their peripheral arterial chemoreceptors by almitrine bismethylate. Biomed Biochim Acta. 1987;46:1035–42.

    PubMed  CAS  Google Scholar 

  174. Bischoff A, Erdbrugger W, Smits J, et al. Neuropeptide Y-mediated diuresis and natriuresis in anesthetized rats is independent of renal blood flow reduction. J Physiol. 1996;495:525–34.

    PubMed  CAS  Google Scholar 

  175. Liu GL, Liu L, Batrajas L. Development of NOS-containing neuronal somata in the rat kidney. J Auton Nerv Syst. 1996;58:81–8.

    PubMed  CAS  Google Scholar 

  176. Mattson DL, Bellehumeur TG. Neural nitric oxide synthase in the renal medulla and blood pressure regulation. Hypertension. 1996;28:297–303.

    PubMed  CAS  Google Scholar 

  177. Pirola JP, Alvarez AL, Balda MS, et al. Evidence for cholinergic innervation in dog renal tissue. Am J Physiol. 1989;257:F746–54.

    PubMed  CAS  Google Scholar 

  178. Kirchheim HR. Systemic arterial baroreceptor reflexes. Physiol Rev. 1976;56:100–76.

    PubMed  CAS  Google Scholar 

  179. Baekey DM, Molkov YI, Paton JF, et al. Effect of baroreceptor stimulation on the respiratory pattern: insights into respiratory-sympathetic interactions. Respir Physiol Neurobiol. 2010;174:135–45.

    PubMed  Google Scholar 

  180. Kaufman MP, Cassidy SS. Reflex effects of lung inflation and other stimuli on the heart and circulation. In: Scharf SM, Cassidy SS, editors. Heart-Lung Interactions in Health and Disease. New York: Marcel Dekker; 1989. p. 339–63.

    Google Scholar 

  181. Currie JCM, Ullman E. Polyuria during experimental modification of breathing. J Physiol. 1961;155:438–55.

    PubMed  CAS  Google Scholar 

  182. O’Hagan KP, Bell LB, Clifford PS. Effects of pulmonary deneruation on renal sympathetic and heart rate responses to hypoxia. Am J Physiol. 1995; 269:R293–9.

    Google Scholar 

  183. Rutherford JD, Vatner SF. Integrated carotid chemoreceptor and pulmonary inflation reflex control of peripheral vasoactivity in conscious dogs. Circ Res. 1978;43:200–8.

    PubMed  CAS  Google Scholar 

  184. Koller EA, Buhrer A, Felder L, et al. Altitude diuresis, endocrine and renal responses to acute hypoxia of acclimatized and non acclimatized subjects. Eur J Appl Physiol. 1991;62:228–34.

    CAS  Google Scholar 

  185. Vatner SF, Manders WT, Knight DR. Vagally mediated regulation of renal function in conscious primates. Am J Physiol. 1986;250:H546–9.

    PubMed  CAS  Google Scholar 

  186. Gennari FJ, Goldstein MB, Cohen JJ. The nature of the renal adaptation to chronic hypocapnia. J Clin Invest. 1972;51:1722–30.

    PubMed  CAS  Google Scholar 

  187. Hainsworth R, Rankin JA, Soladoye AO. Effect of cephalic carbon dioxide tension on the cardiac inotropic response to carotid chemoreceptor stimulation in dogs. J Physiol. 1985;358:405–16.

    PubMed  CAS  Google Scholar 

  188. Anderson RJ, Henrich W, Gross PA, et al. Role of the renal nerves, angiotensin II and prostaglandins in the antinatriuretic response to acute hypercapnic acidosis in the dog. Circ Res. 1982;50:294–300.

    PubMed  CAS  Google Scholar 

  189. Raff H, Roarty TP. Renin, ACTH, and aldosterone during acute hypercapnia and hypoxia in conscious rats. Am J Physiol. 1988;254:R431–5.

    PubMed  CAS  Google Scholar 

  190. Bärtsch P, Baumgartner RW, Waber U, et al. Comparison of carbon dioxide enriched, oxygen enriched, and normal air in treatment of acute mountain sickness. Lancet. 1990;336:772–5.

    PubMed  Google Scholar 

  191. Hackett PH, Rennie D, Grover RF, et al. Fluid retention and relative hypoventilation in acute mountain sickness. Respiration. 1982;43:321–9.

    PubMed  CAS  Google Scholar 

  192. Moore LG, Huang SY, McCullough RE, et al. Variable inhibition by falling CO2 of hypoxic ventilatory response in humans. J Appl Physiol. 1984;56:207–10.

    PubMed  CAS  Google Scholar 

  193. Epstein M, Saruta T. Effects of a hyperoxic hypobaric environment on renin-aldosterone in normal man. J Appl Physiol. 1973;34:49–52.

    PubMed  CAS  Google Scholar 

  194. Glatte HV, Giannetta CL. Study of man during a 56 day exposure to an oxygen-helium atmosphere at 258 mmHg total pressure: renal response. Aerosp Med. 1966;37:559–62.

    PubMed  CAS  Google Scholar 

  195. Levine BD, Kubo K, Kobayashi T, et al. Role of barometric pressure in pulmonary fluid balance and oxygen transport. J Appl Physiol. 1988;64:419–28.

    PubMed  CAS  Google Scholar 

  196. Loeppky JA, Icenogle M, Scotto P, et al. Ventilation during simulated altitude, normobaric hypoxia and normoxic hypobaria. Respir Physiol. 1997;107:231–9.

    PubMed  CAS  Google Scholar 

  197. Conkin J, Wessel JH. Critique of the equivalent air altitude model. Aviat Space Environ Med. 2008;79:975–82.

    PubMed  Google Scholar 

  198. Castenfors J. Renal function during exercise. Acta Physiol Scand. 1967;70 Suppl 293:1–40.

    Google Scholar 

  199. Schmidt W, Brabant G, Kroger G. Atrail natriuretic peptide during and after maximal and submaximal exercise under normoxic and hypoxic conditions. Eur J Appl Physiol. 1990;61:398–407.

    CAS  Google Scholar 

  200. Wade CE. Response, regulation, and actions of vasopressin during exercise: a review. Med Sci Sports Exerc. 1984;16:506–11.

    PubMed  CAS  Google Scholar 

  201. O’Hagan KP, Bell LB, Mittelstadt SW, et al. Effect of dynamic exercise on renal sympathetic activity in conscious rabbits. J Appl Physiol. 1993;74:2099–104.

    PubMed  Google Scholar 

  202. Bouissou P, Guezennec CY, Defer G, et al. Dissociated response of aldosterone from plasma renin activity during prolonged exercise under hypoxia. Horm Metab Res. 1988;20:517–21.

    PubMed  CAS  Google Scholar 

  203. Bouissou P, Perronet F, Brisson G, et al. Metabolic and endocrine responses to graded exercise under hypoxia. Eur J Appl Physiol. 1986;555:290–4.

    Google Scholar 

  204. Williams ES, Ward MP, Milledge JS. Effect of exercise of seven consecutive days hill-walking on fluid homeostasis. Clin Sci. 1979;56:305–14.

    PubMed  CAS  Google Scholar 

  205. Bocquerez O, Kohlmann N, Guigas B, et al. Fluid-regulatory hormone responses with cycling exercise in acute hypobaric hypoxia. Med Sci Sports Exerc. 2004;36:1730–6.

    Google Scholar 

  206. Luks AM, Johnson RJ, Swenson ER. Chronic kidney disease at high altitude. J Am Soc Nephrol. 2008;19:2262–71.

    PubMed  CAS  Google Scholar 

  207. Evans RG, Goddard D, Eppel GA, et al. Factors that render the kidney susceptible in hypoxemia. Am J Physiol. 2011;300:R931–40.

    CAS  Google Scholar 

  208. Stein A, Goldmeier S, Voltolini S, Setogutti E, Feldman C, Figueiredo E, et al. Renal oxygen content is increased in healthy subjects after angiotensin converting enzyme inhibition. Clin Sci. 2012;67:761–5.

    Google Scholar 

  209. Arestegui AH, Fuquay R, Sirota J, Swenson ER, Schoene RB, Jefferson JA, et al. High altitude renal syndrome. J Am Soc Nephrol. 2011;22:1963–8.

    PubMed  CAS  Google Scholar 

  210. Ghahramani N, Ahmed F, Al-Laham A, Lengerich EJ. The epidemiological association of altitude with chronic kidney disease: Evidence of protective effect. Nephrology. 2011;16:219–24.

    PubMed  Google Scholar 

  211. Swenson ER. Hemodynamic and metabolism at low vs moderate altitudes. High Alt Med Biol. 2011;12:407–8.

    PubMed  Google Scholar 

  212. Stampfli VR, Eberle A. Menge, spezifisches Gewicht und Leitfähigkeit des menschlichen Harns im Hochgebirge. Helv Physiol Acta 1944 (Suppl III):221–32.

    Google Scholar 

  213. Bärtsch P, Jülg B, Hohenhaus E. Urine volume in acute mountain sickness is not related to hypoxic ventilatory response. Eur Respir J. 1995;8:625.

    Google Scholar 

  214. Bärtsch P, Swenson ER, Paul A, et al. Hypoxic ventilatory response, ventilation, gas exchange and fluid balance in acute mountain sickness. High Alt Med Biol. 2002;4:361–76.

    Google Scholar 

  215. Roach RC, Maes D, Riboni K, et al. Increased plasma volume at simulated altitude and the onset of acute mountain sickness. FASEB J. 1998;12:A57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik R. Swenson M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Swenson, E.R., Olsen, N.V. (2014). Renal Function and Fluid Homeostasis. In: Swenson, E., Bärtsch, P. (eds) High Altitude. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8772-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8772-2_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8771-5

  • Online ISBN: 978-1-4614-8772-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics