Skip to main content

A Parallel Algorithm to Solve Near-Shortest Path Problems on Raster Graphs

  • Chapter
  • First Online:
Modern Accelerator Technologies for Geographic Information Science

Abstract

The Near-Shortest Path (NSP) algorithm (Carlyle and Wood, Networks 46(2): 98–109, 2005; Medrano and Church, GeoTrans RP-01-12-01, UC Santa Barbara, 2012) has been identified as being effective at generating sets of good route alternatives for designing new infrastructure. While the algorithm itself is faster than other enumerative shortest path set approaches including the Kth-shortest path problem, the solution set size and computation time grow exponentially as the problem size or parameters increase, and requires the use of high-performance parallel computing to solve for real-world problems. We present a new breadth-first-search parallelization of the NSP algorithm. Computational results and future work for parallel efficiency improvements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler, M., et al.: Parallel randomized load balancing. In: Proceedings of the twenty-seventh annual ACM symposium on Theory of computing, 238–247 ACM City (1995)

    Google Scholar 

  • Aho, A.V., J.E. Hopcroft, and J. Ullman: Data structures and algorithms. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, (1983)

    MATH  Google Scholar 

  • Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: AFIPS. Atlantic City, N.J.: ACM. (1967)

    Google Scholar 

  • Bader, D.: Petascale computing for large-scale graph problems. Parallel Processing and Applied Mathematics, 166-169 (2008)

    Google Scholar 

  • Beasley, J.E. and N. Christofides: An Algorithm for the Resource Constrained Shortest-Path Problem. Networks, 19(4), 379–394 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Bellman, R.E.: On a routing problem. Q. Applied Math, 1687–90 (1958)

    Google Scholar 

  • Blumofe, R.D. and C.E. Leiserson: Scheduling multithreaded computations by work stealing. In: Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on. IEEE. (1994)

    Google Scholar 

  • Bock, F., H. Kantner, and J. Haynes: An algorithm (the r-th best path algorithm) for finding and ranking paths through a network. Research report, Armour Research Foundation of Illinois Institute of Technology, Chicago, Illinois, (1957)

    Google Scholar 

  • Byers, T. and M. Waterman: Determining all optimal and near-optimal solutions when solving shortest path problems by dynamic programming. Operations Research, 32(6), 1381–1384 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Carlyle, W.M. and R.K. Wood: Near-shortest and K-shortest simple paths. Networks, 46(2), 98–109 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Carlyle, W.M., J.O. Royset, and R.K. Wood: Lagrangian Relaxation and Enumeration for Solving Constrained Shortest-Path Problems. Networks, 52(4), 256–270 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Chhugani, J., et al.: Fast and Efficient Graph Traversal Algorithm for CPUs: Maximizing Single-Node Efficiency. In: Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International. IEEE. (2012)

    Google Scholar 

  • Cherkassky, B.V., A.V. Goldberg, and T. Radzik: Shortest paths algorithms: theory and experimental evaluation. Mathematical programming, 73(2), 129–174 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Clímaco, J. and J. Coutinho-Rodrigues: On an interactive bicriteria shortest path algorithm. Lisbon, Portugal. (1988)

    Google Scholar 

  • Cong, G., et al.: Solving large, irregular graph problems using adaptive work-stealing. In: Parallel Processing, 2008. ICPP’08. 37th International Conference on. IEEE. (2008)

    Google Scholar 

  • Coutinho-Rodrigues, J., J. Climaco, and J. Current: An interactive bi-objective shortest path approach: searching for unsupported nondominated solutions. Computers & Operations Research, 26(8), 789–798 (1999)

    Article  MATH  Google Scholar 

  • Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  • Hadjiconstantinou, E. and N. Christofides: An efficient implementation of an algorithm for finding K shortest simple paths. Networks, 34(2), 88–101 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Handler, G.Y. and I. Zang: A dual algorithm for the constrained shortest path problem. Networks, 10(4), 293–309 (1980)

    Article  MathSciNet  Google Scholar 

  • Hoffman, W. and R. Pavley: A Method for the Solution of the N th Best Path Problem. Journal of the ACM (JACM), 6(4), 506–514 (1959)

    Google Scholar 

  • Huber, D.L. and R.L. Church: Transmission Corridor Location Modeling. Journal of Transportation Engineering-Asce, 111(2), 114–130 (1985)

    Article  Google Scholar 

  • Katoh, N., T. Ibaraki, and H. Mine: An efficient algorithm for k shortest simple paths. Networks, 12(4), 411–427 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Medrano, F.A. and R.L. Church: A New Parallel Algorithm to Solve the Near-Shortest-Path Problem on Raster Graphs. GeoTrans RP-01-12-01, UC Santa Barbara (2012)

    Google Scholar 

  • Medrano, F.A. and R.L. Church: Transmission Corridor Location: Multi-Path Alternative Generation Using the K-Shortest Path Method. GeoTrans RP-01-11-01, UC Santa Barbara (2011)

    Google Scholar 

  • Merrill, D., M. Garland, and A. Grimshaw: Scalable GPU graph traversal. In: Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming. ACM. (2012)

    Google Scholar 

  • Raith, A. and M. Ehrgott: A comparison of solution strategies for biobjective shortest path problems. Computers & Operations Research, 36(4), 1299–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Reif, J.H.: Depth-first search is inherently sequential. Information Processing Letters, 20(5), 229–234 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in software. Dr. Dobb’s Journal, 30(3), 202–210 (2005)

    Google Scholar 

  • Orden, A.: The transhipment problem. Management Science, 2(3), 276–285 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  • Yen, J.Y.: Finding the K Shortest Loopless Paths in a Network. Management Science, 17(11), 712–716 (1971)

    Article  MATH  Google Scholar 

  • Zeng, W. and R.L. Church: Finding shortest paths on real road networks: the case for A*. International Journal of Geographical Information Science, 23(4), 531–543 (2009)

    Article  Google Scholar 

  • Zhan, F. and C. Noon: A Comparison Between Label-Setting and Label-Correcting Algorithms for Computing One-to-One Shortest Paths. Journal of Geographic Information and Decision Analysis, 4(2), 1–11 (2000)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Environmental Sciences Division of Argonne National Laboratories for providing the funding to conduct this research (1F-32422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Antonio Medrano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Medrano, F.A., Church, R.L. (2013). A Parallel Algorithm to Solve Near-Shortest Path Problems on Raster Graphs. In: Shi, X., Kindratenko, V., Yang, C. (eds) Modern Accelerator Technologies for Geographic Information Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-8745-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8745-6_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-8744-9

  • Online ISBN: 978-1-4614-8745-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics