Skip to main content

Cerebrovascular Autoregulation and Monitoring of Cerebrovascular Reactivity

  • Chapter
  • First Online:
Vascular Mechanisms in CNS Trauma

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR,volume 5))

Abstract

Cerebrovascular autoregulation and reactivity are two important processes which maintain CBF at metabolically appropriate levels in response to fluctuations in cerebral perfusion pressure. Additionally, intact vascular reactivity protects the cerebral capillary bed against excessive hydrostatic pressures that may precipitate vasogenic oedema. The importance of vascular reactivity is amplified in the acute phase of injury by disruption to the integrity of the blood–brain barrier (BBB), known to occur even in mild cases of TBI. Monitoring of pressure reactivity in combination with measures of cerebrospinal compensatory reserve may assist in identifying those patients at risk for the development of vasodilatory, short-term increases in ICP. The state of pressure reactivity is also a robust, independent predictor of outcome after TBI. This chapter discusses CBF autoregulation, the careful regulation of vascular resistance, and the measurement of pressure reactivity in the cerebral vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lassen NA (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39(2):183–238

    PubMed  CAS  Google Scholar 

  2. Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2(2):161–192

    PubMed  CAS  Google Scholar 

  3. Aaslid R et al (1989) Cerebral autoregulation dynamics in humans. Stroke 20(1):45–52

    PubMed  CAS  Google Scholar 

  4. Miller JD, Stanek A, Langfitt TW (1972) Concepts of cerebral perfusion pressure and vascular compression during intracranial hypertension. Prog Brain Res 35:411–432

    PubMed  CAS  Google Scholar 

  5. Finesinger J, Putnam TJ (1933) Cerebral circulation XXIII—induced variations in volume flow through the brain perfused at constant pressure. Arch Neurol Psychiatr 30(4):775–794

    Google Scholar 

  6. Schmidt CF (1928) The influence of cerebral blood flow on respiration I: the respiratory responses to changes in cerebral blood flow. Am J Physiol 84(1):202–222

    CAS  Google Scholar 

  7. Feinsod M (2010) De Motu Cerebri: the history of the study of brain pulsations. Open Neurosurg J 3:10–16

    Google Scholar 

  8. Forbes HS (1928) The cerebral circulation I: observation and measurement of pial vessels. Arch Neurol Psychiatr 19(5):751–761

    Google Scholar 

  9. Auer LM, Ishiyama N (1986) Pial vascular behavior during bilateral and contralateral cervical sympathetic stimulation. J Cereb Blood Flow Metab 6(3):298–304

    PubMed  CAS  Google Scholar 

  10. Wolff HG, Forbes HS (1928) The cerebral circulation V: observations of the pial circulation during changes in intracranial pressure. Arch Neurol Psychiatr 20(5):1035–1047

    Google Scholar 

  11. Kontos HA et al (1978) Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol 234(4):H371–H383

    PubMed  CAS  Google Scholar 

  12. Pucher R et al (1991) Cerebrovascular response to changes of cerebral venous pressure and cerebrospinal fluid pressure. Acta Neurochir (Wien) 109(1–2):52–56

    Google Scholar 

  13. Forbes HS, Nason GI, Wortman RC (1937) Cerebral circulation: XLIV. Vasodilation in the pia following stimulation of the vagus, aortic and carotid sinus nerves. Arch Neurol Psychiatr 37(2):334–350

    Google Scholar 

  14. Sjöstrand T (1948) Brain volume, diameter of the blood-vessels in the pia mater, and intracranial pressure in acute carbon monoxide poisoning. Acta Physiol Scand 15(4):351–361

    PubMed  Google Scholar 

  15. Wei EP, Kontos HA, Patterson JL Jr (1980) Dependence of pial arteriolar response to hypercapnia on vessel size. Am J Physiol 238(5):697–703

    PubMed  CAS  Google Scholar 

  16. Traystman RJ (2004) The paper that completely altered our thinking about cerebral blood flow measurement. J Appl Physiol 97(5):1601–1602

    PubMed  Google Scholar 

  17. Kety SS, Schmidt CF (1945) The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am J Physiol 143:53–66

    CAS  Google Scholar 

  18. Fog M (1939) Cerebral circulation II: reaction of pial arteries to increase in blood pressure. Arch Neurol Psychiatr 41(2):260–268

    Google Scholar 

  19. Dagal A, Lam AM (2011) Cerebral blood flow and the injured brain: how should we monitor and manipulate it? Curr Opin Anaesthesiol 24(2):131–137

    PubMed  Google Scholar 

  20. Strandgaard S et al (1975) Upper limit of cerebral blood flow autoregulation in experimental renovascular hypertension in the baboon. Circ Res 37(2):164–167

    PubMed  CAS  Google Scholar 

  21. Cushing HMD (1902) Some experimental and clinical observations concerning states of increased intracranial tension. Am J Med Sci 124(3):375–400

    Google Scholar 

  22. Attwell D et al (2010) Glial and neuronal control of brain blood flow. Nature 468(7321):232–243

    PubMed  CAS  Google Scholar 

  23. Zhang R et al (2002) Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation 106(14):1814–1820

    PubMed  Google Scholar 

  24. Davis MJ, Hill MA (1999) Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79(2):387–423

    PubMed  CAS  Google Scholar 

  25. Davies PF, Spaan JA, Krams R (2005) Shear stress biology of the endothelium. Ann Biomed Eng 33(12):1714–1718

    PubMed  Google Scholar 

  26. Faraci FM, Heistad DD (1998) Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev 78(1):53–97

    PubMed  CAS  Google Scholar 

  27. Toth P et al (2011) Isolated human and rat cerebral arteries constrict to increases in flow: role of 20-HETE and TP receptors. J Cereb Blood Flow Metab 31(10):2096–2105

    PubMed  CAS  Google Scholar 

  28. Hamel E (2006) Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol 100(3):1059–1064

    PubMed  Google Scholar 

  29. Kontos HA, Wei EP (1985) Oxygen-dependent mechanisms in cerebral autoregulation. Ann Biomed Eng 13(3–4):329–334

    PubMed  CAS  Google Scholar 

  30. Toda N, Ayajiki K, Okamura T (2009) Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev 61(1):62–97

    PubMed  CAS  Google Scholar 

  31. Bayliss WM (1902) On the local reactions of the arterial wall to changes of internal pressure. J Physiol 28(3):220–231

    PubMed  CAS  Google Scholar 

  32. Harder DR (1985) A cellular mechanism for myogenic regulation of cat cerebral arteries. Ann Biomed Eng 13(3–4):335–339

    PubMed  CAS  Google Scholar 

  33. Wallis SJ, Firth J, Dunn WR (1996) Pressure-induced myogenic responses in human isolated cerebral resistance arteries. Stroke 27(12):2287–2290; discussion 2291

    PubMed  CAS  Google Scholar 

  34. Bevan JA, Hwa JJ (1985) Myogenic tone and cerebral vascular autoregulation: the role of a stretch-dependent mechanism. Ann Biomed Eng 13(3–4):281–286

    PubMed  CAS  Google Scholar 

  35. Budohoski KP et al (2012) The relationship between cerebral blood flow autoregulation and cerebrovascular pressure reactivity after traumatic brain injury. Neurosurgery 71(3):652–660; discussion 660–661

    PubMed  Google Scholar 

  36. Fog M (1937) Cerebral circulation: the reaction of the pial vessels to a fall in blood pressure. Arch Neurol Psychiatr 37(2):351–364

    Google Scholar 

  37. MacKenzie ET et al (1979) Effects of hemorrhagic hypotension on the cerebral circulation. I. Cerebral blood flow and pial arteriolar caliber. Stroke 10(6):711–718

    PubMed  CAS  Google Scholar 

  38. Giller CA (1990) The frequency-dependent behavior of cerebral autoregulation. Neurosurgery 27(3):362–368

    PubMed  CAS  Google Scholar 

  39. Czosnyka M et al (1996) Monitoring of cerebral autoregulation in head-injured patients. Stroke 27(10):1829–1834

    PubMed  CAS  Google Scholar 

  40. Elwell CE et al (1993) Measurement of adult cerebral haemodynamics using near infrared spectroscopy. Acta Neurochir Suppl (Wien) 59:74–80

    CAS  Google Scholar 

  41. Steiner LA et al (2009) Near-infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit Care 10(1):122–128

    PubMed  Google Scholar 

  42. Smielewski P et al (1997) Clinical evaluation of near-infrared spectroscopy for testing cerebrovascular reactivity in patients with carotid artery disease. Stroke 28(2):331–338

    PubMed  CAS  Google Scholar 

  43. Tonnesen J et al (2005) Laser Doppler flowmetry is valid for measurement of cerebral blood flow autoregulation lower limit in rats. Exp Physiol 90(3):349–355

    PubMed  Google Scholar 

  44. Czosnyka M et al (1994) Assessment of cerebral autoregulation with ultrasound and laser Doppler wave forms–an experimental study in anesthetized rabbits. Neurosurgery 35(2):287–292; discussion 292–293

    PubMed  CAS  Google Scholar 

  45. Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57(6):769–774

    PubMed  CAS  Google Scholar 

  46. Hlatky R, Valadka AB, Robertson CS (2006) Analysis of dynamic autoregulation assessed by the cuff deflation method. Neurocrit Care 4(2):127–132

    PubMed  Google Scholar 

  47. Smielewski P et al (1996) Assessment of cerebral autoregulation using carotid artery compression. Stroke 27(12):2197–2203

    PubMed  CAS  Google Scholar 

  48. Giller CA (1991) A bedside test for cerebral autoregulation using transcranial Doppler ultrasound. Acta Neurochir (Wien) 108(1–2):7–14

    CAS  Google Scholar 

  49. Smielewski P et al (1995) Computerised transient hyperaemic response test–a method for the assessment of cerebral autoregulation. Ultrasound Med Biol 21(5):599–611

    PubMed  CAS  Google Scholar 

  50. Piechnik SK et al (1999) The continuous assessment of cerebrovascular reactivity: a validation of the method in healthy volunteers. Anesth Analg 89(4):944–949

    PubMed  CAS  Google Scholar 

  51. Auer LM, Sayama I (1983) Intracranial pressure oscillations (B-waves) caused by oscillations in cerebrovascular volume. Acta Neurochir (Wien) 68(1–2):93–100

    CAS  Google Scholar 

  52. Czosnyka M, Pickard JD (2004) Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry 75(6):813–821

    PubMed  CAS  Google Scholar 

  53. Wolff HG (1929) The cerebral circulation XIc. The action of Amyl Nitrite. Arch Neurol Psychiatr 22(4):695–699

    CAS  Google Scholar 

  54. Johansson BB, Auer LM, Trummer UG (1980) Pial vascular reaction to intravenous dihydralazine in the cat. Stroke 11(4):369–371

    PubMed  CAS  Google Scholar 

  55. Gotoh F et al (1986) Comparison between pial and intraparenchymal vascular responses to cervical sympathetic stimulation in cats. Part 1. Under normal resting conditions. J Cereb Blood Flow Metab 6(3):342–347

    PubMed  CAS  Google Scholar 

  56. Daley ML et al (1995) Detection of loss of cerebral vascular tone by correlation of arterial and intracranial pressure signals. IEEE Trans Biomed Eng 42(4):420–424

    PubMed  CAS  Google Scholar 

  57. Steinmeier R et al (1996) Slow rhythmic oscillations of blood pressure, intracranial pressure, microcirculation, and cerebral oxygenation. Dynamic interrelation and time course in humans. Stroke 27(12):2236–2243

    PubMed  CAS  Google Scholar 

  58. Howells T et al (2005) Pressure reactivity as a guide in the treatment of cerebral perfusion pressure in patients with brain trauma. J Neurosurg 102(2):311–317

    PubMed  Google Scholar 

  59. Czosnyka M et al (1997) Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41(1):11–17; discussion 17–19

    PubMed  CAS  Google Scholar 

  60. Smielewski P et al (2005) ICM+: software for on-line analysis of bedside monitoring data after severe head trauma. Acta Neurochir Suppl 95:43–49

    PubMed  CAS  Google Scholar 

  61. Guendling K et al (2006) Use of ICM+ software for on-line analysis of intracranial and arterial pressures in head-injured patients. Acta Neurochir Suppl 96:108–113

    PubMed  CAS  Google Scholar 

  62. Czosnyka M (2000) Association between arterial and intracranial pressures. Br J Neurosurg 14(2):127–128

    PubMed  CAS  Google Scholar 

  63. Steiner LA et al (2003) Assessment of cerebrovascular autoregulation in head-injured patients: a validation study. Stroke 34(10):2404–2409

    PubMed  Google Scholar 

  64. Brady KM et al (2008) Continuous measurement of autoregulation by spontaneous fluctuations in cerebral perfusion pressure: comparison of 3 methods. Stroke 39(9):2531–2537

    PubMed  Google Scholar 

  65. Enevoldsen EM, Jensen FT (1978) Autoregulation and CO2 responses of cerebral blood flow in patients with acute severe head injury. J Neurosurg 48(5):689–703

    PubMed  CAS  Google Scholar 

  66. Bouma GJ, Muizelaar JP (1992) Cerebral blood flow, cerebral blood volume, and cerebrovascular reactivity after severe head injury. J Neurotrauma 9(suppl 1):S333–S348

    PubMed  Google Scholar 

  67. Lewelt W, Jenkins LW, Miller JD (1980) Autoregulation of cerebral blood flow after experimental fluid percussion injury of the brain. J Neurosurg 53(4):500–511

    PubMed  CAS  Google Scholar 

  68. Marshall WJ, Jackson JL, Langfitt TW (1969) Brain swelling caused by trauma and arterial hypertension. Hemodynamic aspects. Arch Neurol 21(5):545–553

    PubMed  CAS  Google Scholar 

  69. Strebel S et al (1997) Impaired cerebral autoregulation after mild brain injury. Surg Neurol 47(2):128–131

    PubMed  CAS  Google Scholar 

  70. Faraci FM, Heistad DD (1990) Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res 66(1):8–17

    PubMed  CAS  Google Scholar 

  71. Povlishock JT et al (1978) Vascular permeability alterations to horseradish peroxidase in experimental brain injury. Brain Res 153(2):223–239

    PubMed  CAS  Google Scholar 

  72. Korn A et al (2005) Focal cortical dysfunction and blood-brain barrier disruption in patients with Postconcussion syndrome. J Clin Neurophysiol 22(1):1–9

    PubMed  Google Scholar 

  73. Durward QJ et al (1983) The influence of systemic arterial pressure and intracranial pressure on the development of cerebral vasogenic edema. J Neurosurg 59(5):803–809

    PubMed  CAS  Google Scholar 

  74. Kongstad L, Grande PO (2001) Arterial hypertension increases intracranial pressure in cat after opening of the blood-brain barrier. J Trauma 51(3):490–496

    PubMed  CAS  Google Scholar 

  75. Grande PO, Asgeirsson B, Nordstrom CH (2002) Volume-targeted therapy of increased intracranial pressure: the Lund concept unifies surgical and non-surgical treatments. Acta Anaesthesiol Scand 46(8):929–941

    PubMed  Google Scholar 

  76. Barzo P et al (1996) Magnetic resonance imaging-monitored acute blood-brain barrier changes in experimental traumatic brain injury. J Neurosurg 85(6):1113–1121

    PubMed  CAS  Google Scholar 

  77. Tanno H et al (1992) Breakdown of the blood-brain barrier after fluid percussive brain injury in the rat. Part 1: distribution and time course of protein extravasation. J Neurotrauma 9(1):21–32

    PubMed  CAS  Google Scholar 

  78. Marmarou A et al (2006) Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries. J Neurosurg 104(5):720–730

    PubMed  Google Scholar 

  79. Bouma GJ et al (1992) Blood pressure and intracranial pressure-volume dynamics in severe head injury: relationship with cerebral blood flow. J Neurosurg 77(1):15–19

    PubMed  CAS  Google Scholar 

  80. Figaji AA et al (2009) Pressure autoregulation, intracranial pressure, and brain tissue oxygenation in children with severe traumatic brain injury. J Neurosurg 4(5):420–428

    Google Scholar 

  81. Ter Minassian A et al (2002) Changes in intracranial pressure and cerebral autoregulation in patients with severe traumatic brain injury. Crit Care Med 30(7):1616–1622

    PubMed  Google Scholar 

  82. Muizelaar JP et al (1989) Cerebral blood flow and metabolism in severely head-injured children. Part 2: autoregulation. J Neurosurg 71(1):72–76

    PubMed  CAS  Google Scholar 

  83. Czosnyka M et al (1996) Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir (Wien) 138(5):531–541; discussion 541–542

    CAS  Google Scholar 

  84. Lang EW, Chesnut RM (1995) Intracranial pressure and cerebral perfusion pressure in severe head injury. New Horiz 3(3):400–409

    PubMed  CAS  Google Scholar 

  85. Lundberg N (1960) Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl 36(149):1–193

    PubMed  CAS  Google Scholar 

  86. Rosner MJ (1986) The vasodilatory cascade and intracranial pressure. In: Miller JD et al (eds) Intracranial pressure IV. Springer, Berlin

    Google Scholar 

  87. Castellani G et al (2009) Plateau waves in head injured patients requiring neurocritical care. Neurocrit Care 11(2):143–150

    PubMed  Google Scholar 

  88. Czosnyka M et al (1988) Analysis of intracranial pressure waveform during infusion test. Acta Neurochir (Wien) 93(3–4):140–145

    CAS  Google Scholar 

  89. Bowles AP et al (2012) Implications of neurophysiological parameters in persons with severe brain injury with respect to improved patient outcomes: a retrospective review. Brain Inj 26(12):1415–1424

    PubMed  Google Scholar 

  90. Zweifel C et al (2008) Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus 25(4):E2

    PubMed  Google Scholar 

  91. Thorat JD et al (2008) Barbiturate therapy for patients with refractory intracranial hypertension following severe traumatic brain injury: its effects on tissue oxygenation, brain temperature and autoregulation. J Clin Neurosci 15(2):143–148

    PubMed  CAS  Google Scholar 

  92. Sorrentino E et al (2012) Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care 16(2):258–266

    PubMed  CAS  Google Scholar 

  93. Lavinio A et al (2008) Cerebrovascular reactivity and autonomic drive following traumatic brain injury. Acta Neurochir Suppl 102:3–7

    PubMed  Google Scholar 

  94. Ang BT et al (2007) Temporal changes in cerebral tissue oxygenation with cerebrovascular pressure reactivity in severe traumatic brain injury. J Neurol Neurosurg Psychiatry 78(3):298–302

    PubMed  CAS  Google Scholar 

  95. Kirkness CJ et al (2001) Cerebral autoregulation and outcome in acute brain injury. Biol Res Nurs 2(3):175–185

    PubMed  CAS  Google Scholar 

  96. Eide PK et al (2007) Association between intracranial, arterial pulse pressure amplitudes and cerebral autoregulation in head injury patients. Neurol Res 29(6):578–582

    PubMed  CAS  Google Scholar 

  97. Brady KM et al (2009) Continuous monitoring of cerebrovascular pressure reactivity after traumatic brain injury in children. Pediatrics 124(6):e1205–e1212

    PubMed  Google Scholar 

  98. Low D et al (2009) Prediction of outcome utilizing both physiological and biochemical parameters in severe head injury. J Neurotrauma 26(8):1177–1182

    PubMed  Google Scholar 

  99. Steiner LA et al (2002) Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med 30(4):733–738

    PubMed  Google Scholar 

  100. Diedler J et al (2012) Critical thresholds for cerebrovascular reactivity: facts, no fiction! Neurocrit Care 17:152–153

    Google Scholar 

  101. Lu CW et al (2012) Complexity of intracranial pressure correlates with outcome after traumatic brain injury. Brain 135(pt 8):2399–2408

    PubMed  Google Scholar 

  102. Bratton SL et al (2007) Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J Neurotrauma 24(suppl 1):S59–S64

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Pickard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lewis, P.M., Czosnyka, M., Smielewski, P., Pickard, J.D. (2014). Cerebrovascular Autoregulation and Monitoring of Cerebrovascular Reactivity. In: Lo, E., Lok, J., Ning, M., Whalen, M. (eds) Vascular Mechanisms in CNS Trauma. Springer Series in Translational Stroke Research, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8690-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8690-9_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8689-3

  • Online ISBN: 978-1-4614-8690-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics