Skip to main content

Stem Cells for Neurovascular Repair in CNS Trauma

  • Chapter
  • First Online:
Vascular Mechanisms in CNS Trauma

Abstract

Stem cells exert therapeutic effects for central nervous system (CNS) trauma. Accumulating evidence reveals that stem cell-based therapies for CNS trauma can be achieved via transplantation of exogenous stem cells or stimulation of endogenous stem cells from the neurogenic niches of subventricular zone and subgranular zone, or recruited from the bone marrow through peripheral circulation. In this chapter, we review the different sources of stem cells that have been tested in animal models of CNS trauma, highlighting the research progress on stem cell-based therapeutics in stroke and their extension to traumatic brain injury (TBI). In addition, we discuss specific mechanisms of action, in particular neurovascular repair by endothelial progenitor cells, as key translational research for advancing the clinical applications of stem cells for CNS trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faul M, Xu L, Wald MM, Coronado VG (2010) Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Atlanta, GA

    Google Scholar 

  2. Centers for Disease Control and Prevention (CDC), National Center for Injury Prevention and Control (2003) Report to Congress on mild traumatic brain injury in the United States: steps to prevent a serious public health problem. Centers for Disease Control and Prevention, Atlanta, GA

    Google Scholar 

  3. Brooks A, Lindstrom J, McCray J et al (1995) Cost of medical care for a population-based sample of persons surviving traumatic brain injury. J Head Trauma Rehabil 10:1–13

    Google Scholar 

  4. Oladunjoye AO, Schrot RJ, Zwienenberg-Lee M, Muizelaar JP, Shahlaie K (2013) Decompressive craniectomy using gelatin film and future bone flap replacement. J Neurosurg 118(4):776–782

    PubMed  CAS  Google Scholar 

  5. Swadron SP, LeRoux P, Smith WS, Weingart SD (2012) Emergency neurological life support: traumatic brain injury. Neurocrit Care 17:S112–S121

    PubMed  Google Scholar 

  6. Farahvar A, Gerber LM, Chiu YL, Carney N, Hartl R, Ghajar J (2012) Increased mortality in patients with severe traumatic brain injury treated without intracranial pressure monitoring. J Neurosurg 117:729–734

    PubMed  Google Scholar 

  7. Bor-Seng-Shu E, Figueiredo EG, Amorim RL, Teixeira MJ, Valbuza JS, de Oliveira MM, Panerai RB (2012) Decompressive craniectomy: a meta-analysis of influences on intracranial pressure and cerebral perfusion pressure in the treatment of traumatic brain injury. J Neurosurg 117:589–596

    PubMed  Google Scholar 

  8. Bor-Seng-Shu E, Figueiredo EG, Fonoff ET, Fujimoto Y, Panerai RB, Teixeira MJ (2013) Decompressive craniectomy and head injury: brain morphometry, ICP, cerebral hemodynamics, cerebral microvascular reactivity, and neurochemistry. Neurosurg Rev 36(3):361–370

    PubMed  Google Scholar 

  9. Brasure M, Lamberty GJ, Sayer NA, Nelson NW, MacDonald R, Ouellette J, Tacklind J, Grove M, Rutks IR, Butler ME, Kane RL, Wilt TJ (2012) Multidisciplinary postacute rehabilitation for moderate to severe traumatic brain injury in adults [internet]. Agency for Healthcare Research and Quality (US), Rockville, MD

    Google Scholar 

  10. Brasure M, Lamberty GJ, Sayer NA, Nelson NW, Macdonald R, Ouellette J, Wilt TJ (2013) Participation after multidisciplinary rehabilitation for moderate to severe traumatic brain injury in adults: a systematic review. Arch Phys Med Rehabil 94(7):1398–1420

    PubMed  Google Scholar 

  11. Krawczyk DC, Marquez de la Plata C, Schauer GF, Vas AK, Keebler M, Tuthill S, Gardner C, Jantz T, Yu W, Chapman SB (2013) Evaluating the effectiveness of reasoning training in military and civilian chronic traumatic brain injury patients: study protocol. Trials 14:29

    PubMed  Google Scholar 

  12. Brown JM, Deriso DM, Tansey KE (2012) From contemporary rehabilitation to restorative neurology. Clin Neurol Neurosurg 114:471–474

    PubMed  Google Scholar 

  13. Ploughman M (2008) Exercise is brain food: the effects of physical activity on cognitive function. Dev Neurorehabil 11:236–240

    PubMed  Google Scholar 

  14. Zafonte RD, Bagiella E, Ansel BM, Novack TA, Friedewald WT, Hesdorffer DC, Timmons SD, Jallo J, Eisenberg H, Hart T, Ricker JH, Diaz-Arrastia R, Merchant RE, Temkin NR, Melton S, Dikmen SS (2012) Effect of citicoline on functional and cognitive status among patients with traumatic brain injury: citicoline brain injury treatment trial (COBRIT). JAMA 308:1993–2000

    PubMed  CAS  Google Scholar 

  15. Sánchez-Aguilar M, Tapia-Pérez JH, Sánchez-Rodríguez JJ, Viñas-Ríos JM, Martínez-Pérez P, de la Cruz-Mendoza E, Sánchez-Reyna M, Torres-Corzo JG, Gordillo-Moscoso A (2013) Effect of rosuvastatin on cytokines after traumatic head injury. J Neurosurg 118:669–675

    PubMed  Google Scholar 

  16. McConeghy KW, Hatton J, Hughes L, Cook AM (2012) A review of neuroprotection pharmacology and therapies in patients with acute traumatic brain injury. CNS Drugs 26:613–636

    PubMed  CAS  Google Scholar 

  17. Stein DG (2013) A clinical/translational perspective: can a developmental hormone play a role in the treatment of traumatic brain injury? Horm Behav 63:291–300

    PubMed  CAS  Google Scholar 

  18. Stein SC et al (2009) Erythrocyte-bound tissue plasminogen activator is neuroprotective in experimental traumatic brain injury. J Neurotrauma 26:1585–1592

    PubMed  Google Scholar 

  19. Fox JL, Vu EN, Doyle-Waters M, Brubacher JR, Abu-Laban R, Hu Z (2010) Prophylactic hypothermia for traumatic brain injury: a quantitative systematic review. CJEM 12:355–364

    PubMed  Google Scholar 

  20. Joan Abbott N, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25

    PubMed  Google Scholar 

  21. Gaetz M (2004) The neurophysiology of brain injury. Clin Neurophysiol 115(1):4–18

    PubMed  CAS  Google Scholar 

  22. Zweckberger K et al (2006) Effect of early and delayed decompressive craniectomy on secondary brain damage after controlled cortical impact in mice. J Neurotrauma 23:1083–1093

    PubMed  Google Scholar 

  23. Rhodes J (2011) Peripheral immune cells in the pathology of traumatic brain injury? Curr Opin Crit Care 17:122–130

    PubMed  Google Scholar 

  24. Beaumont A et al (2006) Bolus tracer delivery measured by MRI confirms edema without blood–brain barrier permeability in diffuse traumatic brain injury. Acta Neurochir Suppl 96:171–174

    PubMed  CAS  Google Scholar 

  25. Soares HD, Hicks RR, Smith D, McIntosh TK (1995) Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury. J Neurosci 15:8223–8233

    PubMed  CAS  Google Scholar 

  26. Toda H, Takahashi J, Iwakami N (2001) Grafting neural cells improved the impaired spatial recognition in ischemic rats. Neurosci Lett 31:9–12

    Google Scholar 

  27. Ferrari A, Ehler E, Nitsch RM, Gotz J (2000) Immature human NT2 cells grafted into mouse brain differentiate into neuronal and glial cell types. FEBS Lett 486:121–125

    PubMed  CAS  Google Scholar 

  28. Borlongan CV, Tajima Y, Trojanowski JQ, Lee VM, Sanberg PR (1998) Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp Neurol 149:310–321

    PubMed  CAS  Google Scholar 

  29. Veizovic T, Beech JS, Stroemer PR, Watson WP, Hodges H (2001) Resolution of stroke deficits following contralateral grafts of conditionally immortal neuroepithelial stem cells. Stroke 32:1012–1019

    PubMed  CAS  Google Scholar 

  30. Modo M, Stroemer RP, Tang E, Veizovic T, Sowniski P, Hodges H (2000) Neurological sequelae and long-term behavioural assessment of rats with transient middle cerebral artery occlusion. J Neurosci Methods 104:99–109

    PubMed  CAS  Google Scholar 

  31. Englund U, Bjorklund A, Wictorin K, Lindvall O, Kokaia M (2002) Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci U S A 99:17089–17094

    PubMed  CAS  Google Scholar 

  32. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate through out forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 96:10711–10716

    PubMed  CAS  Google Scholar 

  33. Chen J, Li Y, Chopp M (2000) Intracerebral transplantation of bone marrow with BDNF after MCAo in rat. Neuropharmacology 39:711–716

    PubMed  CAS  Google Scholar 

  34. Li Y, Chopp M, Chen J, Wang L, Gautam SC, Xu XY, Zhang Z (2000) Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab 20:1311–1319

    PubMed  CAS  Google Scholar 

  35. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    PubMed  CAS  Google Scholar 

  36. Munoz-Elias G, Marcus AJ, Coyne M, Woodbury D, Black IB (2004) Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. J Neurosci 24:4585–4595

    PubMed  CAS  Google Scholar 

  37. Borlongan CV, Hadman M, Davis C, Sanberg PR (2004) CNS entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 35:2385–2389

    PubMed  Google Scholar 

  38. Eglitis MA, Mezey E (1997) Hematopoietic cell differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A 94:4080–4085

    PubMed  CAS  Google Scholar 

  39. Li Y, Chen J, Wang L, Lu M, Chopp M (2001) Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 56:1666–1672

    PubMed  CAS  Google Scholar 

  40. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682–2688

    PubMed  CAS  Google Scholar 

  41. Hess DC, Hill WD, Martin-Studdard A, Carroll J, Brailer J, Carothers J (2002) Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke. Stroke 33:1362–1368

    PubMed  Google Scholar 

  42. Willing AE, Milliken M, Poulos S, Zigova T, Song S, Davis CD et al (2003) Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res 73:296–307

    PubMed  CAS  Google Scholar 

  43. Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC et al (2003) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92:692–699

    PubMed  CAS  Google Scholar 

  44. Ma H et al (2012) Neural stem cells over-expressing brain-derived neurotrophic factor (BDNF) stimulate synaptic protein expression and promote functional recovery following transplantation in rat model of traumatic brain injury. Neurochem Res 37:69–83

    PubMed  CAS  Google Scholar 

  45. Mahmood A et al (2006) Long-term recovery after bone marrow stromal cell treatment of traumatic brain injury in rats. J Neurosurg 104:272–277

    PubMed  Google Scholar 

  46. Qu C et al (2008) Treatment of traumatic brain injury in mice with marrow stromal cells. Brain Res 1208:234–239

    PubMed  CAS  Google Scholar 

  47. Lu D et al (2007) Collagen scaffolds populated with human marrow stromal cells reduce lesion volume and improve functional outcome after traumatic brain injury. Neurosurgery 61:596–602

    PubMed  Google Scholar 

  48. Harting MT et al (2009) Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 110:1189–1197

    PubMed  CAS  Google Scholar 

  49. Riess P et al (2002) Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery 51:1043–1054

    PubMed  Google Scholar 

  50. Hattiangady B, Shetty AK (2012) Neural stem cell grafting counteracts hippocampal injury-mediated impairments in mood, memory, and neurogenesis. Stem Cells Transl Med 1:696–708

    PubMed  CAS  Google Scholar 

  51. Nichols JE et al (2013) Neurogenic and neuro-protective potential of a novel subpopulation of peripheral blood-derived CD133+ ABCG2 + CXCR4+ mesenchymal stem cells: development of autologous cell-based therapeutics for traumatic brain injury. Stem Cell Res Ther 4:3

    PubMed  CAS  Google Scholar 

  52. Yan ZJ et al (2013) Neural stem-like cells derived from human amnion tissue are effective in treating traumatic brain injury in rat. Neurochem Res 38(5):1022–1033

    PubMed  CAS  Google Scholar 

  53. Wallenquist U et al (2012) Ibuprofen attenuates the inflammatory response and allows formation of migratory neuroblasts from grafted stem cells after traumatic brain injury. Restor Neurol Neurosci 30:9–19

    PubMed  CAS  Google Scholar 

  54. Shear DA et al (2011) Stem cell survival and functional outcome after traumatic brain injury is dependent on transplant timing and location. Restor Neurol Neurosci 29:215–225

    PubMed  Google Scholar 

  55. Lee DH et al (2013) Functional recovery after injury of motor cortex in rats: effects of rehabilitation and stem cell transplantation in a traumatic brain injury model of cortical resection. Childs Nerv Syst 29:403–411

    PubMed  Google Scholar 

  56. Giraldi-Guimaraes A et al (2012) Bone marrow mononuclear cells and mannose receptor expression in focal cortical ischemia. Brain Res 1452:173–184

    PubMed  CAS  Google Scholar 

  57. Chuang TJ et al (2012) Effects of secretome obtained from normoxia-preconditioned human mesenchymal stem cells in traumatic brain injury rats. J Trauma Acute Care Surg 73:1161–1167

    PubMed  CAS  Google Scholar 

  58. Walker PA et al (2012) Bone marrow-derived stromal cell therapy for traumatic brain injury is neuroprotective via stimulation of non-neurologic organ systems. Surgery 152:790–793

    PubMed  Google Scholar 

  59. Tu Y et al (2012) Combination of temperature-sensitive stem cells and mild hypothermia: a new potential therapy for severe traumatic brain injury. J Neurotrauma 29:2393–2403

    PubMed  Google Scholar 

  60. Antonucci I et al (2012) Amniotic fluid stem cells: a promising therapeutic resource for cell-based regenerative therapy. Curr Pharm Des 18:1846–1863

    PubMed  CAS  Google Scholar 

  61. Joo KM et al (2012) Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage. PLoS One 7:e25936

    PubMed  CAS  Google Scholar 

  62. Shi W et al (2012) BDNF blended chitosan scaffolds for human umbilical cord MSC transplants in traumatic brain injury therapy. Biomaterials 33:3119–3126

    PubMed  CAS  Google Scholar 

  63. Yang L et al (2011) Transplantation of Schwann cells differentiated from adipose-derived stem cells modifies reactive gliosis after contusion brain injury in rats. J Int Med Res 39:1344–1357

    PubMed  CAS  Google Scholar 

  64. Skardelly M et al (2011) Long-term benefit of human fetal neuronal progenitor cell transplantation in a clinically adapted model after traumatic brain injury. J Neurotrauma 28:401–414

    PubMed  Google Scholar 

  65. Reiss P, Zhang C, Saatman KE (2002) Transplanted neural cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery 51:1043–1052

    Google Scholar 

  66. Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC (2002) Human bone marrow cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 174:11–20

    PubMed  Google Scholar 

  67. Peled A, Kollet O, Ponomaryov T, Petit I, Frantza S, Grabovsky V et al (2000) The chemokine SDF-1 activated the integrins LFA-1, VLA-4, and VLA-5 on immature CD34+ cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95:3289–3296

    PubMed  CAS  Google Scholar 

  68. Yamaguichi J, Kusano K, Masuo O, Kawamoto A, Silver M, Murasawa S et al (2003) Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107:1322–1328

    Google Scholar 

  69. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109:337–346

    PubMed  CAS  Google Scholar 

  70. Rajantie L, Llmonen M, Alminaite A, Ozer U, Alitalo K, Salven P (2004) Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104:2084–2086

    PubMed  CAS  Google Scholar 

  71. Lu D, Mahmood A, Qu C, Goussev A, Schallert T, Chopp M (2005) Erythropoietin enhances neurogenesis and restores spatial memory in rats after traumatic brain injury. J Neurotrauma 22:1011–1017

    PubMed  Google Scholar 

  72. Sun D, Mcginn MJ, Zhou Z, Harvey HB, Bullock MR, Colello RJ (2007) Anatomical integration of newly generated dentate granule neurons following traumatic brain injury in adult rats and its association to cognitive recovery. Exp Neurol 204:264–272

    PubMed  Google Scholar 

  73. Guo X, Liu L, Zhang M, Bergeron A, Cui Z, Dong JF, Zhang J (2009) Correlation of CD34+ cells with tissue angiogenesis after traumatic brain injury in a rat model. J Neurotrauma 26:1337–1344

    PubMed  Google Scholar 

  74. Madeddu P (2005) Therapeutic angiogenesis and vasculogenesis for tissue regeneration. Exp Physiol 90:315–326

    PubMed  CAS  Google Scholar 

  75. Besler C, Doerries C, Giannotti G, Lüscher TF, Landmesser U (2008) Pharmacological approaches to improve endothelial repair mechanisms. Expert Rev Cardiovasc Ther 6:1071–1082

    PubMed  CAS  Google Scholar 

  76. Mahmoud A, Lu D, Chopp M (2004) Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors after traumatic brain injury. J Neurotrauma 21:33–39

    Google Scholar 

  77. Suarez-Monteagudo C, Hernandez-Ramirez P, Alvarez-Gonzalez L, Garcia-Maeso I, de la Cuetara-Bernal K, Castillo-Diaz L et al (2009) Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restor Neurol Neurosci 27:151–161

    PubMed  Google Scholar 

  78. Borlongan CV (2009) Cell therapy for stroke: remaining issues to address before embarking on clinical trials. Stroke 40:146–148

    Google Scholar 

  79. Feuerstein GZ, Zaleska MM, Krams M, Wang X, Day M, Rutkowski JL et al (2008) Missing steps in the STAIR case: a translational medicine perspective on the development of NXY-059 for treatment of acute ischemic stroke. J Cereb Blood Flow Metab 28:217–219

    PubMed  CAS  Google Scholar 

  80. Santiago LA, Oh BC, Dash PK, Holcomb JB, Wade CE (2012) A clinical comparison of penetrating and blunt traumatic brain injuries. Brain Inj 26:107–125

    PubMed  Google Scholar 

  81. Manley GT, Diaz-Arrastia R, Brophy M, Engel D, Goodman C, Gwinn K, Veenstra TD, Ling G, Ottens AK, Tortella F, Hayes RL (2010) Common data elements for traumatic brain injury: recommendations from the biospecimens and biomarkers working group. Arch Phys Med Rehabil 91:1667–1672

    PubMed  Google Scholar 

  82. Keene CD, Ortiz-Gonzalez XR, Jiang Y, Largaespada DA, Verfaillie CM, Low WC (2003) Neural differentiation and incorporation of bone marrow-derived multipotent adult progenitor cells after single cell transplantation into blastocyst stage mouse embryos. Cell Transplant 2:201–213

    Google Scholar 

  83. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al (2002) Human bone marrow stromal cells suppress T lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    PubMed  Google Scholar 

  84. Jorgensen C, Djouad F, Apparailly F (2003) Engineering mesenchymal stem cells for immunotherapy. Gene Ther 10:928–931

    PubMed  CAS  Google Scholar 

  85. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE et al (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the MHC. Scand J Immunol 57:11–20

    PubMed  Google Scholar 

  86. McIntosh K, Bartholomew A (2000) Stromal cell modulation of the immune system: a potential role for mesenchymal stem cells. Graft 3:324–328

    Google Scholar 

  87. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    PubMed  CAS  Google Scholar 

  88. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications for transplantation. Transplantation 75:389–397

    PubMed  CAS  Google Scholar 

  89. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringden O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1411–1412

    Google Scholar 

  90. Reyes M, Verfaillie CM (2001) Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann N Y Acad Sci 938:231–233, discussion; 233–5

    PubMed  CAS  Google Scholar 

  91. Ayata C, Ropper AH (2002) Ischaemic brain edema. J Clin Neurosci 9:113–124

    PubMed  Google Scholar 

  92. Busch E, Kruger K, Fritze K, Allegrini PR, Hoehn-Berlage M, Hossmann KA (1997) Blood–brain barrier disturbances after rt-PA treatment of thromboembolic stroke in the rat. Acta Neurochir Suppl 70:206–208

    PubMed  CAS  Google Scholar 

  93. Kaur J, Zhao Z, Klein GM, Lo EH, Buchan AM (2004) The neurotoxicity of tissue plasminogen activator? J Cereb Blood Flow Metab 24:945–963

    PubMed  CAS  Google Scholar 

  94. De Brouns R, Deyn PP (2009) The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg 111:483–495

    PubMed  CAS  Google Scholar 

  95. Aoki T, Sumii T, Mori T, Wang X, Lo EH (2002) Blood–brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury: mechanical versus embolic focal ischemia in spontaneously hypertensive rats. Stroke 33:2711–2717

    PubMed  Google Scholar 

  96. Subramaniam S, Hill MD (2009) Decompressive hemicraniectomy for malignant middle cerebral artery infarction: an update. Neurologist 15:178–184

    PubMed  Google Scholar 

  97. Chang CF, Lin SZ, Chiang YH, Morales M, Chou J, Lein P et al (2003) Intravenous administration of bone morphogenetic protein-7 after ischemia improves motor function in stroke rats. Stroke 34:558–564

    PubMed  CAS  Google Scholar 

  98. Castillo J, Alvarez-Sabin J, Martinez-Vila E, Montaner J, Sobrino T, Vivancos J (2009) MITICO study investigators. Inflammation markers and prediction of post-stroke vascular disease recurrence: the MITICO study. J Neurol 256:217–224

    PubMed  CAS  Google Scholar 

  99. Vila N, Castillo J, Davalos A, Chamorro A (2000) Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke 31:2325–2329

    PubMed  CAS  Google Scholar 

  100. Castillo J, Leira R (2002) Predictors of deteriorating cerebral infarct: role of inflammatory mechanisms. Would its early treatment be useful? Cerebrovasc Dis 1:40–48

    Google Scholar 

  101. Doyle KP, Simon RP, Stenzel-Poore MP (2008) Mechanisms of ischemic brain damage. Neuropharmacology 55:310–318

    PubMed  CAS  Google Scholar 

  102. Wang GJ, Deng HY, Maier CM, Sun GH, Yenari MA (2002) Mild hypothermia reduces ICAM-1 expression, neutrophil infiltration and microglia/monocyte accumulation following experimental stroke. Neuroscience 114:1081–1090

    PubMed  CAS  Google Scholar 

  103. Tang Y, Xu H, Du X, Lit L, Walker W, Lu A et al (2006) Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J Cereb Blood Flow Metab 26:1089–1102

    PubMed  CAS  Google Scholar 

  104. Tomkins O, Feintuch A, Benifla M, Cohen A, Friedman A, Shelef I (2011) Blood–brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy. Cardiovasc Psychiatry Neurol 2011:765923

    PubMed  Google Scholar 

  105. Dietrich WD, Alonso O, Halley M (1994) Early microvascular and neuronal consequences of traumatic brain injury: a light and electron microscopic study in rats. J Neurotrauma 11:289–301

    PubMed  CAS  Google Scholar 

  106. Thau-Zuchman O, Shohami E, Alexandrovich AG, Leker RR (2010) Vascular endothelial growth factor increases neurogenesis after traumatic brain injury. J Cereb Blood Flow Metab 30:1008–1016

    PubMed  CAS  Google Scholar 

  107. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    PubMed  CAS  Google Scholar 

  108. Griese DP, Ehsan A, Melo LG, Kong D, Zhang L, Mann MJ et al (2003) Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vascular therapy. Circulation 108:2710–2715

    PubMed  Google Scholar 

  109. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    PubMed  CAS  Google Scholar 

  110. Masuda H, Asahara T (2003) Post-natal endothelial progenitor cells for neovascularization in tissue regeneration. Cardiovasc Res 58:390–398

    PubMed  CAS  Google Scholar 

  111. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A et al (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367

    PubMed  CAS  Google Scholar 

  112. Bompais H, Chagraoui J, Canron X, Crisan M, Liu XH, Anjo A et al (2004) Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood 103:2577–2584

    PubMed  CAS  Google Scholar 

  113. Fadini GP (2008) An underlying principle for the study of circulating progenitor cells in diabetes and its complications. Diabetologia 51:1091–1094

    PubMed  CAS  Google Scholar 

  114. Chen JZ, Zhang FR, Tao QM, Wang XX, Zhu JH (2004) Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin Sci 107:273–280

    PubMed  CAS  Google Scholar 

  115. Pirro M, Schillaci G, Menecali C, Bagaglia F, Paltriccia R, Vaudo G et al (2007) Reduced number of circulating endothelial progenitors and HOXA9 expression in CD34+ cells of hypertensive patients. J Hypertens 25:2093–2099

    PubMed  CAS  Google Scholar 

  116. Umemura T, Soga J, Hidaka T, Takemoto H, Nakamura S, Jitsuiki D et al (2008) Aging and hypertension are independent risk factors for reduced number of circulating endothelial progenitor cells. Am J Hypertens 21:1203–1209

    PubMed  CAS  Google Scholar 

  117. Del Papa N, Quirici N, Soligo D, Scavullo C, Cortiana M, Borsotti C et al (2006) Bone marrow endothelial progenitors are defective in systemic sclerosis. Arthritis Rheum 54:2605–2615

    PubMed  Google Scholar 

  118. Kuwana M, Okazaki Y, Yasuoka H, Kawakami Y, Ikeda Y (2004) Defective vasculogenesis in systemic sclerosis. Lancet 364:603–610

    PubMed  CAS  Google Scholar 

  119. Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C (2005) Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 45:1441–1448

    PubMed  CAS  Google Scholar 

  120. Kondo T, Hayashi M, Takeshita K, Numaguchi Y, Kobayashi K, Iino S et al (2004) Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol 24:1442–1447

    PubMed  CAS  Google Scholar 

  121. Michaud SE, Dussault S, Haddad P, Groleau J, Rivard A (2006) Circulating endothelial progenitor cells from healthy smokers exhibit impaired functional activities. Atherosclerosis 187:423–432

    PubMed  CAS  Google Scholar 

  122. Botta R, Gao E, Stassi G, Bonci D, Pelosi E, Zwas D et al (2004) Heart infarct in NOD-SCID mice: therapeutic vasculogenesis by transplantation of human CD34+ cells and low dose CD34 + KDR + cells. FASEB J 18:1392–1394

    PubMed  CAS  Google Scholar 

  123. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H et al (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103:634–637

    PubMed  CAS  Google Scholar 

  124. Madeddu P, Emanueli C, Pelosi E, Salis MB, Cerio AM, Bonanno G et al (2004) Transplantation of low dose CD34 + KDR + cells promotes vascular and muscular regeneration in ischemic limbs. FASEB J 18:1737–1739

    PubMed  CAS  Google Scholar 

  125. van Rouhl RP, Oostenbrugge RJ, Damoiseaux J, Cohen Tervaert JW, Lodder J (2008) Endothelial progenitor cell research in stroke: a potential shift in pathophysiological and therapeutical concepts. Stroke 39:2158–2165

    PubMed  Google Scholar 

  126. Erbs S, Linke A, Adams V, Lenk K, Thiele H, Diederich KW, Emmrich F et al (2005) Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res 97:756–762

    PubMed  CAS  Google Scholar 

  127. Li ZQ, Zhang M, Jing YZ, Zhang WW, Liu Y, Cui LJ et al (2007) The clinical study of autologous peripheral blood stem cell transplantation by intracoronary infusion in patients with acute myocardial infarction (AMI). Int J Cardiol 115:52–56

    PubMed  Google Scholar 

  128. Fernandez-Aviles F, San Roman JA, Garcia-Frade J, Fernandez ME, de la Penarrubia MJ, Fuente L et al (2004) Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 95:742–748

    PubMed  CAS  Google Scholar 

  129. Meluzin J, Janousek S, Mayer J, Groch L, Hornacek I, Hlinomaz O et al (2008) Three-, 6-, and 12-month results of autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction. Int J Cardiol 128:185–192

    PubMed  Google Scholar 

  130. Meluzin J, Mayer J, Groch L, Janousek S, Hornacek I, Hlinomaz O et al (2006) Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function. Am Heart J 152:975

    PubMed  Google Scholar 

  131. Mocini D, Staibano M, Mele L, Giannantoni P, Menichella G, Colivicchi F et al (2006) Autologous bone marrow mononuclear cell transplantation in patients undergoing coronary artery bypass grafting. Am Heart J 151:192–197

    PubMed  Google Scholar 

  132. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT et al (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107:2294–2302

    PubMed  Google Scholar 

  133. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Silva GV et al (2004) Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 110:213–218

    Google Scholar 

  134. Strauer BE, Brehm M, Zeus T, Bartsch T, Schannwell C, Antke C et al (2005) Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT study. J Am Coll Cardiol 46:1651–1658

    PubMed  Google Scholar 

  135. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV et al (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918

    PubMed  Google Scholar 

  136. Numaguchi Y, Sone T, Okumura K, Ishii M, Morita Y, Kubota R et al (2006) The impact of the capability of circulating progenitor cell to differentiate on myocardial salvage in patients with primary acute myocardial infarction. Circulation 114:114–119

    Google Scholar 

  137. Dobert N, Britten M, Assmus B, Berner U, Menzel C, Lehmann R et al (2004) Transplantation of progenitor cells after reperfused acute myocardial infarction: evaluation of perfusion and myocardial viability with fdg-pet and thallium spect. Eur J Nucl Med Mol Imaging 31:1146–1151

    PubMed  Google Scholar 

  138. Lev EI, Kleiman NS, Birnbaum Y, Harris D, Korbling M, Estrov Z (2005) Circulating endothelial progenitor cells and coronary collaterals in patients with non-st segment elevation myocardial infarction. J Vasc Res 42:408–414

    PubMed  Google Scholar 

  139. Hristov M, Heussen N, Schober A, Weber C (2006) Intracoronary infusion of autologous bone marrow cells and left ventricular function after acute myocardial infarction: a meta-analysis. J Cell Mol Med 10:727–733

    PubMed  CAS  Google Scholar 

  140. Dimmeler S, Zeiher AM, Schneider MD (2005) Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 115:572–583

    PubMed  CAS  Google Scholar 

  141. Higashi Y, Kimura M, Hara K, Noma K, Jitsuiki D, Nakagawa K et al (2004) Autologous bone-marrow mononuclear cell implantation improves endothelium-dependent vasodilation in patients with limb ischemia. Circulation 109:1215–1218

    PubMed  Google Scholar 

  142. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K et al (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone marrow cells: a pilot study and a randomised controlled trial. Lancet 360:427–435

    PubMed  Google Scholar 

  143. Taguchi A, Matsuyama T, Moriwaki H, Hayashi T, Hayashida K, Nagatsuka K et al (2004) Circulating cd34-positive cells provide an index of cerebrovascular function. Circulation 109:2972–2975

    PubMed  Google Scholar 

  144. Ghani U, Shuaib A, Salam A, Nasir A, Shuaib U, Jeerakathil T et al (2005) Endothelial progenitor cells during cerebrovascular disease. Stroke 36:151–153

    PubMed  Google Scholar 

  145. Menge T, Zhao Y, Zhao J, Wataha K, Gerber M, Zhang J, Letourneau P, Redell J, Shen L, Wang J, Peng Z, Xue H, Kozar R, Cox CS, Khakoo AY, Holcomb JB, Dash PK, Pati S (2012) Mesenchymal stem cells regulate blood–brain barrier integrity through timp3 release after traumatic brain injury. Sci Transl Med 4:161ra150

    PubMed  Google Scholar 

  146. Jujo K, Ii M, Losordo DW (2008) Endothelial progenitor cells in neovascularization of infarcted myocardium. J Mol Cell Cardiol 45:530–544

    PubMed  CAS  Google Scholar 

Download references

Disclosures/Conflict of Interests: CVB is supported by NIH NINDS 5U01NS055914-04 and NIH NINDS R01NS071956-01, James and Esther King Foundation for Biomedical Research Program, and receives research grant support for his projects on bone marrow stem cell therapy for stroke from SanBio Inc., Celgene Cellular Therapeutics, KMPHC and NeuralStem Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar V. Borlongan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pabón, M.M. et al. (2014). Stem Cells for Neurovascular Repair in CNS Trauma. In: Lo, E., Lok, J., Ning, M., Whalen, M. (eds) Vascular Mechanisms in CNS Trauma. Springer Series in Translational Stroke Research, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8690-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8690-9_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8689-3

  • Online ISBN: 978-1-4614-8690-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics