Skip to main content

GLP-1 Receptor Agonists for the Treatment of Type 2 Diabetes

  • Chapter
  • First Online:
Endocrinology and Diabetes

Abstract

The incretin-based therapies are represented by glucagon-like peptide 1 receptor agonists (GLP-1 RA) and dipeptidyl peptidase-IV inhibitors (DPP-IV). This new therapies have revolutionized the treatment of T2DM, intervening in a pathophysiological pathway not previously addressed. This chapter will review pathophysiology, mechanism of action, and indications for the use of GLP-1 RA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nauck MA, Stöckmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia. 1986;29:46–52.

    Article  PubMed  CAS  Google Scholar 

  2. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132:2131–57.

    Article  PubMed  CAS  Google Scholar 

  3. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368:1696–705.

    Article  PubMed  CAS  Google Scholar 

  4. Hansen L, Deacon CF, Orskov C, Holst JJ. Glucagon-like peptide-1-(7–36)amide is transformed to glucagon-like peptide-1-(9–36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology. 1999;140:5356–63.

    Article  PubMed  CAS  Google Scholar 

  5. Abu-Hamdah R, Rabiee A, Meneilly GS, Shannon RP, Andersen DK, Elahi D. Clinical review: the extrapancreatic effects of glucagon-like peptide-1 and related peptides. J Clin Endocrinol Metab. 2009;94:1843–52.

    Article  PubMed  CAS  Google Scholar 

  6. Perfetti R, Merkel P. Glucagon-like peptide-1: a major regulator of pancreatic beta-cell function. Eur J Endocrinol. 2000;143:717–25.

    Article  PubMed  CAS  Google Scholar 

  7. Wang Y, Perfetti R, Greig NH, Holloway HW, DeOre KA, et al. Glucagonlike peptide-1 can reverse the age-related decline in glucose tolerance in rats. J Clin Invest. 1997;99:2883–9.

    Article  PubMed  CAS  Google Scholar 

  8. Xu G, Stoffers DA, Habener JF, Bonner-Weir S. Exendin-4 stimulates both betacell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes. 1999;48:2270–6.

    Article  PubMed  CAS  Google Scholar 

  9. Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ. Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis. J Biol Chem. 2003;278:471–8.

    Article  PubMed  CAS  Google Scholar 

  10. Cernea S, Raz I. Therapy in the early stage: incretins. Diabetes Care. 2011;34:S264–71.

    Article  PubMed  CAS  Google Scholar 

  11. Nauck MA, Heimesaat MM, Behle K, Holst JJ, Nauck MS, et al. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J Clin Endocrinol Metab. 2002;87:1239–46.

    Article  PubMed  CAS  Google Scholar 

  12. Lee YS, Shin S, Shigihara T, Hahm E, Liu MJ, et al. Glucagonlike peptide-1 gene therapy in obese diabetic mice results in long-term cure of diabetes by improving insulin sensitivity and reducing hepatic gluconeogenesis. Diabetes. 2007;56:1671–9.

    Article  PubMed  CAS  Google Scholar 

  13. Klonoff DC, Buse JB, Nielsen LL, Guan X, Bowlus CL, et al. Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr Med Res Opin. 2008;24:275–86.

    PubMed  CAS  Google Scholar 

  14. Ding X, Saxena NK, Lin S, Gupta NA, Anania FA. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology. 2006;43:173–81.

    Article  PubMed  CAS  Google Scholar 

  15. Marathe CS, Rayner CK, Jones KL, Horowitz M. Effects of GLP-1 and incretin-based therapies on gastrointestinal motor function. Exp Diabetes Res. 2011;2011:279530.

    Article  PubMed  Google Scholar 

  16. Timmers L, Henriques JP, de Kleijn DP, Devries JH, Kemperman H, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol. 2009;53:501–10.

    Article  PubMed  CAS  Google Scholar 

  17. Arakawa M, Mita T, Azuma K, Ebato C, Goto H, et al. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes. 2010;59:1030–7.

    Article  PubMed  CAS  Google Scholar 

  18. Meier JJ. The contribution of incretin hormones to the pathogenesis of type 2 diabetes. Best Pract Res Clin Endocrinol Metab. 2009;23:433–41.

    Article  PubMed  CAS  Google Scholar 

  19. Eng J, Kleinman WA, Singh L, Singh G, Raufman JP. Isolation and Characterization of Exendin-4, an Exendin-3 Analogue, from Heloderma suspecturn Venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem. 1992;267:7402–6.

    PubMed  CAS  Google Scholar 

  20. http://www.fda.gov/drugs/drugsafety/postmarket. Accesssed 21 Jul 2012

  21. Iltz JL, Baker DE, Setter SM, Keith CR. Exenatide: an incretin mimetic for the treatment of type 2 diabetes mellitus. Clin Ther. 2006;28:S56–8.

    Article  Google Scholar 

  22. Unger JE. Incretins: clinical perspectives, relevance, and applications for the primary care physician in the treatment of patients with type 2 diabetes mellitus. Mayo Clin Proc. 2010;85:S38–49.

    Article  PubMed  Google Scholar 

  23. Parkes DG, Pittner R, Jodka C, Smith P, Young A. Insulinotropic actions of exendin-4 and glucagon-like peptide-1 in vivo and in vitro. Metabolism. 2001;50:583–9.

    Article  PubMed  CAS  Google Scholar 

  24. http://www.fda.gov/drus/drugssafety/UCM289869. Accessed 21 Jul 2012

  25. Ratner RE, Maggs D, Nielsen LL, Stonehouse AH, Poon T, et al. Long-term effects of exenatide therapy over 82 weeks on glycaemic control and weight in over-weight metformin-treated patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2006;8:419–28.

    Article  PubMed  CAS  Google Scholar 

  26. Bergenstal RM, Wysham C, Macconell L, Malloy J, Walsh B, et al. Efficacy and safety of exenatide once weekly versus sitagliptin or pioglitazone as an adjunct to metformin for treatment of type 2 diabetes (DURATION-2): a randomised trial. Lancet. 2010;376:431–9.

    Article  PubMed  Google Scholar 

  27. Buse JB, Henry RR, Han J, Kim DD, Fineman MS, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care. 2004;27:2628–35.

    Article  PubMed  CAS  Google Scholar 

  28. Gallwitz B, Guzman J, Dotta F, Guerci B, Simó R, et al. Exenatide twice daily versus glimepiride for prevention of glycaemic deterioration in patients with type 2 diabetes with metformin failure (EUREXA): an open-label, randomised controlled trial. Lancet. 2012;379:2270–8.

    Article  PubMed  CAS  Google Scholar 

  29. Elashoff M, Matveyenko AV, Gier B, Elashoff R, Butler PC. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology. 2011;141:150–6.

    Article  PubMed  CAS  Google Scholar 

  30. Butler PC, Dry S, Elashoff R. GLP-1-based therapy for diabetes: what you do not know can hurt you. Diabetes Care. 2010;33:453–5.

    Article  PubMed  Google Scholar 

  31. Ussher JE, Drucker JE. Cardiovascular biology of the incretin system. Endocr Rev. 2012;33:187–215.

    Article  PubMed  CAS  Google Scholar 

  32. Patil HR, Al Badarin FJ, Al Shami HA, Bhatti SK, Lavie CJ, et al. Meta-analysis of effect of dipeptidyl peptidase-4 inhibitors on cardiovascular risk in type 2 diabetes mellitus. Am J Cardiol. 2012;110:826–33.

    Article  PubMed  CAS  Google Scholar 

  33. Blevins T, Pullman J, Malloy J, Yan P, Taylor K, et al. DURATION-5: exenatide once weekly resulted in greater improvements in glycemic control compared with exenatide twice daily in patients with type 2 diabetes. J Clin Endocrinol Metab. 2011;96:1301–10.

    Article  PubMed  CAS  Google Scholar 

  34. De Fronzo RA, Triplitt C, Qu Y, Lewis M, Maggs D, Glass LC. Effects of exenatide plus rosiglitazone on β-cell function and insulin sensitivity in subjects with type 2 diabetes on metformin. Diabetes Care. 2010 May;33(5):951–7.

    Article  Google Scholar 

  35. Bunck MC, Diamant M, Cornér A, Eliasson B, Malloy JL, et al. One-year treatment with exenatide improves β-cell function, compared with insulin glargine, in metformin-treated type 2 diabetic patients a randomized, controlled trial. Diabetes Care. 2009;32:762–8.

    Article  PubMed  CAS  Google Scholar 

  36. Buse JB, Bergenstal RM, Glass LC, Heilmann CR, Lewis MS, et al. Use of twice-daily exenatide in basal insulin–treated patients with type 2 diabetes: a randomized. Controlled Trial Ann Intern Med. 2011;154:103–12.

    Article  Google Scholar 

  37. Nauck MA, Duran S, Kim D, Johns D, Northrup J, et al. A comparison of twice-daily exenatide and biphasic insulin aspart in patients with type 2 diabetes who were suboptimally controlled with sulfonylurea and metformin: a non-inferiority study. Diabetologia. 2007;50:259–67.

    Article  PubMed  CAS  Google Scholar 

  38. Davis SN, Johns D, Maggs D, Xu H, Northrup JH, Brodows RG. Exploring the substitution of exenatide for insulin in patients with type 2 diabetes treated with insulin in combination with oral anti-diabetes agents. Diabetes Care. 2007;30:2767–72.

    Article  PubMed  CAS  Google Scholar 

  39. Russell-Jones D. Molecular, pharmacological and clinical aspects of liraglutide, a once-daily human GLP-1 analogue. Mol Cell Endocrinol. 2009;297: 137–40.

    Article  PubMed  CAS  Google Scholar 

  40. Nauck M, Frid A, Hermansen K, Shah NS, Tankova T, et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: The LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care. 2009;32:84–90.

    Article  PubMed  CAS  Google Scholar 

  41. Buse JB, Rosenstock J, Sesti G, Schmidt WE, Montanya E, et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: A 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet. 2009;374:39–47.

    Article  PubMed  CAS  Google Scholar 

  42. Marre M, Shaw J, Brändle M, Bebakar WM, Kamaruddin NA, et al. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU). Diabet Med. 2009;26:268–78.

    Article  PubMed  CAS  Google Scholar 

  43. Garber A, Henry R, Ratner R, Garcia-Hernandez PA, Rodriguez-Pattzi H, et al. Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): A randomised, 52-week, phase III, double-blind, parallel-treatment trial. Lancet. 2009;373: 473–81.

    Article  PubMed  CAS  Google Scholar 

  44. Russell-Jones D, Vaag A, Schmitz O, Sethi BK, Lalic N, et al. Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met + SU): a randomised controlled trial. Diabetologia. 2009;52:2046–55.

    Article  PubMed  CAS  Google Scholar 

  45. Zinman B, Gerich J, Buse JB, Lewin A, Schwartz S, et al. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met + TZD). Diabetes Care. 2009;32:1224–30.

    Article  PubMed  CAS  Google Scholar 

  46. Bjerre Knudsen L, Madsen LW, Andersen S, Almholt K, de Boer AS, et al. Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology. 2010;151:1473–86.

    Article  PubMed  Google Scholar 

  47. Hegedüs L, Moses AC, Zdravkovic M, Le Thi T, Daniels GH. GLP-1 and calcitonin concentration in humans: lack of evidence of calcitonin release from sequential screening in over 5000 subjects with type 2 diabetes or nondiabetic obese subjects treated with the human GLP-1 analog, liraglutide. J Clin Endocrinol Metab. 2011;96:853–60.

    Article  PubMed  Google Scholar 

  48. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach position statement of the American diabetes association (ADA) and the European association for the study of diabetes (EASD). Diabetes Care. 2012;35: 1364–79.

    Article  PubMed  CAS  Google Scholar 

  49. Field AE, Coakley EH, Must A, Spadano JL, Laird N, et al. Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch Intern Med. 2001;161:1581–6.

    Article  PubMed  CAS  Google Scholar 

  50. Vilsboll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012; 344:d7771.

    Article  PubMed  Google Scholar 

  51. Astrup A, Carraro R, Finer N, Harper A, Kunesova M, et al. Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide. Int J Obes (Lond). 2012;36:843–54.

    Article  CAS  Google Scholar 

  52. Petersen AB, Christensen M. Clinical potential of lixisenatide once dailytreatment for type 2 diabetes mellitus. Diabetes Metab Synd Obes 2013;6:217–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Bandeira M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bandeira, F., Moura, F., Costi, B.B. (2014). GLP-1 Receptor Agonists for the Treatment of Type 2 Diabetes. In: Bandeira, F., Gharib, H., Golbert, A., Griz, L., Faria, M. (eds) Endocrinology and Diabetes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8684-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8684-8_30

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8683-1

  • Online ISBN: 978-1-4614-8684-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics