Skip to main content

Non-parathyroid Hypercalcemia

  • Chapter
  • First Online:
Endocrinology and Diabetes

Abstract

Hypercalcemia is one of the most commonly found disorders in clinical practice. Calcium is involved in countless organic processes, such as the coagulation cascade, enzymatic reactions, and neuromuscular transmission, and it is thus important to maintain its homeostasis.

As it is involved in so many vital processes, its concentration in serum is well controlled, presenting minimal variations in normal circumstances. There is around 1–2 kg of calcium in the average adult, of which about 99 % is concentrated in the skeleton. The remainder is situated in intra- and extracellular fluids. The distribution of calcium in the blood occurs in the following manner: around 50 % in diffusible form (ionizable calcium and calcium in the form of complexes with organic anions: bicarbonate, citrate, phosphate, lactate, and sulfate) and the rest, which is nondiffusible, linked to plasmatic proteins. The portion of calcium linked to albumin represents 40 % of the total, at a proportion of 0.8 mg/dl of calcium for every 1 g/dl of albumin (Berne and Levy, Fisiologia 3ed;199:823–41). A decrease in serum levels of albumin thus causes alterations in the concentration of total serum calcium. However, in hypoalbuminemic states, as in critical patients, the corrected calcium has to be calculated, or rather, ionizable calcium measured in such a way as not to be influenced by the albumin levels. On the other hand, dehydration or the movement of fluids out of the vascular system, owing to a tight tourniquet, for example, may produce an increase in albumin levels, causing pseudohypercalcemia. Pseudohypercalcemia can also be found in cases of multiple myeloma, owing to the high-affinity association between calcium and the monoclonal protein of myeloma, giving rise to a marked increase in serum concentrations of calcium (Elizabeth et al. Diagnostic approach to hypercalcemia. http:// www.uptodate.com, 2012).

The formula for calculating corrected calcium is corrected calcium = total calcium + (4-albumin) x 0.8. The ionizable portion of calcium is regulated by parathormone (PTH) and vitamin D. It may vary with blood pH, as acidosis increases the concentration of ionizable calcium and reduces alkalosis. A change of 0.1 in serum pH modifies the protein–calcium link by 0.12 mg/dl (Hauache, Braz J Med Biol Res 34(5):577–84, 2000).

In adults, around 20–30 % of calcium in element form is absorbed and the remainder is eliminated in the stool. Calcium is absorbed in the small intestine, the duodenum being the most efficient portion, although most is absorbed in the distal portion of the small intestine, owing to the greater contact time and surface area for absorption. The transport of calcium through the intestine occurs in various stages, all of which are regulated by 1.25(OH)2D3 (Berne and Levy, Fisiologia 3ed;199:823–41).

Hypercalcemia is defined as an increase in ionizable calcium or the concentration of total calcium corrected for albumin. It may be classified as mild (total calcium between 10.3 and 11.9 mg/dl), moderate (calcium between 12 and 13.5), or severe (total calcium >13.5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nakashima L. Guidelines for the treatment of hypercalcemia associated with malignancy. J Oncol Pharm Prac. 1997;3:31–7.

    Google Scholar 

  2. Elizabeth S, Clifford J, Jean E. Diagnostic approach to hypercalcemia. http:// www.uptodate.com (2012). Accessed 20 Aug 2012.

  3. Hauache OM. Extracelluar calcium-sensing receptor: structural and functional features and association with disease. Braz J Med Biol Res. 2000;34(5):577–84.

    Article  Google Scholar 

  4. Lafferty FW. Differential diagnosis of hypercalcemia. J Bone Miner Res. 1991;6(2):S51.

    PubMed  CAS  Google Scholar 

  5. Burtis WJ, Wu TL, Insogna KL, Stewart AF. Humoral hypercalcemia of malignancy. Ann Intern Med. 1998;108:454.

    Article  Google Scholar 

  6. Ratcliffe WA, Hutchesson AC, Bundred NJ, Ratcliffe JG. Role of assays for parathyroid-hormone-related protein in investigation of hypercalcaemia. Lancet. 1992;339:164.

    Article  PubMed  CAS  Google Scholar 

  7. Wermers RA, Khosla S, Atkinson EJ, Hodgson SF, O’Fallon WM, III Melton LJ. The rise and fall of hyperparathyroidism: a population-based study in Rochester, Minnesota, 1965–1992. Ann Intern Med. 1997;126:443–40.

    Article  Google Scholar 

  8. Silverberg E, Lewiecki M, Mosekilde L, Peacock M, Rubin MR. Presentation of asymptomatic primary hyperparathyroidism: proceedings of the Third International Workshop. J Clin Endocrinol Metab. 2009;94:351–65.

    Article  PubMed  CAS  Google Scholar 

  9. Bilezikian JP, Khan AA, Potts Jr JT. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the Third International Workshop. J Clin Endocrinol Metab. 2009;94:335–9.

    Article  PubMed  CAS  Google Scholar 

  10. Eastell R, Arnold A, Brandi ML, Brown EM, D’Amour P, Hanley DA, et al. Diagnosis of asymptomatic primary hyperparathyroidism. Proceedings of the Third International Workshop. J Clin Endocrinol Metab. 2009;94:340–50.

    Article  PubMed  CAS  Google Scholar 

  11. Meric F, Yap P, Bia MJ. Etiology of hypercalcemia in hemodialysis patients on calcium carbonate therapy. Am J Kidney Dis. 1990;16:459.

    PubMed  CAS  Google Scholar 

  12. Frolick A. Prevalence of hypercalcemia in normal and in hospital populations. Dan Med Bull. 1998;45: 436–9.

    Google Scholar 

  13. Lee C-T, Yang C-C, Lam K-K, Kung C-T, Tsai C-J, Chen H-C. Hypercalcemia in the emergency department. Am J Med Sci. 2006;331:119–23.

    Article  PubMed  Google Scholar 

  14. Stewart AF. Hypercalcemia associated with cancer. N Engl J Med. 2005;352:373–9.

    Article  PubMed  CAS  Google Scholar 

  15. Burman KD, Monchik JM, Earll JM, Wartofsky L. Ionized and total serum calcium and parathyroid hormone in hyperthyroidism. Ann Intern Med. 1976;84:668.

    Article  PubMed  CAS  Google Scholar 

  16. Alikhan Z, Singh A. Hyperthyroidism manifested as hypercalcemia. South Med J. 1996;89:997.

    Article  PubMed  CAS  Google Scholar 

  17. Beall DP, Scofield RH. Milk-alkali syndrome associated with calcium c arbonate consumption. Report of 7 patients with parathyroid hormone levels and an estimate of prevalence among patients hospitalized with hypercalcemia. Medicine (Baltimore). 1995;74:89.

    Article  CAS  Google Scholar 

  18. Abreo K, Adlakha A, Kilpatrick S, et al. The milk-alkali syndrome. A reversible form of acute renal failure. Arch Intern Med. 1993;153:1005.

    Article  PubMed  CAS  Google Scholar 

  19. Picolos MK, Lavis VR, Orlander PR. Milk-alkali syndrome is a major cause of hypercalcemia among non-end-stage renal disease(non-ESRD) inpatients. Clin Endocrinol (Oxf). 2005;63:566.

    Article  Google Scholar 

  20. Hoeck HC, Laurberg G, Laurberg P. Hypercalcaemic crisis after excessive topical use of a vitamin D derivative. J Intern Med. 1994;235:281.

    Article  PubMed  CAS  Google Scholar 

  21. Selby PL, Davies M, Marks JS, Mawer EB. Vitamin D intoxication causes hypercalcaemia by increased bone resorption which responds to pamidronate. Clin Endocrinol (Oxf). 1995;43:531.

    Article  CAS  Google Scholar 

  22. Endres DB. Investigation of hypercalcemia. Clin Biochem. 2012;45:954–63.

    Article  PubMed  CAS  Google Scholar 

  23. Llach F, Felsenfeld AJ, Haussler MR. The pathophysiology of altered calcium metabolism in rhabdomyolysis-induced acute renal failure. Interactions of parathyroid hormone, 25Ohydroxycholecalciferol, and 1,25-diydrocholecalciferol. N Engl J Med. 1981; 305:117.

    Article  PubMed  CAS  Google Scholar 

  24. Schwartz SR, Futran ND. Hypercalcemic hypocalciuria: a critical differential diagnosis for hyperparathyroidism. Otolaryngol Clin North Am. 2004;37:887.

    Article  PubMed  Google Scholar 

  25. Mark TW et al. Effects of lithium therapy on bone mineral metabolism: a two-year prospective longitudinal study. J Clin Endocrinol Metab. 1998;83:3857.

    Article  Google Scholar 

  26. Bhalla K, Ennis DM, Ennis ED. Hypercalcemia caused by iatrogenic hypervitaminosis A. J Am Diet Assoc. 2005;105:119.

    Article  PubMed  Google Scholar 

  27. Stewart AF, Hoecker J, Segre JV, et al. Hypercalcemia in pheochomocytoma: evidence for a novel mechanism. Ann Intern Med. 1985;102:776.

    Article  PubMed  CAS  Google Scholar 

  28. Vasikaran SD, Tallis GA, Braund WJ. Secondary hypoadrenalism presenting with hypercalcaemia. Clin Endocrinol (Oxf). 1994;41:261.

    Article  CAS  Google Scholar 

  29. Fujikawa M, Kamihira K, Sato K, et al. Elevated bone resorption markers in a patient with hypercalcemia associated with post-partum thyrotoxicosis and hypoadrenocorticism due to pituitary failure. J Endocrinol Invest. 2004;27:782.

    PubMed  CAS  Google Scholar 

  30. Jacobs TP, Bilezikian JP. Clinical review: rare causes of hypercalcemia. J Clin Endocrinol Metab. 2005;90:6316–22.

    Article  PubMed  CAS  Google Scholar 

  31. Bourgain A, Acker O, Lambaudie E, et al. Small cell carcinoma of the ovary of the hypercalcemic type revealed by a severe acute pancreatitis: about one case. Gynecol Obstet Ferttil. 2005;33:35.

    Article  CAS  Google Scholar 

  32. Mithofer K, Fernández-del Castillo C, Frick TW, et al. Acute hypercalcemia causes acute pancreatitis and ectopic trypsinogen activation in the rat. Gastroenterolgy. 1995;109:239.

    Article  CAS  Google Scholar 

  33. Ward JB, Petersen OH, Jenkins SA, Sutton R. Is an elevated concentration of acinar cytosolic free ionized calcium the trigger for acute pancreatitis? Lancet. 1995;346:1016.

    Article  PubMed  CAS  Google Scholar 

  34. Peacock M. Primary hyperparathyroidism and the kidney: biochemical and clinical spectrum. J Bone Miner Res. 2002;17(sppl 2):87.

    Google Scholar 

  35. Kiewiet RM, Ponssen HH, Janssens EN, Fels PW. Ventricular fibrillation in hypercalcaemic crisis due to primary hyperparathyroidism. Neth J Med. 2004; 62:94.

    PubMed  CAS  Google Scholar 

  36. Diercks DB, Shumaik GM, Harrigan RA, et al. Electrocardiographic manifestations:electrolyte abnormalities. J Emerg Med. 2004;27:153.

    Article  PubMed  Google Scholar 

  37. Nishi SP, Barbagelata NA, Atar S, et al. Hypercalcemia-induced ST-segment elevation mimicking acute myocardial infarction. J Electrocardiol. 2006;39:298.

    Article  PubMed  Google Scholar 

  38. Shane E, Dinaz I. Hypercalcemia: pathogenesis, clinical manifestations, differential diagnosis and management. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism, vol. 26. Sixthth ed. Philadelphia. Lippincott: Williams and wilkins; 2006. p. 176.

    Google Scholar 

  39. Inzucchi SE. Understanding hypercalcemia. Its metabolic basis, signs and symptoms. Postgrad Med. 2004;115:69.

    PubMed  Google Scholar 

  40. Wilson KS, Alexander S, Chisholm IA. Band keratopathy in hypercalcemia of myeloma. Can Med Assoc J. 1982;126:1314.

    PubMed  CAS  Google Scholar 

  41. Patel AM, Goldfarb S. Got calcium? Welcome to the calcium-alkali syndrome. J Am Soc Nephrol. 2010;21:1440–3.

    Article  PubMed  CAS  Google Scholar 

  42. Medarov BI. Milk-alkali syndrome. Mayo Clin Proc. 2009;84:261–7.

    Article  PubMed  Google Scholar 

  43. Bilezikian JP. Management of hypercalcemia. J Clin Endocrinol Metab. 1993;77:1445.

    Article  PubMed  CAS  Google Scholar 

  44. Coleman RE. Bisphosphonates: clinical experience. Oncologist. 2002;9:14.

    Article  Google Scholar 

  45. Nussbaum SR, Younger J, Vandepol CJ, et al. Single-dose intravenous therapy with pamidronate for the treatment of hypercalcemia of malignancy: comparison of 30-, 60-, and 90-mg dosages. Am J Med. 1993;95:297.

    Article  PubMed  CAS  Google Scholar 

  46. Gurney H, Grill V, Martin TJ. Parathyroid hormone-related protein and response to pamidronate in tumor-induced hypercalcemia. Lancet. 1993;341:1611.

    Article  PubMed  CAS  Google Scholar 

  47. Walls J, Ratcliffe WA, Howell A, Bundred NJ. Response to intravenous bisphosphonate therapy in hypercalcaemic patients with and without bone metastases: the role of parathyroid hormone-related protein. Br J Cancer. 1994;70:169.

    Article  PubMed  CAS  Google Scholar 

  48. Wimalawansa SJ. Significance of plasma PTH-rp in patients with hypercalcemia of malignancy treated with bisphosphonates. Cancer. 1994;73:2223.

    Article  PubMed  CAS  Google Scholar 

  49. Gucalp R, Ritch P, Wiernick PH, et al. Comparative study of pamidronate disodium and etidronate disodium in the treatment of cancer-related hypercalcemia. J Clin Oncol. 1992;10:134.

    PubMed  CAS  Google Scholar 

  50. Ralston SH, Gallacher SJ, Patel U, et al. Comparison of three intravenous bisphosphonates in cancer-associated hypercalcemia. Lancet. 1989;2:1180.

    Article  PubMed  CAS  Google Scholar 

  51. Gucalp R, Theriault R, Gill I, et al. Treatment of cancer-associated hypercalcemia. Double-blind comparison of rapid and slow intravenous infusion regimens of pamidronate disodium and saline alone. Arch Intern Med. 1994;154:1935.

    Article  PubMed  CAS  Google Scholar 

  52. Sawyer N, Newstead C, Drummond A, Cunningham J. Fast(4-h) or slow (24-h) infusions of pamidronate disodium (aminohydroxypropylidene diphosphonate (APD) as single shot treatment of hypercalcemia. Bone Miner. 1990;9:121.

    Article  PubMed  CAS  Google Scholar 

  53. Major P, Lortholary A, Hon J, Abdi E, Mills G, Menssen HD, et al. Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: a pooled analysis of two randomized, contolled clinical trials. J Clin Oncol. 2001;19:558–67.

    PubMed  CAS  Google Scholar 

  54. Schwaetz LM, Woloshin S. Lost in transmission: FDA drug information that never reaches clinicians. N Engl J Med. 2009;361:1717.

    Article  Google Scholar 

  55. Ralston SH, Thiébaud D, Herrmann Z, et al. Dose–response study of ibandronate in the treatment of cancer-associated hypercalcemia. Br J Cancer. 1997;75:295.

    Article  PubMed  CAS  Google Scholar 

  56. Pecherstorfer M, Herrmann Z, Body JJ, et al. Randomized phase II trial comparing different doses of the bisphosphonate ibandronate in the treatment of hypercalcemia of malignancy. J Clin Oncol. 1996;14:268.

    PubMed  CAS  Google Scholar 

  57. Pecherstorfer M, Steinhauer EU, Rizzoli R, et al. Efficacy and safety of ibandronate in the treatment of hypercalcemia of malignancy: a randomized multicentric comparison to pamidronate. Support Care Cancer. 2003;11:539.

    Article  PubMed  CAS  Google Scholar 

  58. Henrich D, Hoffman M, Uppenkamp M, Bergner R. Ibandronate for the treatment of hypercalcemia or nephrocalcinosis in patients with multiple myeloma and acute renal failure: Case reports. Acta Haematol. 2006;116:165.

    Article  PubMed  CAS  Google Scholar 

  59. Machado CE, Flombaum CD. Safety of pamidronate in patients with renal failure and hypercalcemia. Clin Nephrol. 1996;45:175.

    PubMed  CAS  Google Scholar 

  60. Trimarchi H, Lombi F, Forrester M, et al. Disodium pamidronate for treating severe hypercalcemia in a hemodialysis patient. Nat Clin Pract Nephrol. 2006;2:459.

    Article  PubMed  Google Scholar 

  61. Davenport A, Goel S, Mackenzie JC. Treatment of hypercalcemia with pamidronate in patients with end stage renal failure. Scand J Urol Nephrol. 1993;27:447.

    Article  PubMed  CAS  Google Scholar 

  62. Austin LA, Heath 3rd H. Calcitonin: physiology and pathophysiology. N Engl J Med. 1981;304:269.

    Article  PubMed  CAS  Google Scholar 

  63. Dumon JC, Magritte A, Body JJ. Nasal human calcitonin for tumor-induced hypercalcemia. Calcif Tissue Int. 1992;51:18.

    Article  PubMed  CAS  Google Scholar 

  64. Wisneski LA. Salmon calcitonin in the acute management of hypercalcemia. Calcif Tissue Int. 1990;46: S26–30.

    Article  PubMed  Google Scholar 

  65. Silverberg SJ, Rubin MR, Faiman C, Peacock M, Shoback DM, Smallridge RC, et al. Cinacalcet hydrochloride reduces the serum calcium concentration in inoperable parathyroid carcinoma. J Clin Endocrinol Metab. 2007;92(10):3803.

    Article  PubMed  CAS  Google Scholar 

  66. Leehey DJ, Ing TS. Correction of hypercalcemia and hypophosphatemia by hemodialysis using a conventional, calcium-containing dialysis solution enriched with phosphorus. Am J Kidney Dis. 1997;29:288.

    Article  PubMed  CAS  Google Scholar 

  67. Body JJ, Lipton A, Gralow J, Steger GC, Gao G, Yeh H, et al. Effects of denosumab in patients with bone metastases with and without previous bisphosphonates exposure. J Bone Miner Res. 2010;25:440–6.

    Article  PubMed  CAS  Google Scholar 

  68. Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29:1125–32.

    Article  PubMed  CAS  Google Scholar 

  69. Stopeck AT, Lipton A, Body JJ, Steger GC, Tonkin K, de Boer RH, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28:5132–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Fontan M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fontan, D., Griz, L. (2014). Non-parathyroid Hypercalcemia. In: Bandeira, F., Gharib, H., Golbert, A., Griz, L., Faria, M. (eds) Endocrinology and Diabetes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8684-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8684-8_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8683-1

  • Online ISBN: 978-1-4614-8684-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics