Skip to main content

Direct Current Methods for Battery Evaluation

  • Chapter
  • First Online:
Nanoscale Technology for Advanced Lithium Batteries

Part of the book series: Nanostructure Science and Technology ((NST))

  • 3893 Accesses

Abstract

The direct current (DC) method is the primary technique to evaluate the electrochemical performance of lithium-ion batteries. Most experimental techniques developed for micro-sized electrodes can be applied to nano-sized electrodes. This chapter introduces the preparation of standard test cells with nano-sized electrodes and evaluation techniques using DC methods at the laboratory level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Matsumoto, R. Kuzuo, K. Takeya, A. Yamanaka, Effects of CO2 in air on Li deintercalation from LiNi1−x−yCoxAlyO2. J. Power. Sources 81–82, 558–561 (1999)

    Article  Google Scholar 

  2. R. Moshtev, P. Zlatilova, S. Vasilev, I. Bakalova, A. Kozawa, Synthesis, XRD characterization and electrochemical performance of overlithiated LiNiO2. J. Power. Sources 81–82, 434–441 (1999)

    Article  Google Scholar 

  3. D. Aurbach, K. Gamolsky, B. Markovsky, G. Salitra, Y. Gofer, U. Heider, R. Oesten, M. Schmidt, The study of surface phenomena related to electrochemical lithium intercalation into LiMOy host materials (M = Ni, Mn). J. Electrochem. Soc. 147, 1322–1331 (2000)

    Article  CAS  Google Scholar 

  4. M. Hirayama, K. Sakamoto, T. Hiraide, D. Mori, A. Yamada, R. Kanno, N. Sonoyama, K. Tamura, J. Mizuki, Characterization of electrode/electrolyte interface using in situ X-ray reflectometry and LiNi0.8Co0.2O2 epitaxial film electrode synthesized by pulsed laser deposition method. Electrochim. Acta 53, 871–881 (2007)

    Article  CAS  Google Scholar 

  5. M. Hirayama, N. Sonoyama, T. Abe, M. Minoura, M. Ito, D. Mori, A. Yamada, R. Kanno, T. Terashima, M. Takano, K. Tamura, J. Mizuki, Characterization of electrode/electrolyte interface for lithium batteries using in situ synchrotron X-ray reflectometry – A new experimental technique for LiCoO2 model electrode. J. Power. Sources 168, 493–500 (2007)

    Article  CAS  Google Scholar 

  6. M. Hirayama, N. Sonoyama, M. Ito, M. Minoura, D. Mori, A. Yamada, K. Tamura, J. Mizuki, R. Kanno, Characterization of electrode/electrolyte interface with X-ray reflectometry and epitaxial-film LiMn2O4 electrode. J. Electrochem. Soc. 154, A1065–A1072 (2007)

    Article  CAS  Google Scholar 

  7. J.F. Martin, A. Yamada, G. Kobayashi, S.I. Nishimura, R. Kanno, D. Guyomard, N. Dupre, Air exposure effect on LiFePO4. Electrochem. Solid State Lett. 11, A12–A16 (2008)

    Article  CAS  Google Scholar 

  8. T. Christen, M.W. Carlen, Theory of Ragone plots. J. Power. Sources 91, 210–216 (2000)

    Article  CAS  Google Scholar 

  9. A. Yamada, H. Koizumi, S.-I. Nishimura, N. Sonoyama, R. Kanno, M. Yonemura, T. Nakamura, Y. Kobayashi, Room-temperature miscibility gap in LixFePO4. Nat. Mater. 5, 357–360 (2006)

    Article  CAS  Google Scholar 

  10. P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.M. Tarascon, C. Masquelier, Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat. Mater. 7, 741–747 (2008)

    Article  CAS  Google Scholar 

  11. H. Chen, X. Qiu, W. Zhu, P. Hagenmuller, Synthesis and high rate properties of nanoparticled lithium cobalt oxides as the cathode material for lithium-ion battery. Electrochem. Commun. 4, 488–491 (2002)

    Article  CAS  Google Scholar 

  12. M. Wagemaker, W.J.H. Borghols, F.M. Mulder, Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J. Am. Chem. Soc. 129, 4323–4327 (2007)

    Article  CAS  Google Scholar 

  13. W.J.H. Borghols, M. Wagemaker, U. Lafont, E.M. Kelder, F.M. Mulder, Impact of nanosizing on lithiated rutile TiO2. Chem. Mater. 20, 2949–2955 (2008)

    Article  CAS  Google Scholar 

  14. W.J.H. Borghols, M. Wagemaker, U. Lafont, E.M. Kelder, F.M. Mulder, Size effects in the Li4+xTi5O12 spinel. J. Am. Chem. Soc. 131, 17786–17792 (2009)

    Article  CAS  Google Scholar 

  15. A. Yamada, S.C. Chung, K. Hinokuma, Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 148, A224–A229 (2001)

    Article  CAS  Google Scholar 

  16. M. Hirayama, H. Tomita, K. Kubota, R. Kanno, Structure and electrode reactions of layered rocksalt LiFeO2 nanoparticles for lithium battery cathode. J. Power Sources. 196, 6809–6814 (2011)

    Google Scholar 

  17. N. Meethong, H.Y.S. Huang, S.A. Speakman, W.C. Carter, Y.M. Chiang, Strain accommodation during phase transformations in olivine-based Cathodes as a materials selection criterion for high-power rechargeable batteries. Adv. Func. Mater 17, 1115–1123 (2007)

    Article  CAS  Google Scholar 

  18. K. Ado, M. Tabuchi, H. Kobayashi, H. Kageyama, O. Nakamura, Y. Inaba, R. Kanno, M. Takagi, Y. Takeda, Preparation of LiFeO2 with alpha-NaFeO2-type structure using a mixed-alkaline hydrothermal method. J. Electrochem. Soc. 144, L177–L180 (1997)

    Article  CAS  Google Scholar 

  19. M. Hirayama, H. Tomita, K. Kubota, H. Ido, R. Kanno, Synthesis and electrochemical properties of nanosized LiFeO2 particles with a layered rocksalt structure for lithium batteries. Mater. Res. Bull 47, 79–84 (2012)

    Article  CAS  Google Scholar 

  20. J. Heinze, Cyclic voltammetry – “electrochemical spectroscopy”. New Anal. Methods 25, Ang. Chem. Int. Ed. 23, 831–847 (1984)

    Google Scholar 

  21. J.M. Tarascon, D. Guyomard, G.L. Baker, An update of the Li metal-free rechargeable battery based on Li1+xMn2O4 cathodes and carbon anodes. J. Power. Sources 44, 689–700 (1993)

    Article  CAS  Google Scholar 

  22. M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725–763 (1998)

    Article  CAS  Google Scholar 

  23. W. Weppner, R.A. Huggins, Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 124, 1569–1578 (1977)

    Article  CAS  Google Scholar 

  24. C.J. Wen, B.A. Boukamp, R.A. Huggins, W. Weppner, Thermodynamic and mass transport properties of “LiAl”. J. Electrochem. Soc. 126, 2258–2266 (1979)

    Article  CAS  Google Scholar 

  25. A. Funabiki, M. Inaba, T. Abe, Z. Ogumi, Stage transformation of lithium-graphite intercalation compounds caused by electrochemical lithium intercalation. J. Electrochem. Soc. 146, 2443–2448 (1999)

    Article  CAS  Google Scholar 

  26. M.D. Levi, D. Aurbach, Frumkin intercalation isotherm ‚ a tool for the description of lithium insertion into host materials: A review. Electrochim. Acta 45, 167–185 (1999)

    Article  CAS  Google Scholar 

  27. E. Markevich, M.D. Levi, D. Aurbach, Comparison between potentiostatic and galvanostatic intermittent titration techniques for determination of chemical diffusion coefficients in ion-insertion electrodes. J. Electroanal. Chem. 580, 231–237 (2005)

    Article  CAS  Google Scholar 

  28. Y. Zhu, C. Wang, Galvanostatic intermittent titration technique for phase-transformation electrodes. J. Phys. Chem. C 114, 2830–2841 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Hirayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hirayama, M., Kanno, R. (2014). Direct Current Methods for Battery Evaluation. In: Osaka, T., Ogumi, Z. (eds) Nanoscale Technology for Advanced Lithium Batteries. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8675-6_9

Download citation

Publish with us

Policies and ethics