Skip to main content

Functional Follow-up of Genetic Variants Using FTO as the Prime Example

  • Chapter
  • First Online:
The Genetics of Obesity

Abstract

Obesity is the result of lifestyle and genetic predisposition. Tens of genes have been found to be associated with obesity. Among those, FTO showed the highest effect on body weight, but the function of the gene product was unknown at the time of discovering this association. As a consequence, several hundreds of studies have now been performed in just the last 6 years to unravel the biological role of FTO as an obesity gene. Although FTO is very likely to act as a RNA demethylase, the process by which FTO influences body weight is still unknown. In this review we have collected and evaluated most of the recent results which contribute to the relatively small but nevertheless important progress in FTO research with respect to obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMI:

Body mass index

CUX1:

Cut-like homeobox 1

FTO:

Fat mass and obesity associated

GWAS:

Genome-wide association studies

m6A:

N6-methyladenosine

SNP:

Single nucleotide polymorphism

alkB:

Alpha-ketoglutarate-dependent dioxygenase

ALKBH:

Mammalian alkB homolog

References

  1. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU et al (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42(11):937–948

    Article  CAS  PubMed  Google Scholar 

  2. Cornes BK, Lind PA, Medland SE, Montgomery GW, Nyholt DR, Martin NG (2009) Replication of the association of common rs9939609 variant of FTO with increased BMI in an Australian adult twin population but no evidence for gene by environment (G x E) interaction. Int J Obes (Lond) 33(1):75–79

    Article  CAS  Google Scholar 

  3. Hotta K, Nakata Y, Matsuo T, Kamohara S, Kotani K, Komatsu R et al (2008) Variations in the FTO gene are associated with severe obesity in the Japanese. J Hum Genet 53(6):546–553

    Article  CAS  PubMed  Google Scholar 

  4. Tan JT, Dorajoo R, Seielstad M, Sim XL, Ong RT, Chia KS et al (2008) FTO variants are associated with obesity in the Chinese and Malay populations in Singapore. Diabetes 57(10):2851–2857

    Article  CAS  PubMed  Google Scholar 

  5. Villalobos-Comparan M, Teresa Flores-Dorantes M, Teresa Villarreal-Molina M, Rodriguez-Cruz M, Garcia-Ulloa AC, Robles L et al (2008) The FTO gene is associated with adulthood obesity in the Mexican population. Obesity (Silver Spring) 16(10):2296–2301

    Article  CAS  Google Scholar 

  6. Peters T, Ausmeier K, Rüther U (1999) Cloning of Fatso (Fto), a novel gene deleted by the Fused toes (Ft) mouse mutation. Mamm Genome 10(10):983–986

    Article  CAS  PubMed  Google Scholar 

  7. van der Hoeven F, Schimmang T, Volkmann A, Mattei MG, Kyewski B, Rüther U (1994) Programmed cell death is affected in the novel mouse mutant Fused toes (Ft). Development 120(9):2601–2607

    PubMed  Google Scholar 

  8. Robbens S, Rouze P, Cock JM, Spring J, Worden AZ, Van de Peer Y (2008) The FTO gene, implicated in human obesity, is found only in vertebrates and marine algae. J Mol Evol 66(1):80–84

    Article  CAS  PubMed  Google Scholar 

  9. Sanchez-Pulido L, Andrade-Navarro MA (2007) The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily. BMC Biochem 8:23

    Article  PubMed  Google Scholar 

  10. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316(5826):889–894

    Article  CAS  PubMed  Google Scholar 

  11. Dina C, Meyre D, Gallina S, Durand E, Korner A, Jacobson P et al (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 39(6):724–726

    Article  CAS  PubMed  Google Scholar 

  12. Hinney A, Nguyen TT, Scherag A, Friedel S, Bronner G, Muller TD et al (2007) Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One 2(12):e1361

    Article  PubMed  Google Scholar 

  13. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J et al (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 3(7):e115

    Article  PubMed  Google Scholar 

  14. Vierkotten J, Dildrop R, Peters T, Wang B, Rüther U (2007) Ftm is a novel basal body protein of cilia involved in Shh signalling. Development 134(14):2569–2577

    Article  CAS  PubMed  Google Scholar 

  15. Tews D, Fischer-Posovszky P, Wabitsch M (2011) Regulation of FTO and FTM expression during human preadipocyte differentiation. Horm Metab Res 43(1):17–21

    Article  CAS  PubMed  Google Scholar 

  16. Stratigopoulos G, LeDuc CA, Cremona ML, Chung WK, Leibel RL (2011) Cut-like homeobox 1 (CUX1) regulates expression of the fat mass and obesity-associated and retinitis pigmentosa GTPase regulator-interacting protein-1-like (RPGRIP1L) genes and coordinates leptin receptor signaling. J Biol Chem 286(3):2155–2170

    Article  CAS  PubMed  Google Scholar 

  17. Stratigopoulos G, Padilla SL, LeDuc CA, Watson E, Hattersley AT, McCarthy MI et al (2008) Regulation of Fto/Ftm gene expression in mice and humans. Am J Physiol Regul Integr Comp Physiol 294(4):R1185–R1196

    Article  CAS  PubMed  Google Scholar 

  18. Klöting N, Schleinitz D, Ruschke K, Berndt J, Fasshauer M, Tonjes A et al (2008) Inverse relationship between obesity and FTO gene expression in visceral adipose tissue in humans. Diabetologia 51(4):641–647

    Article  PubMed  Google Scholar 

  19. Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Brüning JC et al (2009) Inactivation of the Fto gene protects from obesity. Nature 458(7240):894–898

    Article  CAS  PubMed  Google Scholar 

  20. Berulava T, Horsthemke B (2010) The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels. Eur J Hum Genet 18(9):1054–1056

    Article  CAS  PubMed  Google Scholar 

  21. Jacobsson JA, Danielsson P, Svensson V, Klovins J, Gyllensten U, Marcus C et al (2008) Major gender difference in association of FTO gene variant among severely obese children with obesity and obesity related phenotypes. Biochem Biophys Res Commun 368(3):476–482

    Article  CAS  PubMed  Google Scholar 

  22. Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS et al (2007) The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318(5855):1469–1472

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki K, Jayasena CN, Bloom SR (2012) Obesity and appetite control. Exp Diabetes Res 2012:824305

    Article  PubMed  Google Scholar 

  24. Fredriksson R, Hagglund M, Olszewski PK, Stephansson O, Jacobsson JA, Olszewska AM et al (2008) The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology 149(5):2062–2071

    Article  CAS  PubMed  Google Scholar 

  25. Poritsanos NJ, Lew PS, Fischer J, Mobbs CV, Nagy JI, Wong D et al (2011) Impaired hypothalamic Fto expression in response to fasting and glucose in obese mice. Nutr Diabetes 1:e19

    Article  CAS  PubMed  Google Scholar 

  26. McTaggart JS, Lee S, Iberl M, Church C, Cox RD, Ashcroft FM (2011) FTO is expressed in neurones throughout the brain and its expression is unaltered by fasting. PLoS One 6(11):e27968

    Article  CAS  PubMed  Google Scholar 

  27. Olszewski PK, Radomska KJ, Ghimire K, Klockars A, Ingman C, Olszewska AM et al (2011) Fto immunoreactivity is widespread in the rodent brain and abundant in feeding-related sites, but the number of Fto-positive cells is not affected by changes in energy balance. Physiol Behav 103(2):248–253

    Article  CAS  PubMed  Google Scholar 

  28. Olszewski PK, Fredriksson R, Olszewska AM, Stephansson O, Alsio J, Radomska KJ et al (2009) Hypothalamic FTO is associated with the regulation of energy intake not feeding reward. BMC Neurosci 10:129

    Article  PubMed  Google Scholar 

  29. Tung YC, Ayuso E, Shan X, Bosch F, O’Rahilly S, Coll AP et al (2010) Hypothalamic-specific manipulation of Fto, the ortholog of the human obesity gene FTO, affects food intake in rats. PLoS One 5(1):e8771

    Article  PubMed  Google Scholar 

  30. Gutierrez-Aguilar R, Kim DH, Woods SC, Seeley RJ (2012) Expression of new loci associated with obesity in diet-induced obese rats: from genetics to physiology. Obesity (Silver Spring) 20(2):306–312

    Article  CAS  Google Scholar 

  31. Parker JA, Bloom SR (2012) Hypothalamic neuropeptides and the regulation of appetite. Neuropharmacology 63(1):18–30

    Article  CAS  PubMed  Google Scholar 

  32. Guo J, Ren W, Ding Y, Li A, Jia L, Su D et al (2012) Fat mass and obesity associated gene (FTO) expression is regulated negatively by the transcription factor Foxa2. PLoS One 7(12):e51082

    Article  CAS  PubMed  Google Scholar 

  33. Silva JP, von Meyenn F, Howell J, Thorens B, Wolfrum C, Stoffel M (2009) Regulation of adaptive behaviour during fasting by hypothalamic Foxa2. Nature 462(7273):646–650

    Article  CAS  PubMed  Google Scholar 

  34. Clifton IJ, McDonough MA, Ehrismann D, Kershaw NJ, Granatino N, Schofield CJ (2006) Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta-helix fold proteins. J Inorg Biochem 100(4):644–669

    Article  CAS  PubMed  Google Scholar 

  35. Ozer A, Bruick RK (2007) Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one? Nat Chem Biol 3(3):144–153

    Article  CAS  PubMed  Google Scholar 

  36. Aas PA, Otterlei M, Falnes PO, Vagbo CB, Skorpen F, Akbari M et al (2003) Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421(6925):859–863

    Article  CAS  PubMed  Google Scholar 

  37. Jia G, Yang CG, Yang S, Jian X, Yi C, Zhou Z et al (2008) Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett 582(23–24):3313–3319

    Article  CAS  PubMed  Google Scholar 

  38. Han Z, Niu T, Chang J, Lei X, Zhao M, Wang Q et al (2010) Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature 464(7292):1205–1209

    Article  CAS  PubMed  Google Scholar 

  39. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y et al (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7(12):885–887

    Article  CAS  PubMed  Google Scholar 

  40. Berulava T, Ziehe M, Klein-Hitpass L, Mladenov E, Thomale J, Rüther U et al (2012) FTO levels affect RNA modification and the transcriptome. Eur J Hum Genet 21(3):317–323

    Article  PubMed  Google Scholar 

  41. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485(7397):201–206

    Article  CAS  PubMed  Google Scholar 

  42. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 149(7):1635–1646

    Article  CAS  PubMed  Google Scholar 

  43. Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM (1997) Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3(11):1233–1247

    CAS  PubMed  Google Scholar 

  44. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ et al (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49(1):18–29

    CAS  PubMed  Google Scholar 

  45. Ougland R, Zhang CM, Liiv A, Johansen RF, Seeberg E, Hou YM et al (2004) AlkB restores the biological function of mRNA and tRNA inactivated by chemical methylation. Mol Cell 16(1):107–116

    Article  CAS  PubMed  Google Scholar 

  46. Jia G, Fu Y, He C (2013) Reversible RNA adenosine methylation in biological regulation. Trends Genet 29(2):108–115

    Article  CAS  PubMed  Google Scholar 

  47. Cheung MK, Gulati P, O’Rahilly S, Yeo GS (2013) FTO expression is regulated by availability of essential amino acids. Int J Obes (Lond) 37(5):744–747

    Article  CAS  Google Scholar 

  48. Gulati P, Cheung MK, Antrobus R, Church CD, Harding HP, Tung YC et al (2013) Role for the obesity-related FTO gene in the cellular sensing of amino acids. Proc Natl Acad Sci U S A 110(7):2557–2562

    Article  CAS  PubMed  Google Scholar 

  49. Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC et al (2006) Hypothalamic mTOR signaling regulates food intake. Science 312(5775):927–930

    Article  CAS  PubMed  Google Scholar 

  50. Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L et al (2010) Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet 42(12):1086–1092

    Article  CAS  PubMed  Google Scholar 

  51. Church C, Lee S, Bagg EA, McTaggart JS, Deacon R, Gerken T et al (2009) A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet 5(8):e1000599

    Article  PubMed  Google Scholar 

  52. Gao X, Shin YH, Li M, Wang F, Tong Q, Zhang P (2010) The fat mass and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice. PLoS One 5(11):e14005

    Article  PubMed  Google Scholar 

  53. McMurray F, Church CD, Larder R, Nicholson G, Wells S, Teboul L et al (2013) Adult onset global loss of the fto gene alters body composition and metabolism in the mouse. PLoS Genet 9(1):e1003166

    Article  CAS  PubMed  Google Scholar 

  54. Grunnet LG, Nilsson E, Ling C, Hansen T, Pedersen O, Groop L et al (2009) Regulation and function of FTO mRNA expression in human skeletal muscle and subcutaneous adipose tissue. Diabetes 58(10):2402–2408

    Article  CAS  PubMed  Google Scholar 

  55. Zabena C, Gonzalez-Sanchez JL, Martinez-Larrad MT, Torres-Garcia A, Alvarez-Fernandez-Represa J, Corbaton-Anchuelo A et al (2009) The FTO obesity gene. Genotyping and gene expression analysis in morbidly obese patients. Obes Surg 19(1):87–95

    Article  PubMed  Google Scholar 

  56. Terra X, Auguet T, Porras JA, Quintero Y, Aguilar C, Luna AM et al (2010) Anti-inflammatory profile of FTO gene expression in adipose tissues from morbidly obese women. Cell Physiol Biochem 26(6):1041–1050

    Article  CAS  PubMed  Google Scholar 

  57. Wahlen K, Sjolin E, Hoffstedt J (2008) The common rs9939609 gene variant of the fat mass- and obesity-associated gene FTO is related to fat cell lipolysis. J Lipid Res 49(3):607–611

    Article  PubMed  Google Scholar 

  58. Meyre D, Proulx K, Kawagoe-Takaki H, Vatin V, Gutierrez-Aguilar R, Lyon D et al (2010) Prevalence of loss-of-function FTO mutations in lean and obese individuals. Diabetes 59(1):311–318

    Article  CAS  PubMed  Google Scholar 

  59. Chen B, Ye F, Yu L, Jia G, Huang X, Zhang X et al (2012) Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc 134(43):17963–17971

    Article  CAS  PubMed  Google Scholar 

  60. Boissel S, Reish O, Proulx K, Kawagoe-Takaki H, Sedgwick B, Yeo GS et al (2009) Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet 85(1):106–111

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Cindy Thron and Renate Dildrop for their help in the context of manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Rüther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seehaus, S., Rüther, U. (2014). Functional Follow-up of Genetic Variants Using FTO as the Prime Example. In: Grant, S. (eds) The Genetics of Obesity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8642-8_7

Download citation

Publish with us

Policies and ethics