Skip to main content

Regulating Chromatin by Histone Acetylation

  • Chapter
  • First Online:
Fundamentals of Chromatin

Abstract

Acetylation of lysine residues on histones has been known for almost 50 years and is the most characterized posttranslational modification of chromatin. It is known to have a direct impact on the structure of chromatin as well as to play a signaling role to regulate the association of factors to specific genomic loci. Thus, it is not surprising that histone acetylation plays critical regulatory roles in all major nuclear processes, including gene expression, DNA repair, and replication. Here, we present an overview of the current state of knowledge on the role of histone acetylation in chromatin structure and function during DNA-based processes. We cover the functions of protein complexes involved in the addition and the removal of this mark on chromatin and how it is recognized as a signal. We also present how acetylation is functionally linked to other histone modifications. Finally, we discuss recent developments connecting histone acetylation to metabolism and aging as well as targeted drug discoveries aimed at treating human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Acetyl-CoA:

Acetyl coenzyme A

ADA:

Transcriptional adaptor

Asf1:

Anti-silencing function protein 1

Bdf1:

Bromodomain factor 1

BET:

Bromodomain and extraterminal domain

Brd:

Bromodomain

CBP:

CREB-binding protein

Chd1:

Chromodomain-helicase-DNA-binding protein 1

ChIP:

Chromatin immunoprecipitation

CoASH:

Coenzyme A

CoREST:

Corepressor of RE1 silencing transcription factor 1

DSB:

Double-strand break

Esa1:

Essential Sas2-related acetyltransferase 1

ESC:

Embryonic stem cell

Gcn5:

General control nonderepressible-5

Gcn5L:

General control nonderepressible-5 long isoform

GNAT:

Gcn5-related N-acetyltransferase

HAT:

Histone acetyltransferase

HBO1:

Histone acetyltransferase binding to ORC1

Hda1-3:

Histone deacetylase 1-3

HDAC:

Histone deacetylase

Hos1-3:

Hda one similar 1-3

HR:

Homologous recombination

Hst1-4:

Homolog of sir two 1-4

ING1-5:

Inhibitor of growth protein 1-5

KAT:

Lysine (K)-acetyltransferase

MOF:

Males-absent on the first protein

MORF:

Monocytic leukemia zinc finger protein-related factor

MOZ:

Monocytic leukemia zinc finger protein

MSL:

Male-specific lethal

MYST:

MOZ-Ybf2/Sas3-Sas2-TIP60

NAD+ :

Nicotinamide adenine dinucleotide

N-CoR:

Nuclear receptor corepressor

NER:

Nucleotide excision repair

NFR:

Nucleosome-free region

NHEJ:

Nonhomologous end joining

NSL:

Nonspecific lethal

NuA3:

Nucleosome acetyltransferase of H3

NuA4:

Nucleosome acetyltransferase of H4

NuRD:

Nucleosome remodeling and deacetylation

PCAF:

p300/CBP associated factor

PHD:

Plant homeodomain

Pol II:

RNA polymerase II

PTM:

Posttranslational modification

Rpd3:

Reduced potassium dependency 3

Rpd3S/L:

Rpd3 small/large complex

Rtt109:

Regulator of Ty1 transposition protein 109

SAGA:

Spt-Ada-Gcn5-acetyltransferase

Sas2-3:

Something about silencing 2-3

Sin3(S/L):

Switch independent 3 (small/large)

Sir2:

Silent information regulator 2

Sirt1-7:

Silent information regulator two homolog 1-7

SLIK:

SAGA-like

SMRT:

Silencing mediator of retinoic acid and thyroid hormone receptor

STAGA:

Spt-Taf9-Ada-Gcn5-acetyltransferase

TFTC:

TBP-free TAFII complex

Tip60:

Tat-interacting protein (60 kDa)

TSA:

Trichostatin A

TSS:

Transcription start site

Yng2:

Yeast Ing1 homolog 2

References

  • Adam M, Robert F, Larochelle M, Gaudreau L (2001) H2A.Z is required for global chromatin integrity and for recruitment of RNA polymerase II under specific conditions. Mol Cell Biol 21(18):6270–6279

    CAS  PubMed  Google Scholar 

  • Adkins MW, Carson JJ, English CM, Ramey CJ, Tyler JK (2007) The histone chaperone anti-silencing function 1 stimulates the acetylation of newly synthesized histone H3 in S-phase. J Biol Chem 282(2):1334–1340. doi:10.1074/jbc.M608025200

    CAS  PubMed  Google Scholar 

  • Ahn SH, Diaz RL, Grunstein M, Allis CD (2006) Histone H2B deacetylation at lysine 11 is required for yeast apoptosis induced by phosphorylation of H2B at serine 10. Mol Cell 24(2):211–220. doi:10.1016/j.molcel.2006.09.008, S1097-2765(06)00636-8 [pii]

    CAS  PubMed  Google Scholar 

  • Akhtar A, Becker PB (2000) Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 5(2):367–375, S1097-2765(00)80431-1 [pii]

    CAS  PubMed  Google Scholar 

  • Alabert C, Groth A (2012) Chromatin replication and epigenome maintenance. Nat Rev Mol Cell Biol 13(3):153–167. doi:10.1038/nrm3288

    CAS  PubMed  Google Scholar 

  • Albaugh BN, Arnold KM, Lee S, Denu JM (2011) Autoacetylation of the histone acetyltransferase Rtt109. J Biol Chem 286(28):24694–24701. doi:10.1074/jbc.M111.251579

    CAS  PubMed  Google Scholar 

  • Ali M, Yan K, Lalonde ME, Degerny C, Rothbart SB, Strahl BD, Cote J, Yang XJ, Kutateladze TG (2012) Tandem PHD fingers of MORF/MOZ acetyltransferases display selectivity for acetylated histone H3 and are required for the association with chromatin. J Mol Biol 424(5):328–338. doi:10.1016/j.jmb.2012.10.004, S0022-2836(12)00813-3 [pii]

    CAS  PubMed  Google Scholar 

  • Allard S, Utley RT, Savard J, Clarke A, Grant P, Brandl CJ, Pillus L, Workman JL, Cote J (1999) NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J 18(18):5108–5119. doi:10.1093/emboj/18.18.5108

    CAS  PubMed  Google Scholar 

  • Allfrey VG (1966) Structural modifications of histones and their possible role in the regulation of ribonucleic acid synthesis. Proc Can Cancer Conf 6:313–335

    CAS  PubMed  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794

    CAS  PubMed  Google Scholar 

  • Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, Shilatifard A, Workman J, Zhang Y (2007) New nomenclature for chromatin-modifying enzymes. Cell 131(4):633–636. doi:10.1016/j.cell.2007.10.039, S0092-8674(07)01359-1 [pii]

    CAS  PubMed  Google Scholar 

  • Altaf M, Utley RT, Lacoste N, Tan S, Briggs SD, Cote J (2007) Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin. Mol Cell 28(6):1002–1014. doi:10.1016/j.molcel.2007.12.002, S1097-2765(07)00827-1 [pii]

    CAS  PubMed  Google Scholar 

  • Altaf M, Auger A, Monnet-Saksouk J, Brodeur J, Piquet S, Cramet M, Bouchard N, Lacoste N, Utley RT, Gaudreau L, Cote J (2010) NuA4-dependent acetylation of nucleosomal histones H4 and H2A directly stimulates incorporation of H2A.Z by the SWR1 complex. J Biol Chem 285(21):15966–15977. doi:10.1074/jbc.M110.117069

    CAS  PubMed  Google Scholar 

  • Ausio J, Dong F, van Holde KE (1989) Use of selectively trypsinized nucleosome core particles to analyze the role of the histone “tails” in the stabilization of the nucleosome. J Mol Biol 206(3):451–463, 0022-2836(89)90493-2 [pii]

    CAS  PubMed  Google Scholar 

  • Avvakumov N, Cote J (2007) The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26(37):5395–5407. doi:10.1038/sj.onc.1210608

    CAS  PubMed  Google Scholar 

  • Avvakumov N, Nourani A, Cote J (2011) Histone chaperones: modulators of chromatin marks. Mol Cell 41(5):502–514. doi:10.1016/j.molcel.2011.02.013, S1097-2765(11)00096-7 [pii]

    CAS  PubMed  Google Scholar 

  • Avvakumov N, Lalonde ME, Saksouk N, Paquet E, Glass KC, Landry AJ, Doyon Y, Cayrou C, Robitaille GA, Richard DE, Yang XJ, Kutateladze TG, Cote J (2012) Conserved molecular interactions within the HBO1 acetyltransferase complexes regulate cell proliferation. Mol Cell Biol 32(3):689–703. doi:10.1128/MCB.06455-11, MCB.06455-11 [pii]

    CAS  PubMed  Google Scholar 

  • Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher AG (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8(5):532–538. doi:10.1038/ncb1403, ncb1403 [pii]

    CAS  PubMed  Google Scholar 

  • Babiarz JE, Halley JE, Rine J (2006) Telomeric heterochromatin boundaries require NuA4-dependent acetylation of histone variant H2A.Z in Saccharomyces cerevisiae. Genes Dev 20(6):700–710. doi:10.1101/gad.1386306

    CAS  PubMed  Google Scholar 

  • Baek SH, Ohgi KA, Rose DW, Koo EH, Glass CK, Rosenfeld MG (2002) Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. Cell 110(1):55–67

    CAS  PubMed  Google Scholar 

  • Balasubramanian R, Pray-Grant MG, Selleck W, Grant PA, Tan S (2002) Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation. J Biol Chem 277(10):7989–7995. doi:10.1074/jbc.M110849200, M110849200 [pii]

    CAS  PubMed  Google Scholar 

  • Bannister AJ, Kouzarides T (1996) The CBP co-activator is a histone acetyltransferase. Nature 384(6610):641–643. doi:10.1038/384641a0

    CAS  PubMed  Google Scholar 

  • Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, Tennen RI, Paredes S, Young NL, Chen K, Struhl K, Garcia BA, Gozani O, Li W, Chua KF (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487(7405):114–118. doi:10.1038/nature11043, nature11043 [pii]

    CAS  PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837. doi:10.1016/j.cell.2007.05.009

    CAS  PubMed  Google Scholar 

  • Beck HC, Nielsen EC, Matthiesen R, Jensen LH, Sehested M, Finn P, Grauslund M, Hansen AM, Jensen ON (2006) Quantitative proteomic analysis of post-translational modifications of human histones. Mol Cell Proteomics 5(7):1314–1325. doi:10.1074/mcp.M600007-MCP200, M600007-MCP200 [pii]

    CAS  PubMed  Google Scholar 

  • Benson LJ, Phillips JA, Gu Y, Parthun MR, Hoffman CS, Annunziato AT (2007) Properties of the type B histone acetyltransferase Hat1: H4 tail interaction, site preference, and involvement in DNA repair. J Biol Chem 282(2):836–842. doi:10.1074/jbc.M607464200, M607464200 [pii]

    CAS  PubMed  Google Scholar 

  • Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas EJ III, Gingeras TR, Schreiber SL, Lander ES (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120(2):169–181. doi:10.1016/j.cell.2005.01.001

    CAS  PubMed  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326. doi:10.1016/j.cell.2006.02.041, S0092-8674(06)00380-1 [pii]

    CAS  PubMed  Google Scholar 

  • Bian C, Xu C, Ruan J, Lee KK, Burke TL, Tempel W, Barsyte D, Li J, Wu M, Zhou BO, Fleharty BE, Paulson A, Allali-Hassani A, Zhou JQ, Mer G, Grant PA, Workman JL, Zang J, Min J (2011) Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. EMBO J 30(14):2829–2842. doi:10.1038/emboj.2011.193

    CAS  PubMed  Google Scholar 

  • Billon P, Cote J (2012) Precise deposition of histone H2A.Z in chromatin for genome expression and maintenance. Biochim Biophys Acta 1819(3–4):290–302. doi:10.1016/j.bbagrm.2011.10.004

    CAS  PubMed  Google Scholar 

  • Bird AW, Yu DY, Pray-Grant MG, Qiu Q, Harmon KE, Megee PC, Grant PA, Smith MM, Christman MF (2002) Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419(6905):411–415. doi:10.1038/nature01035, nature01035 [pii]

    CAS  PubMed  Google Scholar 

  • Biswas D, Takahata S, Stillman DJ (2008) Different genetic functions for the Rpd3(L) and Rpd3(S) complexes suggest competition between NuA4 and Rpd3(S). Mol Cell Biol 28(14):4445–4458. doi:10.1128/MCB.00164-08

    CAS  PubMed  Google Scholar 

  • Blackwell JS Jr, Wilkinson ST, Mosammaparast N, Pemberton LF (2007) Mutational analysis of H3 and H4 N termini reveals distinct roles in nuclear import. J Biol Chem 282(28):20142–20150. doi:10.1074/jbc.M701989200

    CAS  PubMed  Google Scholar 

  • Bonenfant D, Coulot M, Towbin H, Schindler P, van Oostrum J (2006) Characterization of histone H2A and H2B variants and their post-translational modifications by mass spectrometry. Mol Cell Proteomics 5(3):541–552. doi:10.1074/mcp.M500288-MCP200, M500288-MCP200 [pii]

    CAS  PubMed  Google Scholar 

  • Borrow J, Stanton VP Jr, Andresen JM, Becher R, Behm FG, Chaganti RS, Civin CI, Disteche C, Dube I, Frischauf AM, Horsman D, Mitelman F, Volinia S, Watmore AE, Housman DE (1996) The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 14(1):33–41. doi:10.1038/ng0996-33

    CAS  PubMed  Google Scholar 

  • Bottomley MJ, Lo Surdo P, Di Giovine P, Cirillo A, Scarpelli R, Ferrigno F, Jones P, Neddermann P, De Francesco R, Steinkuhler C, Gallinari P, Carfi A (2008) Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J Biol Chem 283(39):26694–26704. doi:10.1074/jbc.M803514200, M803514200 [pii]

    CAS  PubMed  Google Scholar 

  • Boudreault AA, Cronier D, Selleck W, Lacoste N, Utley RT, Allard S, Savard J, Lane WS, Tan S, Cote J (2003) Yeast enhancer of polycomb defines global Esa1-dependent acetylation of chromatin. Genes Dev 17(11):1415–1428. doi:10.1101/gad.1056603, 17/11/1415 [pii]

    CAS  PubMed  Google Scholar 

  • Brand M, Moggs JG, Oulad-Abdelghani M, Lejeune F, Dilworth FJ, Stevenin J, Almouzni G, Tora L (2001) UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. EMBO J 20(12):3187–3196. doi:10.1093/emboj/20.12.3187

    CAS  PubMed  Google Scholar 

  • Bressi JC, Jennings AJ, Skene R, Wu Y, Melkus R, De Jong R, O’Connell S, Grimshaw CE, Navre M, Gangloff AR (2010) Exploration of the HDAC2 foot pocket: synthesis and SAR of substituted N-(2-aminophenyl)benzamides. Bioorg Med Chem Lett 20(10):3142–3145. doi:10.1016/j.bmcl.2010.03.091, S0960-894X(10)00432-4 [pii]

    CAS  PubMed  Google Scholar 

  • Brown CE, Howe L, Sousa K, Alley SC, Carrozza MJ, Tan S, Workman JL (2001) Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit. Science 292(5525):2333–2337. doi:10.1126/science.1060214

    CAS  PubMed  Google Scholar 

  • Brownell JE, Allis CD (1995) An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc Natl Acad Sci U S A 92(14):6364–6368

    CAS  PubMed  Google Scholar 

  • Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84(6):843–851, S0092-8674(00)81063-6 [pii]

    CAS  PubMed  Google Scholar 

  • Bryan EJ, Jokubaitis VJ, Chamberlain NL, Baxter SW, Dawson E, Choong DY, Campbell IG (2002) Mutation analysis of EP300 in colon, breast and ovarian carcinomas. Int J Cancer 102(2):137–141. doi:10.1002/ijc.10682

    CAS  PubMed  Google Scholar 

  • Bui M, Dimitriadis EK, Hoischen C, An E, Quenet D, Giebe S, Nita-Lazar A, Diekmann S, Dalal Y (2012) Cell-cycle-dependent structural transitions in the human CENP-A nucleosome in vivo. Cell 150(2):317–326. doi:10.1016/j.cell.2012.05.035

    CAS  PubMed  Google Scholar 

  • Burgess RJ, Zhou H, Han J, Zhang Z (2010) A role for Gcn5 in replication-coupled nucleosome assembly. Mol Cell 37(4):469–480. doi:10.1016/j.molcel.2010.01.020

    CAS  PubMed  Google Scholar 

  • Cai Y, Jin J, Swanson SK, Cole MD, Choi SH, Florens L, Washburn MP, Conaway JW, Conaway RC (2010) Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J Biol Chem 285(7):4268–4272. doi:10.1074/jbc.C109.087981, C109.087981 [pii]

    CAS  PubMed  Google Scholar 

  • Carapeti M, Aguiar RC, Goldman JM, Cross NC (1998) A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91(9):3127–3133

    CAS  PubMed  Google Scholar 

  • Carey M, Li B, Workman JL (2006) RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Mol Cell 24(3):481–487. doi:10.1016/j.molcel.2006.09.012

    CAS  PubMed  Google Scholar 

  • Carrozza MJ, Utley RT, Workman JL, Cote J (2003) The diverse functions of histone acetyltransferase complexes. Trends Genet 19(6):321–329. doi:10.1016/S0168-9525(03)00115-X

    CAS  PubMed  Google Scholar 

  • Carrozza MJ, Florens L, Swanson SK, Shia WJ, Anderson S, Yates J, Washburn MP, Workman JL (2005a) Stable incorporation of sequence specific repressors Ash1 and Ume6 into the Rpd3L complex. Biochim Biophys Acta 1731(2):77–87. doi:10.1016/j.bbaexp.2005.09.005, discussion 75–76. S0167-4781(05)00249-6 [pii]

    CAS  PubMed  Google Scholar 

  • Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, Shia WJ, Anderson S, Yates J, Washburn MP, Workman JL (2005b) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123(4):581–592. doi:10.1016/j.cell.2005.10.023, S0092-8674(05)01156-6 [pii]

    CAS  PubMed  Google Scholar 

  • Celic I, Masumoto H, Griffith WP, Meluh P, Cotter RJ, Boeke JD, Verreault A (2006) The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr Biol 16(13):1280–1289. doi:10.1016/j.cub.2006.06.023, S0960-9822(06)01749-0 [pii]

    CAS  PubMed  Google Scholar 

  • Cereseto A, Manganaro L, Gutierrez MI, Terreni M, Fittipaldi A, Lusic M, Marcello A, Giacca M (2005) Acetylation of HIV-1 integrase by p300 regulates viral integration. EMBO J 24(17):3070–3081. doi:10.1038/sj.emboj.7600770, 7600770 [pii]

    CAS  PubMed  Google Scholar 

  • Chaffanet M, Gressin L, Preudhomme C, Soenen-Cornu V, Birnbaum D, Pebusque MJ (2000) MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Genes Chromosomes Cancer 28(2):138–144. doi:10.1002/(SICI)1098-2264(200006)28:2<138::AID-GCC2>3.0.CO;2–2 [pii]

    CAS  PubMed  Google Scholar 

  • Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M, Evans RM (1996) Role of CBP/P300 in nuclear receptor signalling. Nature 383(6595):99–103. doi:10.1038/383099a0

    CAS  PubMed  Google Scholar 

  • Chang L, Loranger SS, Mizzen C, Ernst SG, Allis CD, Annunziato AT (1997) Histones in transit: cytosolic histone complexes and diacetylation of H4 during nucleosome assembly in human cells. Biochemistry 36(3):469–480. doi:10.1021/bi962069i

    CAS  PubMed  Google Scholar 

  • Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y, Evans RM (1997) Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90(3):569–580, S0092-8674(00)80516-4 [pii]

    CAS  PubMed  Google Scholar 

  • Chen CC, Carson JJ, Feser J, Tamburini B, Zabaronick S, Linger J, Tyler JK (2008) Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 134(2):231–243. doi:10.1016/j.cell.2008.06.035, S0092-8674(08)00822-2 [pii]

    CAS  PubMed  Google Scholar 

  • Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5(6):905–915, S1097-2765(00)80256-7 [pii]

    CAS  PubMed  Google Scholar 

  • Cheung WL, Turner FB, Krishnamoorthy T, Wolner B, Ahn SH, Foley M, Dorsey JA, Peterson CL, Berger SL, Allis CD (2005) Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase II in S. cerevisiae. Curr Biol 15(7):656–660. doi:10.1016/j.cub.2005.02.049, S0960-9822(05)00220-4 [pii]

    CAS  PubMed  Google Scholar 

  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840. doi:10.1126/science.1175371, 1175371 [pii]

    CAS  PubMed  Google Scholar 

  • Chung CW, Coste H, White JH, Mirguet O, Wilde J, Gosmini RL, Delves C, Magny SM, Woodward R, Hughes SA, Boursier EV, Flynn H, Bouillot AM, Bamborough P, Brusq JM, Gellibert FJ, Jones EJ, Riou AM, Homes P, Martin SL, Uings IJ, Toum J, Clement CA, Boullay AB, Grimley RL, Blandel FM, Prinjha RK, Lee K, Kirilovsky J, Nicodeme E (2011) Discovery and characterization of small molecule inhibitors of the BET family bromodomains. J Med Chem 54(11):3827–3838. doi:10.1021/jm200108t

    CAS  PubMed  Google Scholar 

  • Ciurciu A, Komonyi O, Boros IM (2008) Loss of ATAC-specific acetylation of histone H4 at Lys12 reduces binding of JIL-1 to chromatin and phosphorylation of histone H3 at Ser10. J Cell Sci 121(Pt 20):3366–3372. doi:10.1242/jcs.028555

    CAS  PubMed  Google Scholar 

  • Clarke DJ, O’Neill LP, Turner BM (1993) Selective use of H4 acetylation sites in the yeast Saccharomyces cerevisiae. Biochem J 294(Pt 2):557–561

    CAS  PubMed  Google Scholar 

  • Clarke AS, Lowell JE, Jacobson SJ, Pillus L (1999) Esa1p is an essential histone acetyltransferase required for cell cycle progression. Mol Cell Biol 19(4):2515–2526

    CAS  PubMed  Google Scholar 

  • Clemente-Ruiz M, Gonzalez-Prieto R, Prado F (2011) Histone H3K56 acetylation, CAF1, and Rtt106 coordinate nucleosome assembly and stability of advancing replication forks. PLoS Genet 7(11):e1002376. doi:10.1371/journal.pgen.1002376

    CAS  PubMed  Google Scholar 

  • Coffey K, Blackburn TJ, Cook S, Golding BT, Griffin RJ, Hardcastle IR, Hewitt L, Huberman K, McNeill HV, Newell DR, Roche C, Ryan-Munden CA, Watson A, Robson CN (2012) Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PLoS One 7(10):e45539. doi:10.1371/journal.pone.0045539, PONE-D-12-11619 [pii]

    CAS  PubMed  Google Scholar 

  • Col E, Caron C, Chable-Bessia C, Legube G, Gazzeri S, Komatsu Y, Yoshida M, Benkirane M, Trouche D, Khochbin S (2005) HIV-1 Tat targets Tip60 to impair the apoptotic cell response to genotoxic stresses. EMBO J 24(14):2634–2645. doi:10.1038/sj.emboj.7600734, 7600734 [pii]

    CAS  PubMed  Google Scholar 

  • Colla S, Tagliaferri S, Morandi F, Lunghi P, Donofrio G, Martorana D, Mancini C, Lazzaretti M, Mazzera L, Ravanetti L, Bonomini S, Ferrari L, Miranda C, Ladetto M, Neri TM, Neri A, Greco A, Mangoni M, Bonati A, Rizzoli V, Giuliani N (2007) The new tumor-suppressor gene inhibitor of growth family member 4 (ING4) regulates the production of proangiogenic molecules by myeloma cells and suppresses hypoxia-inducible factor-1 alpha (HIF-1alpha) activity: involvement in myeloma-induced angiogenesis. Blood 110(13):4464–4475. doi:10.1182/blood-2007-02-074617

    CAS  PubMed  Google Scholar 

  • Collins N, Poot RA, Kukimoto I, Garcia-Jimenez C, Dellaire G, Varga-Weisz PD (2002) An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat Genet 32(4):627–632. doi:10.1038/ng1046, ng1046 [pii]

    CAS  PubMed  Google Scholar 

  • Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS, Schuldiner M, Gebbia M, Recht J, Shales M, Ding H, Xu H, Han J, Ingvarsdottir K, Cheng B, Andrews B, Boone C, Berger SL, Hieter P, Zhang Z, Brown GW, Ingles CJ, Emili A, Allis CD, Toczyski DP, Weissman JS, Greenblatt JF, Krogan NJ (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446(7137):806–810. doi:10.1038/nature05649

    CAS  PubMed  Google Scholar 

  • Cosgrove MS, Boeke JD, Wolberger C (2004) Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol 11(11):1037–1043. doi:10.1038/nsmb851

    CAS  PubMed  Google Scholar 

  • Costi R, Di Santo R, Artico M, Miele G, Valentini P, Novellino E, Cereseto A (2007) Cinnamoyl compounds as simple molecules that inhibit p300 histone acetyltransferase. J Med Chem 50(8):1973–1977. doi:10.1021/jm060943s

    CAS  PubMed  Google Scholar 

  • Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107(50):21931–21936. doi:10.1073/pnas.1016071107

    CAS  PubMed  Google Scholar 

  • Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, Kaeberlein M, Kennedy BK, Berger SL (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459(7248):802–807. doi:10.1038/nature08085

    CAS  PubMed  Google Scholar 

  • Das C, Lucia MS, Hansen KC, Tyler JK (2009) CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 459(7243):113–117. doi:10.1038/nature07861, nature07861 [pii]

    CAS  PubMed  Google Scholar 

  • Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, Robson SC, Chung CW, Hopf C, Savitski MM, Huthmacher C, Gudgin E, Lugo D, Beinke S, Chapman TD, Roberts EJ, Soden PE, Auger KR, Mirguet O, Doehner K, Delwel R, Burnett AK, Jeffrey P, Drewes G, Lee K, Huntly BJ, Kouzarides T (2011) Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478(7370):529–533. doi:10.1038/nature10509, nature10509 [pii]

    CAS  PubMed  Google Scholar 

  • Deckert J, Struhl K (2002) Targeted recruitment of Rpd3 histone deacetylase represses transcription by inhibiting recruitment of Swi/Snf, SAGA, and TATA binding protein. Mol Cell Biol 22(18):6458–6470

    CAS  PubMed  Google Scholar 

  • Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6):904–917. doi:10.1016/j.cell.2011.08.017, S0092-8674(11)00943-3 [pii]

    CAS  PubMed  Google Scholar 

  • Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399(6735):491–496. doi:10.1038/20974

    CAS  PubMed  Google Scholar 

  • Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125(3):497–508. doi:10.1016/j.cell.2006.03.033, S0092-8674(06)00444-2 [pii]

    CAS  PubMed  Google Scholar 

  • Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ (2012) The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 48(4):612–626. doi:10.1016/j.molcel.2012.08.033

    CAS  PubMed  Google Scholar 

  • Dorigo B, Schalch T, Bystricky K, Richmond TJ (2003) Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J Mol Biol 327(1):85–96, S0022283603000251 [pii]

    CAS  PubMed  Google Scholar 

  • Dou Y, Milne TA, Tackett AJ, Smith ER, Fukuda A, Wysocka J, Allis CD, Chait BT, Hess JL, Roeder RG (2005) Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121(6):873–885. doi:10.1016/j.cell.2005.04.031, S0092-8674(05)00449-6 [pii]

    CAS  PubMed  Google Scholar 

  • Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N, Kron SJ, Jackson SP, Cote J (2004) Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 16(6):979–990. doi:10.1016/j.molcel.2004.12.003, S1097276504007580 [pii]

    CAS  PubMed  Google Scholar 

  • Doyon Y, Selleck W, Lane WS, Tan S, Cote J (2004) Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 24(5):1884–1896

    CAS  PubMed  Google Scholar 

  • Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W, Lane WS, Tan S, Yang XJ, Cote J (2006) ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21(1):51–64. doi:10.1016/j.molcel.2005.12.007, S1097-2765(05)01849-6 [pii]

    CAS  PubMed  Google Scholar 

  • Draker R, Ng MK, Sarcinella E, Ignatchenko V, Kislinger T, Cheung P (2012) A combination of H2A.Z and H4 acetylation recruits Brd2 to chromatin during transcriptional activation. PLoS Genet 8(11):e1003047, PGENETICS-D-12-00790 [pii]

    CAS  PubMed  Google Scholar 

  • Driscoll R, Hudson A, Jackson SP (2007) Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315(5812):649–652. doi:10.1126/science.1135862, 315/5812/649 [pii]

    CAS  PubMed  Google Scholar 

  • Drogaris P, Villeneuve V, Pomies C, Lee EH, Bourdeau V, Bonneil E, Ferbeyre G, Verreault A, Thibault P (2012) Histone deacetylase inhibitors globally enhance h3/h4 tail acetylation without affecting h3 lysine 56 acetylation. Sci Rep 2:220. doi:10.1038/srep00220

    PubMed  Google Scholar 

  • Durant M, Pugh BF (2007) NuA4-directed chromatin transactions throughout the Saccharomyces cerevisiae genome. Mol Cell Biol 27(15):5327–5335. doi:10.1128/MCB.00468-07

    CAS  PubMed  Google Scholar 

  • Dutnall RN, Tafrov ST, Sternglanz R, Ramakrishnan V (1998) Structure of the histone acetyltransferase Hat1: a paradigm for the GCN5-related N-acetyltransferase superfamily. Cell 94(4):427–438, S0092-8674(00)81584-6 [pii]

    CAS  PubMed  Google Scholar 

  • Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C, Chiao JH, Reilly JF, Ricker JL, Richon VM, Frankel SR (2007) Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109(1):31–39. doi:10.1182/blood-2006-06-025999, blood-2006-06-025999 [pii]

    CAS  PubMed  Google Scholar 

  • Edmondson DG, Davie JK, Zhou J, Mirnikjoo B, Tatchell K, Dent SY (2002) Site-specific loss of acetylation upon phosphorylation of histone H3. J Biol Chem 277(33):29496–29502. doi:10.1074/jbc.M200651200, M200651200 [pii]

    CAS  PubMed  Google Scholar 

  • Ekwall K, Olsson T, Turner BM, Cranston G, Allshire RC (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91(7):1021–1032

    CAS  PubMed  Google Scholar 

  • Erkmann JA, Kaufman PD (2009) A negatively charged residue in place of histone H3K56 supports chromatin assembly factor association but not genotoxic stress resistance. DNA Repair (Amst) 8(12):1371–1379. doi:10.1016/j.dnarep.2009.09.004

    CAS  Google Scholar 

  • Fazly A, Li Q, Hu Q, Mer G, Horazdovsky B, Zhang Z (2012) Histone chaperone Rtt106 promotes nucleosome formation using (H3-H4)2 tetramers. J Biol Chem 287(14):10753–10760. doi:10.1074/jbc.M112.347450

    CAS  PubMed  Google Scholar 

  • Fazzio TG, Huff JT, Panning B (2008a) Chromatin regulation Tip(60)s the balance in embryonic stem cell self-renewal. Cell Cycle 7(21):3302–3306, 6928 [pii]

    CAS  PubMed  Google Scholar 

  • Fazzio TG, Huff JT, Panning B (2008b) An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity. Cell 134(1):162–174. doi:10.1016/j.cell.2008.05.031, S0092-8674(08)00692-2 [pii]

    CAS  PubMed  Google Scholar 

  • Feser J, Truong D, Das C, Carson JJ, Kieft J, Harkness T, Tyler JK (2010) Elevated histone expression promotes life span extension. Mol Cell 39(5):724–735. doi:10.1016/j.molcel.2010.08.015

    CAS  PubMed  Google Scholar 

  • Filippakopoulos P, Knapp S (2012) The bromodomain interaction module. FEBS Lett 586(17):2692–2704. doi:10.1016/j.febslet.2012.04.045, S0014-5793(12)00334-1 [pii]

    CAS  PubMed  Google Scholar 

  • Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE (2010) Selective inhibition of BET bromodomains. Nature 468(7327):1067–1073. doi:10.1038/nature09504, nature09504 [pii]

    CAS  PubMed  Google Scholar 

  • Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Muller S, Pawson T, Gingras AC, Arrowsmith CH, Knapp S (2012) Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149(1):214–231. doi:10.1016/j.cell.2012.02.013, S0092-8674(12)00213-9 [pii]

    CAS  PubMed  Google Scholar 

  • Fillingham J, Recht J, Silva AC, Suter B, Emili A, Stagljar I, Krogan NJ, Allis CD, Keogh MC, Greenblatt JF (2008) Chaperone control of the activity and specificity of the histone H3 acetyltransferase Rtt109. Mol Cell Biol 28(13):4342–4353. doi:10.1128/MCB.00182-08, MCB.00182-08 [pii]

    CAS  PubMed  Google Scholar 

  • Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401(6749):188–193. doi:10.1038/43710

    CAS  PubMed  Google Scholar 

  • Fischer U, Meltzer P, Meese E (1996) Twelve amplified and expressed genes localized in a single domain in glioma. Hum Genet 98(5):625–628

    CAS  PubMed  Google Scholar 

  • Fischer U, Heckel D, Michel A, Janka M, Hulsebos T, Meese E (1997) Cloning of a novel transcription factor-like gene amplified in human glioma including astrocytoma grade I. Hum Mol Genet 6(11):1817–1822, dda232 [pii]

    CAS  PubMed  Google Scholar 

  • Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH (2007) Recovery of learning and memory is associated with chromatin remodelling. Nature 447(7141):178–182. doi:10.1038/nature05772

    CAS  PubMed  Google Scholar 

  • Fishburn J, Mohibullah N, Hahn S (2005) Function of a eukaryotic transcription activator during the transcription cycle. Mol Cell 18(3):369–378. doi:10.1016/j.molcel.2005.03.029

    CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Perez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400. doi:10.1038/ng1531, ng1531 [pii]

    CAS  PubMed  Google Scholar 

  • French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA (2003) BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res 63(2):304–307

    CAS  PubMed  Google Scholar 

  • French CA, Ramirez CL, Kolmakova J, Hickman TT, Cameron MJ, Thyne ME, Kutok JL, Toretsky JA, Tadavarthy AK, Kees UR, Fletcher JA, Aster JC (2008) BRD-NUT oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells. Oncogene 27(15):2237–2242. doi:10.1038/sj.onc.1210852, 1210852 [pii]

    CAS  PubMed  Google Scholar 

  • Friis RM, Wu BP, Reinke SN, Hockman DJ, Sykes BD, Schultz MC (2009) A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA. Nucleic Acids Res 37(12):3969–3980. doi:10.1093/nar/gkp270

    CAS  PubMed  Google Scholar 

  • Fuchs M, Gerber J, Drapkin R, Sif S, Ikura T, Ogryzko V, Lane WS, Nakatani Y, Livingston DM (2001) The p400 complex is an essential E1A transformation target. Cell 106(3):297–307

    CAS  PubMed  Google Scholar 

  • Furumai R, Matsuyama A, Kobashi N, Lee KH, Nishiyama M, Nakajima H, Tanaka A, Komatsu Y, Nishino N, Yoshida M, Horinouchi S (2002) FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res 62(17):4916–4921

    CAS  PubMed  Google Scholar 

  • Galarneau L, Nourani A, Boudreault AA, Zhang Y, Heliot L, Allard S, Savard J, Lane WS, Stillman DJ, Cote J (2000) Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Mol Cell 5(6):927–937

    CAS  PubMed  Google Scholar 

  • Gao L, Cueto MA, Asselbergs F, Atadja P (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277(28):25748–25755. doi:10.1074/jbc.M111871200, M111871200 [pii]

    CAS  PubMed  Google Scholar 

  • Garcia-Ramirez M, Dong F, Ausio J (1992) Role of the histone “tails” in the folding of oligonucleosomes depleted of histone H1. J Biol Chem 267(27):19587–19595

    CAS  PubMed  Google Scholar 

  • Garcia-Ramirez M, Rocchini C, Ausio J (1995) Modulation of chromatin folding by histone acetylation. J Biol Chem 270(30):17923–17928

    CAS  PubMed  Google Scholar 

  • Garkavtsev I, Kozin SV, Chernova O, Xu L, Winkler F, Brown E, Barnett GH, Jain RK (2004) The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature 428(6980):328–332. doi:10.1038/nature02329

    CAS  PubMed  Google Scholar 

  • Gatta R, Dolfini D, Zambelli F, Imbriano C, Pavesi G, Mantovani R (2011) An acetylation-mono-ubiquitination switch on lysine 120 of H2B. Epigenetics 6(5):630–637

    CAS  PubMed  Google Scholar 

  • Ge Z, Wang H, Parthun MR (2011) Nuclear Hat1p complex (NuB4) components participate in DNA repair-linked chromatin reassembly. J Biol Chem 286(19):16790–16799. doi:10.1074/jbc.M110.216846, M110.216846 [pii]

    CAS  PubMed  Google Scholar 

  • Ginsburg DS, Govind CK, Hinnebusch AG (2009) NuA4 lysine acetyltransferase Esa1 is targeted to coding regions and stimulates transcription elongation with Gcn5. Mol Cell Biol 29(24):6473–6487. doi:10.1128/MCB.01033-09

    CAS  PubMed  Google Scholar 

  • Gordon F, Luger K, Hansen JC (2005) The core histone N-terminal tail domains function independently and additively during salt-dependent oligomerization of nucleosomal arrays. J Biol Chem 280(40):33701–33706. doi:10.1074/jbc.M507048200, M507048200 [pii]

    CAS  PubMed  Google Scholar 

  • Gorisch SM, Wachsmuth M, Toth KF, Lichter P, Rippe K (2005) Histone acetylation increases chromatin accessibility. J Cell Sci 118(Pt 24):5825–5834. doi:10.1242/jcs.02689, jcs.02689 [pii]

    PubMed  Google Scholar 

  • Gorrini C, Squatrito M, Luise C, Syed N, Perna D, Wark L, Martinato F, Sardella D, Verrecchia A, Bennett S, Confalonieri S, Cesaroni M, Marchesi F, Gasco M, Scanziani E, Capra M, Mai S, Nuciforo P, Crook T, Lough J, Amati B (2007) Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448(7157):1063–1067. doi:10.1038/nature06055

    CAS  PubMed  Google Scholar 

  • Govind CK, Zhang F, Qiu H, Hofmeyer K, Hinnebusch AG (2007) Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions. Mol Cell 25(1):31–42. doi:10.1016/j.molcel.2006.11.020, S1097-2765(06)00814-8 [pii]

    CAS  PubMed  Google Scholar 

  • Graff J, Tsai LH (2013) Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci 14(2):97–111. doi:10.1038/nrn3427

    PubMed  Google Scholar 

  • Graff J, Rei D, Guan JS, Wang WY, Seo J, Hennig KM, Nieland TJ, Fass DM, Kao PF, Kahn M, Su SC, Samiei A, Joseph N, Haggarty SJ, Delalle I, Tsai LH (2012) An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483(7388):222–226. doi:10.1038/nature10849

    PubMed  Google Scholar 

  • Grant PA, Duggan L, Cote J, Roberts SM, Brownell JE, Candau R, Ohba R, Owen-Hughes T, Allis CD, Winston F, Berger SL, Workman JL (1997) Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev 11(13):1640–1650

    CAS  PubMed  Google Scholar 

  • Grant PA, Eberharter A, John S, Cook RG, Turner BM, Workman JL (1999) Expanded lysine acetylation specificity of Gcn5 in native complexes. J Biol Chem 274(9):5895–5900

    CAS  PubMed  Google Scholar 

  • Green EM, Antczak AJ, Bailey AO, Franco AA, Wu KJ, Yates JR III, Kaufman PD (2005) Replication-independent histone deposition by the HIR complex and Asf1. Curr Biol 15(22):2044–2049. doi:10.1016/j.cub.2005.10.053

    CAS  PubMed  Google Scholar 

  • Green EM, Mas G, Young NL, Garcia BA, Gozani O (2012) Methylation of H4 lysines 5, 8 and 12 by yeast Set5 calibrates chromatin stress responses. Nat Struct Mol Biol 19(3):361–363. doi:10.1038/nsmb.2252

    CAS  PubMed  Google Scholar 

  • Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338(1):17–31. doi:10.1016/j.jmb.2004.02.006, S0022283604001408 [pii]

    CAS  PubMed  Google Scholar 

  • Grewal SI, Bonaduce MJ, Klar AJ (1998) Histone deacetylase homologs regulate epigenetic inheritance of transcriptional silencing and chromosome segregation in fission yeast. Genetics 150(2):563–576

    CAS  PubMed  Google Scholar 

  • Gross DS, Garrard WT (1988) Nuclease hypersensitive sites in chromatin. Annu Rev Biochem 57:159–197. doi:10.1146/annurev.bi.57.070188.001111

    CAS  PubMed  Google Scholar 

  • Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJ, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai LH (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459(7243):55–60. doi:10.1038/nature07925

    CAS  PubMed  Google Scholar 

  • Guarente L, Picard F (2005) Calorie restriction – the SIR2 connection. Cell 120(4):473–482. doi:10.1016/j.cell.2005.01.029

    CAS  PubMed  Google Scholar 

  • Guenther MG, Barak O, Lazar MA (2001) The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 21(18):6091–6101

    CAS  PubMed  Google Scholar 

  • Guillemette B, Bataille AR, Gevry N, Adam M, Blanchette M, Robert F, Gaudreau L (2005) Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol 3(12):e384

    PubMed  Google Scholar 

  • Guillemette B, Drogaris P, Lin HH, Armstrong H, Hiragami-Hamada K, Imhof A, Bonneil E, Thibault P, Verreault A, Festenstein RJ (2011) H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation. PLoS Genet 7(3):e1001354. doi:10.1371/journal.pgen.1001354

    CAS  PubMed  Google Scholar 

  • Gunduz M, Ouchida M, Fukushima K, Ito S, Jitsumori Y, Nakashima T, Nagai N, Nishizaki K, Shimizu K (2002) Allelic loss and reduced expression of the ING3, a candidate tumor suppressor gene at 7q31, in human head and neck cancers. Oncogene 21(28):4462–4470. doi:10.1038/sj.onc.1205540

    CAS  PubMed  Google Scholar 

  • Gunduz M, Nagatsuka H, Demircan K, Gunduz E, Cengiz B, Ouchida M, Tsujigiwa H, Yamachika E, Fukushima K, Beder L, Hirohata S, Ninomiya Y, Nishizaki K, Shimizu K, Nagai N (2005) Frequent deletion and down-regulation of ING4, a candidate tumor suppressor gene at 12p13, in head and neck squamous cell carcinomas. Gene 356:109–117. doi:10.1016/j.gene.2005.02.014, S0378-1119(05)00084-3 [pii]

    CAS  PubMed  Google Scholar 

  • Guo R, Chen J, Mitchell DL, Johnson DG (2011) GCN5 and E2F1 stimulate nucleotide excision repair by promoting H3K9 acetylation at sites of damage. Nucleic Acids Res 39(4):1390–1397. doi:10.1093/nar/gkq983, gkq983 [pii]

    CAS  PubMed  Google Scholar 

  • Hake SB, Garcia BA, Duncan EM, Kauer M, Dellaire G, Shabanowitz J, Bazett-Jones DP, Allis CD, Hunt DF (2006) Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 281(1):559–568. doi:10.1074/jbc.M509266200, M509266200 [pii]

    CAS  PubMed  Google Scholar 

  • Halkidou K, Gnanapragasam VJ, Mehta PB, Logan IR, Brady ME, Cook S, Leung HY, Neal DE, Robson CN (2003) Expression of Tip60, an androgen receptor coactivator, and its role in prostate cancer development. Oncogene 22(16):2466–2477. doi:10.1038/sj.onc.1206342, 1206342 [pii]

    CAS  PubMed  Google Scholar 

  • Halley JE, Kaplan T, Wang AY, Kobor MS, Rine J (2010) Roles for H2A.Z and its acetylation in GAL1 transcription and gene induction, but not GAL1-transcriptional memory. PLoS Biol 8(6):e1000401

    PubMed  Google Scholar 

  • Han J, Zhou H, Horazdovsky B, Zhang K, Xu RM, Zhang Z (2007a) Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315(5812):653–655. doi:10.1126/science.1133234, 315/5812/653 [pii]

    CAS  PubMed  Google Scholar 

  • Han J, Zhou H, Li Z, Xu RM, Zhang Z (2007b) The Rtt109-Vps75 histone acetyltransferase complex acetylates non-nucleosomal histone H3. J Biol Chem 282(19):14158–14164. doi:10.1074/jbc.M700611200, M700611200 [pii]

    CAS  PubMed  Google Scholar 

  • Hardy S, Jacques PE, Gevry N, Forest A, Fortin ME, Laflamme L, Gaudreau L, Robert F (2009) The euchromatic and heterochromatic landscapes are shaped by antagonizing effects of transcription on H2A.Z deposition. PLoS Genet 5(10):e1000687

    PubMed  Google Scholar 

  • Hassan AH, Prochasson P, Neely KE, Galasinski SC, Chandy M, Carrozza MJ, Workman JL (2002) Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111(3):369–379, S009286740201005X [pii]

    CAS  PubMed  Google Scholar 

  • Hassan AH, Awad S, Prochasson P (2006) The Swi2/Snf2 bromodomain is required for the displacement of SAGA and the octamer transfer of SAGA-acetylated nucleosomes. J Biol Chem 281(26):18126–18134. doi:10.1074/jbc.M602851200

    CAS  PubMed  Google Scholar 

  • Hayakawa T, Ohtani Y, Hayakawa N, Shinmyozu K, Saito M, Ishikawa F, Nakayama J (2007) RBP2 is an MRG15 complex component and down-regulates intragenic histone H3 lysine 4 methylation. Genes Cells 12(6):811–826. doi:10.1111/j.1365-2443.2007.01089.x

    CAS  PubMed  Google Scholar 

  • Hayes JJ, Clark DJ, Wolffe AP (1991) Histone contributions to the structure of DNA in the nucleosome. Proc Natl Acad Sci U S A 88(15):6829–6833

    CAS  PubMed  Google Scholar 

  • Haynes SR, Dollard C, Winston F, Beck S, Trowsdale J, Dawid IB (1992) The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res 20(10):2603

    CAS  PubMed  Google Scholar 

  • Hebbes TR, Thorne AW, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7(5):1395–1402

    CAS  PubMed  Google Scholar 

  • Hebbes TR, Thorne AW, Clayton AL, Crane-Robinson C (1992) Histone acetylation and globin gene switching. Nucleic Acids Res 20(5):1017–1022

    CAS  PubMed  Google Scholar 

  • Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC (1997) mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 16(8):2054–2060. doi:10.1093/emboj/16.8.2054

    CAS  PubMed  Google Scholar 

  • Hobbs CA, Wei G, DeFeo K, Paul B, Hayes CS, Gilmour SK (2006) Tip60 protein isoforms and altered function in skin and tumors that overexpress ornithine decarboxylase. Cancer Res 66(16):8116–8122. doi:10.1158/0008-5472.CAN-06-0359, 66/16/8116 [pii]

    CAS  PubMed  Google Scholar 

  • Hook SS, Orian A, Cowley SM, Eisenman RN (2002) Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes. Proc Natl Acad Sci U S A 99(21):13425–13430. doi:10.1073/pnas.172511699, 172511699 [pii]

    CAS  PubMed  Google Scholar 

  • Howe L, Auston D, Grant P, John S, Cook RG, Workman JL, Pillus L (2001) Histone H3 specific acetyltransferases are essential for cell cycle progression. Genes Dev 15(23):3144–3154. doi:10.1101/gad.931401

    CAS  PubMed  Google Scholar 

  • Hsiao KY, Mizzen CA (2013) Histone H4 deacetylation facilitates 53BP1 DNA damage signaling and double-strand break repair. J Mol Cell Biol 5:157–165. doi:10.1093/jmcb/mjs066

    CAS  PubMed  Google Scholar 

  • Hsieh YJ, Kundu TK, Wang Z, Kovelman R, Roeder RG (1999) The TFIIIC90 subunit of TFIIIC interacts with multiple components of the RNA polymerase III machinery and contains a histone-specific acetyltransferase activity. Mol Cell Biol 19(11):7697–7704

    CAS  PubMed  Google Scholar 

  • Huisinga KL, Pugh BF (2004) A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol Cell 13(4):573–585

    CAS  PubMed  Google Scholar 

  • Hung T, Binda O, Champagne KS, Kuo AJ, Johnson K, Chang HY, Simon MD, Kutateladze TG, Gozani O (2009) ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell 33(2):248–256. doi:10.1016/j.molcel.2008.12.016

    CAS  PubMed  Google Scholar 

  • Hyland EM, Cosgrove MS, Molina H, Wang D, Pandey A, Cottee RJ, Boeke JD (2005) Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol Cell Biol 25(22):10060–10070. doi:10.1128/MCB.25.22.10060-10070.2005, 25/22/10060 [pii]

    CAS  PubMed  Google Scholar 

  • Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M, Ohki M, Hayashi Y (1997) Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood 90(12):4699–4704

    CAS  PubMed  Google Scholar 

  • Ikeda K, Steger DJ, Eberharter A, Workman JL (1999) Activation domain-specific and general transcription stimulation by native histone acetyltransferase complexes. Mol Cell Biol 19(1):855–863

    CAS  PubMed  Google Scholar 

  • Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y (2000) Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102(4):463–473, S0092-8674(00)00051-9 [pii]

    CAS  PubMed  Google Scholar 

  • Ikura T, Tashiro S, Kakino A, Shima H, Jacob N, Amunugama R, Yoder K, Izumi S, Kuraoka I, Tanaka K, Kimura H, Ikura M, Nishikubo S, Ito T, Muto A, Miyagawa K, Takeda S, Fishel R, Igarashi K, Kamiya K (2007) DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol Cell Biol 27(20):7028–7040. doi:10.1128/MCB.00579-07, MCB.00579-07 [pii]

    CAS  PubMed  Google Scholar 

  • Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403(6771):795–800. doi:10.1038/35001622

    CAS  PubMed  Google Scholar 

  • Inoue A, Fujimoto D (1969) Enzymatic deacetylation of histone. Biochem Biophys Res Commun 36(1):146–150, 0006-291X(69)90661-5 [pii]

    CAS  PubMed  Google Scholar 

  • Ishimi Y, Kikuchi A (1991) Identification and molecular cloning of yeast homolog of nucleosome assembly protein I which facilitates nucleosome assembly in vitro. J Biol Chem 266(11):7025–7029

    CAS  PubMed  Google Scholar 

  • Ito T, Tyler JK, Kadonaga JT (1997) Chromatin assembly factors: a dual function in nucleosome formation and mobilization? Genes Cells 2(10):593–600

    CAS  PubMed  Google Scholar 

  • Ito T, Ikehara T, Nakagawa T, Kraus WL, Muramatsu M (2000) p300-mediated acetylation facilitates the transfer of histone H2A-H2B dimers from nucleosomes to a histone chaperone. Genes Dev 14(15):1899–1907

    CAS  PubMed  Google Scholar 

  • Ito K, Charron CE, Adcock IM (2007) Impact of protein acetylation in inflammatory lung diseases. Pharmacol Ther 116(2):249–265. doi:10.1016/j.pharmthera.2007.06.009, S0163-7258(07)00149-0 [pii]

    CAS  PubMed  Google Scholar 

  • Ivanovska I, Khandan T, Ito T, Orr-Weaver TL (2005) A histone code in meiosis: the histone kinase, NHK-1, is required for proper chromosomal architecture in Drosophila oocytes. Genes Dev 19(21):2571–2582. doi:10.1101/gad.1348905, gad.1348905 [pii]

    CAS  PubMed  Google Scholar 

  • Iyer NG, Ozdag H, Caldas C (2004) p300/CBP and cancer. Oncogene 23(24):4225–4231. doi:10.1038/sj.onc.1207118, 1207118 [pii]

    CAS  PubMed  Google Scholar 

  • Jackson V, Shires A, Tanphaichitr N, Chalkley R (1976) Modifications to histones immediately after synthesis. J Mol Biol 104(2):471–483

    CAS  PubMed  Google Scholar 

  • Jacobson RH, Ladurner AG, King DS, Tjian R (2000) Structure and function of a human TAFII250 double bromodomain module. Science 288(5470):1422–1425, 8538 [pii]

    CAS  PubMed  Google Scholar 

  • Jang MK, Mochizuki K, Zhou M, Jeong HS, Brady JN, Ozato K (2005) The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 19(4):523–534. doi:10.1016/j.molcel.2005.06.027

    CAS  PubMed  Google Scholar 

  • Jasencakova Z, Scharf AN, Ask K, Corpet A, Imhof A, Almouzni G, Groth A (2010) Replication stress interferes with histone recycling and predeposition marking of new histones. Mol Cell 37(5):736–743. doi:10.1016/j.molcel.2010.01.033

    CAS  PubMed  Google Scholar 

  • Jazayeri A, McAinsh AD, Jackson SP (2004) Saccharomyces cerevisiae Sin3p facilitates DNA double-strand break repair. Proc Natl Acad Sci U S A 101(6):1644–1649. doi:10.1073/pnas.0304797101

    CAS  PubMed  Google Scholar 

  • Jelinic P, Pellegrino J, David G (2011) A novel mammalian complex containing Sin3B mitigates histone acetylation and RNA polymerase II progression within transcribed loci. Mol Cell Biol 31(1):54–62. doi:10.1128/MCB.00840-10

    CAS  PubMed  Google Scholar 

  • Jeppesen P, Mitchell A, Turner B, Perry P (1992) Antibodies to defined histone epitopes reveal variations in chromatin conformation and underacetylation of centric heterochromatin in human metaphase chromosomes. Chromosoma 101(5–6):322–332

    CAS  PubMed  Google Scholar 

  • Jha S, Shibata E, Dutta A (2008) Human Rvb1/Tip49 is required for the histone acetyltransferase activity of Tip60/NuA4 and for the downregulation of phosphorylation on H2AX after DNA damage. Mol Cell Biol 28(8):2690–2700. doi:10.1128/MCB.01983-07

    CAS  PubMed  Google Scholar 

  • Jha S, Vande Pol S, Banerjee NS, Dutta AB, Chow LT, Dutta A (2010) Destabilization of TIP60 by human papillomavirus E6 results in attenuation of TIP60-dependent transcriptional regulation and apoptotic pathway. Mol Cell 38(5):700–711. doi:10.1016/j.molcel.2010.05.020

    CAS  PubMed  Google Scholar 

  • Jiang G, Yang F, Sanchez C, Ehrlich M (2004) Histone modification in constitutive heterochromatin versus unexpressed euchromatin in human cells. J Cell Biochem 93(2):286–300. doi:10.1002/jcb.20146

    CAS  PubMed  Google Scholar 

  • Jiang X, Xu Y, Price BD (2010) Acetylation of H2AX on lysine 36 plays a key role in the DNA double-strand break repair pathway. FEBS Lett 584(13):2926–2930. doi:10.1016/j.febslet.2010.05.017, S0014-5793(10)00410-2 [pii]

    CAS  PubMed  Google Scholar 

  • John S, Howe L, Tafrov ST, Grant PA, Sternglanz R, Workman JL (2000) The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev 14(10):1196–1208

    CAS  PubMed  Google Scholar 

  • Johnson CA, O’Neill LP, Mitchell A, Turner BM (1998) Distinctive patterns of histone H4 acetylation are associated with defined sequence elements within both heterochromatic and euchromatic regions of the human genome. Nucleic Acids Res 26(4):994–1001

    CAS  PubMed  Google Scholar 

  • Joshi AA, Struhl K (2005) Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell 20(6):971–978. doi:10.1016/j.molcel.2005.11.021, S1097-2765(05)01808-3 [pii]

    CAS  PubMed  Google Scholar 

  • Kadosh D, Struhl K (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89(3):365–371, S0092-8674(00)80217-2 [pii]

    CAS  PubMed  Google Scholar 

  • Kadosh D, Struhl K (1998) Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol Cell Biol 18(9):5121–5127

    CAS  PubMed  Google Scholar 

  • Kamine J, Elangovan B, Subramanian T, Coleman D, Chinnadurai G (1996) Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1 Tat transactivator. Virology 216(2):357–366. doi:10.1006/viro.1996.0071, S0042-6822(96)90071-9 [pii]

    CAS  PubMed  Google Scholar 

  • Kan PY, Caterino TL, Hayes JJ (2009) The H4 tail domain participates in intra- and internucleosome interactions with protein and DNA during folding and oligomerization of nucleosome arrays. Mol Cell Biol 29(2):538–546. doi:10.1128/MCB.01343-08, MCB.01343-08 [pii]

    CAS  PubMed  Google Scholar 

  • Kanno T, Kanno Y, Siegel RM, Jang MK, Lenardo MJ, Ozato K (2004) Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol Cell 13(1):33–43, S1097276503004829 [pii]

    CAS  PubMed  Google Scholar 

  • Kasten M, Szerlong H, Erdjument-Bromage H, Tempst P, Werner M, Cairns BR (2004) Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J 23(6):1348–1359. doi:10.1038/sj.emboj.7600143, 7600143 [pii]

    CAS  PubMed  Google Scholar 

  • Kaufman PD, Kobayashi R, Kessler N, Stillman B (1995) The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication. Cell 81(7):1105–1114

    CAS  PubMed  Google Scholar 

  • Keck KM, Pemberton LF (2011) Interaction with the histone chaperone Vps75 promotes nuclear localization and HAT activity of Rtt109 in vivo. Traffic 12(7):826–839. doi:10.1111/j.1600-0854.2011.01202.x

    CAS  PubMed  Google Scholar 

  • Kelley RL, Solovyeva I, Lyman LM, Richman R, Solovyev V, Kuroda MI (1995) Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell 81(6):867–877, 0092-8674(95)90007-1 [pii]

    CAS  PubMed  Google Scholar 

  • Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V, Collins SR, Schuldiner M, Chin K, Punna T, Thompson NJ, Boone C, Emili A, Weissman JS, Hughes TR, Strahl BD, Grunstein M, Greenblatt JF, Buratowski S, Krogan NJ (2005) Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123(4):593–605. doi:10.1016/j.cell.2005.10.025, S0092-8674(05)01159-1 [pii]

    CAS  PubMed  Google Scholar 

  • Keogh MC, Mennella TA, Sawa C, Berthelet S, Krogan NJ, Wolek A, Podolny V, Carpenter LR, Greenblatt JF, Baetz K, Buratowski S (2006) The Saccharomyces cerevisiae histone H2A variant Htz1 is acetylated by NuA4. Genes Dev 20(6):660–665. doi:10.1101/gad.1388106, 20/6/660 [pii]

    CAS  PubMed  Google Scholar 

  • Khan O, La Thangue NB (2012) HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunol Cell Biol 90(1):85–94. doi:10.1038/icb.2011.100, icb2011100 [pii]

    CAS  PubMed  Google Scholar 

  • Kim JA, Haber JE (2009) Chromatin assembly factors Asf1 and CAF-1 have overlapping roles in deactivating the DNA damage checkpoint when DNA repair is complete. Proc Natl Acad Sci U S A 106(4):1151–1156. doi:10.1073/pnas.0812578106, 0812578106 [pii]

    CAS  PubMed  Google Scholar 

  • Kim S, Chin K, Gray JW, Bishop JM (2004) A screen for genes that suppress loss of contact inhibition: identification of ING4 as a candidate tumor suppressor gene in human cancer. Proc Natl Acad Sci U S A 101(46):16251–16256. doi:10.1073/pnas.0407158101

    CAS  PubMed  Google Scholar 

  • Kim HS, Vanoosthuyse V, Fillingham J, Roguev A, Watt S, Kislinger T, Treyer A, Carpenter LR, Bennett CS, Emili A, Greenblatt JF, Hardwick KG, Krogan NJ, Bahler J, Keogh MC (2009) An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe. Nat Struct Mol Biol 16(12):1286–1293. doi:10.1038/nsmb.1688

    CAS  PubMed  Google Scholar 

  • Kind J, Vaquerizas JM, Gebhardt P, Gentzel M, Luscombe NM, Bertone P, Akhtar A (2008) Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila. Cell 133(5):813–828. doi:10.1016/j.cell.2008.04.036, S0092-8674(08)00610-7 [pii]

    CAS  PubMed  Google Scholar 

  • Kishimoto M, Kohno T, Okudela K, Otsuka A, Sasaki H, Tanabe C, Sakiyama T, Hirama C, Kitabayashi I, Minna JD, Takenoshita S, Yokota J (2005) Mutations and deletions of the CBP gene in human lung cancer. Clin Cancer Res 11(2 Pt 1):512–519, 11/2/512 [pii]

    CAS  PubMed  Google Scholar 

  • Kleff S, Andrulis ED, Anderson CW, Sternglanz R (1995) Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem 270(42):24674–24677

    CAS  PubMed  Google Scholar 

  • Knutson BA, Hahn S (2011) Domains of Tra1 important for activator recruitment and transcription coactivator functions of SAGA and NuA4 complexes. Mol Cell Biol 31(4):818–831. doi:10.1128/MCB.00687-10

    CAS  PubMed  Google Scholar 

  • Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184(4139):868–871

    CAS  PubMed  Google Scholar 

  • Krajewski WA, Becker PB (1998) Reconstitution of hyperacetylated, DNase I-sensitive chromatin characterized by high conformational flexibility of nucleosomal DNA. Proc Natl Acad Sci U S A 95(4):1540–1545

    CAS  PubMed  Google Scholar 

  • Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637–643. doi:10.1038/nature04670

    CAS  PubMed  Google Scholar 

  • Kueh AJ, Dixon MP, Voss AK, Thomas T (2011) HBO1 is required for H3K14 acetylation and normal transcriptional activity during embryonic development. Mol Cell Biol 31(4):845–860. doi:10.1128/MCB.00159-10

    CAS  PubMed  Google Scholar 

  • Kundu TK, Wang Z, Roeder RG (1999) Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity. Mol Cell Biol 19(2):1605–1615

    CAS  PubMed  Google Scholar 

  • Kuo MH, Brownell JE, Sobel RE, Ranalli TA, Cook RG, Edmondson DG, Roth SY, Allis CD (1996) Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383(6597):269–272. doi:10.1038/383269a0

    CAS  PubMed  Google Scholar 

  • Kuo MH, vom Baur E, Struhl K, Allis CD (2000) Gcn4 activator targets Gcn5 histone acetyltransferase to specific promoters independently of transcription. Mol Cell 6(6):1309–1320

    CAS  PubMed  Google Scholar 

  • Kurdistani SK, Grunstein M (2003) Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4(4):276–284. doi:10.1038/nrm1075

    CAS  PubMed  Google Scholar 

  • Kurdistani SK, Robyr D, Tavazoie S, Grunstein M (2002) Genome-wide binding map of the histone deacetylase Rpd3 in yeast. Nat Genet 31(3):248–254. doi:10.1038/ng907, ng907 [pii]

    CAS  PubMed  Google Scholar 

  • Kurdistani SK, Tavazoie S, Grunstein M (2004) Mapping global histone acetylation patterns to gene expression. Cell 117(6):721–733. doi:10.1016/j.cell.2004.05.023

    CAS  PubMed  Google Scholar 

  • Kusch T, Florens L, Macdonald WH, Swanson SK, Glaser RL, Yates JR III, Abmayr SM, Washburn MP, Workman JL (2004) Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306(5704):2084–2087. doi:10.1126/science.1103455, 1103455 [pii]

    CAS  PubMed  Google Scholar 

  • Kuzmichev A, Zhang Y, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Role of the Sin3-histone deacetylase complex in growth regulation by the candidate tumor suppressor p33(ING1). Mol Cell Biol 22(3):835–848

    CAS  PubMed  Google Scholar 

  • Ladurner AG, Inouye C, Jain R, Tjian R (2003) Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. Mol Cell 11(2):365–376, S1097276503000352 [pii]

    CAS  PubMed  Google Scholar 

  • Lam KC, Muhlpfordt F, Vaquerizas JM, Raja SJ, Holz H, Luscombe NM, Manke T, Akhtar A (2012) The NSL complex regulates housekeeping genes in Drosophila. PLoS Genet 8(6):e1002736. doi:10.1371/journal.pgen.1002736, PGENETICS-D-11-02234 [pii]

    CAS  PubMed  Google Scholar 

  • Lange M, Kaynak B, Forster UB, Tonjes M, Fischer JJ, Grimm C, Schlesinger J, Just S, Dunkel I, Krueger T, Mebus S, Lehrach H, Lurz R, Gobom J, Rottbauer W, Abdelilah-Seyfried S, Sperling S (2008) Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex. Genes Dev 22(17):2370–2384. doi:10.1101/gad.471408, 22/17/2370 [pii]

    CAS  PubMed  Google Scholar 

  • Larschan E, Alekseyenko AA, Gortchakov AA, Peng S, Li B, Yang P, Workman JL, Park PJ, Kuroda MI (2007) MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism. Mol Cell 28(1):121–133. doi:10.1016/j.molcel.2007.08.011

    CAS  PubMed  Google Scholar 

  • Latham JA, Dent SY (2007) Cross-regulation of histone modifications. Nat Struct Mol Biol 14(11):1017–1024. doi:10.1038/nsmb1307

    CAS  PubMed  Google Scholar 

  • Lau OD, Kundu TK, Soccio RE, Ait-Si-Ali S, Khalil EM, Vassilev A, Wolffe AP, Nakatani Y, Roeder RG, Cole PA (2000) HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol Cell 5(3):589–595

    CAS  PubMed  Google Scholar 

  • Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8(4):284–295. doi:10.1038/nrm2145

    CAS  PubMed  Google Scholar 

  • Lee DY, Hayes JJ, Pruss D, Wolffe AP (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72(1):73–84, 0092-8674(93)90051-Q [pii]

    CAS  PubMed  Google Scholar 

  • Lee MG, Wynder C, Cooch N, Shiekhattar R (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437(7057):432–435. doi:10.1038/nature04021, nature04021 [pii]

    CAS  PubMed  Google Scholar 

  • Lee MG, Wynder C, Bochar DA, Hakimi MA, Cooch N, Shiekhattar R (2006) Functional interplay between histone demethylase and deacetylase enzymes. Mol Cell Biol 26(17):6395–6402. doi:10.1128/MCB.00723-06, 26/17/6395 [pii]

    CAS  PubMed  Google Scholar 

  • Lee N, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2009) The H3K4 demethylase lid associates with and inhibits histone deacetylase Rpd3. Mol Cell Biol 29(6):1401–1410. doi:10.1128/MCB.01643-08

    CAS  PubMed  Google Scholar 

  • Lee HS, Park JH, Kim SJ, Kwon SJ, Kwon J (2010a) A cooperative activation loop among SWI/SNF, gamma-H2AX and H3 acetylation for DNA double-strand break repair. EMBO J 29(8):1434–1445. doi:10.1038/emboj.2010.27, emboj201027 [pii]

    CAS  PubMed  Google Scholar 

  • Lee JS, Smith E, Shilatifard A (2010b) The language of histone crosstalk. Cell 142(5):682–685. doi:10.1016/j.cell.2010.08.011

    CAS  PubMed  Google Scholar 

  • LeRoy G, Rickards B, Flint SJ (2008) The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol Cell 30(1):51–60. doi:10.1016/j.molcel.2008.01.018, S1097-2765(08)00157-3 [pii]

    CAS  PubMed  Google Scholar 

  • Li G, Reinberg D (2011) Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev 21(2):175–186. doi:10.1016/j.gde.2011.01.022

    CAS  PubMed  Google Scholar 

  • Li B, Gogol M, Carey M, Lee D, Seidel C, Workman JL (2007) Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 316(5827):1050–1054. doi:10.1126/science.1139004, 316/5827/1050 [pii]

    CAS  PubMed  Google Scholar 

  • Li Q, Zhou H, Wurtele H, Davies B, Horazdovsky B, Verreault A, Zhang Z (2008) Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell 134(2):244–255. doi:10.1016/j.cell.2008.06.018, S0092-8674(08)00770-8 [pii]

    CAS  PubMed  Google Scholar 

  • Li Q, Fazly AM, Zhou H, Huang S, Zhang Z, Stillman B (2009a) The elongator complex interacts with PCNA and modulates transcriptional silencing and sensitivity to DNA damage agents. PLoS Genet 5(10):e1000684. doi:10.1371/journal.pgen.1000684

    PubMed  Google Scholar 

  • Li X, Wu L, Corsa CA, Kunkel S, Dou Y (2009b) Two mammalian MOF complexes regulate transcription activation by distinct mechanisms. Mol Cell 36(2):290–301. doi:10.1016/j.molcel.2009.07.031

    CAS  PubMed  Google Scholar 

  • Li X, Corsa CA, Pan PW, Wu L, Ferguson D, Yu X, Min J, Dou Y (2010) MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. Mol Cell Biol 30(22):5335–5347. doi:10.1128/MCB.00350-10, MCB.00350-10 [pii]

    CAS  PubMed  Google Scholar 

  • Lin YY, Qi Y, Lu JY, Pan X, Yuan DS, Zhao Y, Bader JS, Boeke JD (2008) A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation. Genes Dev 22(15):2062–2074. doi:10.1101/gad.1679508

    CAS  PubMed  Google Scholar 

  • Lin YY, Lu JY, Zhang J, Walter W, Dang W, Wan J, Tao SC, Qian J, Zhao Y, Boeke JD, Berger SL, Zhu H (2009) Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 136(6):1073–1084. doi:10.1016/j.cell.2009.01.033

    CAS  PubMed  Google Scholar 

  • Lin YY, Kiihl S, Suhail Y, Liu SY, Chou YH, Kuang Z, Lu JY, Khor CN, Lin CL, Bader JS, Irizarry R, Boeke JD (2012) Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK. Nature 482(7384):251–255. doi:10.1038/nature10804

    CAS  PubMed  Google Scholar 

  • Ling X, Harkness TA, Schultz MC, Fisher-Adams G, Grunstein M (1996) Yeast histone H3 and H4 amino termini are important for nucleosome assembly in vivo and in vitro: redundant and position-independent functions in assembly but not in gene regulation. Genes Dev 10(6):686–699

    CAS  PubMed  Google Scholar 

  • Liu CL, Kaplan T, Kim M, Buratowski S, Schreiber SL, Friedman N, Rando OJ (2005) Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol 3(10):e328

    PubMed  Google Scholar 

  • Liu X, Wang L, Zhao K, Thompson PR, Hwang Y, Marmorstein R, Cole PA (2008) The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 451(7180):846–850. doi:10.1038/nature06546, nature06546 [pii]

    CAS  PubMed  Google Scholar 

  • LLeonart M, Vidal F, Gallardo D, Diaz-Fuertes M, Rojo F, Cuatrecasas M, Lopez-Vicente L, Kondoh H, Blanco C, Carnero A, Ramon y Cajal S (2006) New p53 related genes in human tumors: significant downregulation in colon and lung carcinomas. Oncol Rep 16(3):603–608

    CAS  PubMed  Google Scholar 

  • Lo WS, Trievel RC, Rojas JR, Duggan L, Hsu JY, Allis CD, Marmorstein R, Berger SL (2000) Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 5(6):917–926, S1097-2765(00)80257-9 [pii]

    CAS  PubMed  Google Scholar 

  • Lorch Y, Beve J, Gustafsson CM, Myers LC, Kornberg RD (2000) Mediator-nucleosome interaction. Mol Cell 6(1):197–201, S1097-2765(05)00007-9 [pii]

    CAS  PubMed  Google Scholar 

  • Loyola A, Bonaldi T, Roche D, Imhof A, Almouzni G (2006) PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol Cell 24(2):309–316. doi:10.1016/j.molcel.2006.08.019, S1097-2765(06)00600-9 [pii]

    CAS  PubMed  Google Scholar 

  • Lu JY, Lin YY, Sheu JC, Wu JT, Lee FJ, Chen Y, Lin MI, Chiang FT, Tai TY, Berger SL, Zhao Y, Tsai KS, Zhu H, Chuang LM, Boeke JD (2011) Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell 146(6):969–979. doi:10.1016/j.cell.2011.07.044

    CAS  PubMed  Google Scholar 

  • Ma XJ, Wu J, Altheim BA, Schultz MC, Grunstein M (1998) Deposition-related sites K5/K12 in histone H4 are not required for nucleosome deposition in yeast. Proc Natl Acad Sci U S A 95(12):6693–6698

    CAS  PubMed  Google Scholar 

  • Maas NL, Miller KM, DeFazio LG, Toczyski DP (2006) Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4. Mol Cell 23(1):109–119. doi:10.1016/j.molcel.2006.06.006, S1097-2765(06)00411-4 [pii]

    CAS  PubMed  Google Scholar 

  • Mantelingu K, Reddy BA, Swaminathan V, Kishore AH, Siddappa NB, Kumar GV, Nagashankar G, Natesh N, Roy S, Sadhale PP, Ranga U, Narayana C, Kundu TK (2007) Specific inhibition of p300-HAT alters global gene expression and represses HIV replication. Chem Biol 14(6):645–657. doi:10.1016/j.chembiol.2007.04.011, S1074-5521(07)00154-8 [pii]

    CAS  PubMed  Google Scholar 

  • Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11(4):285–296. doi:10.1038/nrg2752

    CAS  PubMed  Google Scholar 

  • Martin DG, Baetz K, Shi X, Walter KL, MacDonald VE, Wlodarski MJ, Gozani O, Hieter P, Howe L (2006a) The Yng1p plant homeodomain finger is a methyl-histone binding module that recognizes lysine 4-methylated histone H3. Mol Cell Biol 26(21):7871–7879. doi:10.1128/MCB.00573-06, MCB.00573-06 [pii]

    CAS  PubMed  Google Scholar 

  • Martin DG, Grimes DE, Baetz K, Howe L (2006b) Methylation of histone H3 mediates the association of the NuA3 histone acetyltransferase with chromatin. Mol Cell Biol 26(8):3018–3028. doi:10.1128/MCB.26.8.3018-3028.2006, 26/8/3018 [pii]

    CAS  PubMed  Google Scholar 

  • Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK, Chait BT, Roeder RG (2001) Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol Cell Biol 21(20):6782–6795. doi:10.1128/MCB.21.20.6782-6795.2001

    CAS  PubMed  Google Scholar 

  • Masumoto H, Hawke D, Kobayashi R, Verreault A (2005) A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436(7048):294–298. doi:10.1038/nature03714, nature03714 [pii]

    CAS  PubMed  Google Scholar 

  • Matangkasombut O, Buratowski S (2003) Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation. Mol Cell 11(2):353–363

    CAS  PubMed  Google Scholar 

  • McBrian MA, Behbahan IS, Ferrari R, Su T, Huang TW, Li K, Hong CS, Christofk HR, Vogelauer M, Seligson DB, Kurdistani SK (2013) Histone acetylation regulates intracellular pH. Mol Cell 49(2):310–321. doi:10.1016/j.molcel.2012.10.025

    CAS  PubMed  Google Scholar 

  • McKinsey TA, Zhang CL, Lu J, Olson EN (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408(6808):106–111. doi:10.1038/35040593

    CAS  PubMed  Google Scholar 

  • McKittrick E, Gafken PR, Ahmad K, Henikoff S (2004) Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci U S A 101(6):1525–1530. doi:10.1073/pnas.0308092100, 0308092100 [pii]

    CAS  PubMed  Google Scholar 

  • Mendjan S, Taipale M, Kind J, Holz H, Gebhardt P, Schelder M, Vermeulen M, Buscaino A, Duncan K, Mueller J, Wilm M, Stunnenberg HG, Saumweber H, Akhtar A (2006) Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 21(6):811–823. doi:10.1016/j.molcel.2006.02.007

    CAS  PubMed  Google Scholar 

  • Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, Bergeron L, Sims RJ III (2011) Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci U S A 108(40):16669–16674. doi:10.1073/pnas.1108190108, 1108190108 [pii]

    CAS  PubMed  Google Scholar 

  • Micci F, Panagopoulos I, Bjerkehagen B, Heim S (2006) Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcoma. Cancer Res 66(1):107–112. doi:10.1158/0008-5472.CAN-05-2485, 66/1/107 [pii]

    CAS  PubMed  Google Scholar 

  • Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TL, Barrett JC, Chang HY, Bohr VA, Ried T, Gozani O, Chua KF (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452(7186):492–496. doi:10.1038/nature06736

    CAS  PubMed  Google Scholar 

  • Millar CB, Xu F, Zhang K, Grunstein M (2006) Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast. Genes Dev 20(6):711–722. doi:10.1101/gad.1395506, 20/6/711 [pii]

    CAS  PubMed  Google Scholar 

  • Miller KM, Tjeertes JV, Coates J, Legube G, Polo SE, Britton S, Jackson SP (2010) Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat Struct Mol Biol 17(9):1144–1151. doi:10.1038/nsmb.1899, nsmb.1899 [pii]

    CAS  PubMed  Google Scholar 

  • Miotto B, Struhl K (2006) Differential gene regulation by selective association of transcriptional coactivators and bZIP DNA-binding domains. Mol Cell Biol 26(16):5969–5982. doi:10.1128/MCB.00696-06

    CAS  PubMed  Google Scholar 

  • Miotto B, Struhl K (2010) HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol Cell 37(1):57–66. doi:10.1016/j.molcel.2009.12.012

    CAS  PubMed  Google Scholar 

  • Mishima Y, Miyagi S, Saraya A, Negishi M, Endoh M, Endo TA, Toyoda T, Shinga J, Katsumoto T, Chiba T, Yamaguchi N, Kitabayashi I, Koseki H, Iwama A (2011) The Hbo1-Brd1/Brpf2 complex is responsible for global acetylation of H3K14 and required for fetal liver erythropoiesis. Blood 118(9):2443–2453. doi:10.1182/blood-2011-01-331892

    CAS  PubMed  Google Scholar 

  • Mizzen CA, Yang XJ, Kokubo T, Brownell JE, Bannister AJ, Owen-Hughes T, Workman J, Wang L, Berger SL, Kouzarides T, Nakatani Y, Allis CD (1996) The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87(7):1261–1270, S0092-8674(00)81821-8 [pii]

    CAS  PubMed  Google Scholar 

  • Moore SD, Herrick SR, Ince TA, Kleinman MS, Dal Cin P, Morton CC, Quade BJ (2004) Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. Cancer Res 64(16):5570–5577. doi:10.1158/0008-5472.CAN-04-0050, 64/16/5570 [pii]

    CAS  PubMed  Google Scholar 

  • Morgan BA, Mittman BA, Smith MM (1991) The highly conserved N-terminal domains of histones H3 and H4 are required for normal cell cycle progression. Mol Cell Biol 11(8):4111–4120

    CAS  PubMed  Google Scholar 

  • Morimoto T, Sunagawa Y, Kawamura T, Takaya T, Wada H, Nagasawa A, Komeda M, Fujita M, Shimatsu A, Kita T, Hasegawa K (2008) The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest 118(3):868–878. doi:10.1172/JCI33160

    CAS  PubMed  Google Scholar 

  • Moriniere J, Rousseaux S, Steuerwald U, Soler-Lopez M, Curtet S, Vitte AL, Govin J, Gaucher J, Sadoul K, Hart DJ, Krijgsveld J, Khochbin S, Muller CW, Petosa C (2009) Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature 461(7264):664–668. doi:10.1038/nature08397, nature08397 [pii]

    CAS  PubMed  Google Scholar 

  • Morris SA, Rao B, Garcia BA, Hake SB, Diaz RL, Shabanowitz J, Hunt DF, Allis CD, Lieb JD, Strahl BD (2007) Identification of histone H3 lysine 36 acetylation as a highly conserved histone modification. J Biol Chem 282(10):7632–7640. doi:10.1074/jbc.M607909200, M607909200 [pii]

    CAS  PubMed  Google Scholar 

  • Moshkin YM, Kan TW, Goodfellow H, Bezstarosti K, Maeda RK, Pilyugin M, Karch F, Bray SJ, Demmers JA, Verrijzer CP (2009) Histone chaperones ASF1 and NAP1 differentially modulate removal of active histone marks by LID-RPD3 complexes during NOTCH silencing. Mol Cell 35(6):782–793. doi:10.1016/j.molcel.2009.07.020

    CAS  PubMed  Google Scholar 

  • Muraoka M, Konishi M, Kikuchi-Yanoshita R, Tanaka K, Shitara N, Chong JM, Iwama T, Miyaki M (1996) p300 gene alterations in colorectal and gastric carcinomas. Oncogene 12(7):1565–1569

    CAS  PubMed  Google Scholar 

  • Murr R, Loizou JI, Yang YG, Cuenin C, Li H, Wang ZQ, Herceg Z (2006) Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol 8(1):91–99. doi:10.1038/ncb1343, ncb1343 [pii]

    CAS  PubMed  Google Scholar 

  • Murr R, Vaissiere T, Sawan C, Shukla V, Herceg Z (2007) Orchestration of chromatin-based processes: mind the TRRAP. Oncogene 26(37):5358–5372. doi:10.1038/sj.onc.1210605

    CAS  PubMed  Google Scholar 

  • Musselman CA, Lalonde ME, Cote J, Kutateladze TG (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 19(12):1218–1227. doi:10.1038/nsmb.2436

    CAS  PubMed  Google Scholar 

  • Nagy Z, Riss A, Fujiyama S, Krebs A, Orpinell M, Jansen P, Cohen A, Stunnenberg HG, Kato S, Tora L (2010) The metazoan ATAC and SAGA coactivator HAT complexes regulate different sets of inducible target genes. Cell Mol Life Sci 67(4):611–628. doi:10.1007/s00018-009-0199-8

    CAS  PubMed  Google Scholar 

  • Nair DM, Ge Z, Mersfelder EL, Parthun MR (2011) Genetic interactions between POB3 and the acetylation of newly synthesized histones. Curr Genet 57(4):271–286. doi:10.1007/s00294-011-0347-1

    CAS  PubMed  Google Scholar 

  • Nakahata S, Saito Y, Hamasaki M, Hidaka T, Arai Y, Taki T, Taniwaki M, Morishita K (2009) Alteration of enhancer of polycomb 1 at 10p11.2 is one of the genetic events leading to development of adult T-cell leukemia/lymphoma. Genes Chromosomes Cancer 48(9):768–776. doi:10.1002/gcc.20681

    CAS  PubMed  Google Scholar 

  • Nakanishi S, Sanderson BW, Delventhal KM, Bradford WD, Staehling-Hampton K, Shilatifard A (2008) A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation. Nat Struct Mol Biol 15(8):881–888. doi:10.1038/nsmb.1454, nsmb.1454 [pii]

    CAS  PubMed  Google Scholar 

  • Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292(5514):110–113. doi:10.1126/science.1060118, 1060118 [pii]

    CAS  PubMed  Google Scholar 

  • Nathan D, Ingvarsdottir K, Sterner DE, Bylebyl GR, Dokmanovic M, Dorsey JA, Whelan KA, Krsmanovic M, Lane WS, Meluh PB, Johnson ES, Berger SL (2006) Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev 20(8):966–976. doi:10.1101/gad.1404206, gad.1404206 [pii]

    CAS  PubMed  Google Scholar 

  • Neuwald AF, Landsman D (1997) GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem Sci 22(5):154–155, S0968-0004(97)01034-7 [pii]

    CAS  PubMed  Google Scholar 

  • Nishioka K, Rice JC, Sarma K, Erdjument-Bromage H, Werner J, Wang Y, Chuikov S, Valenzuela P, Tempst P, Steward R, Lis JT, Allis CD, Reinberg D (2002) PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell 9(6):1201–1213, S1097276502005488 [pii]

    CAS  PubMed  Google Scholar 

  • O’Neill LP, Turner BM (1995) Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J 14(16):3946–3957

    PubMed  Google Scholar 

  • Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87(5):953–959, S0092-8674(00)82001-2 [pii]

    CAS  PubMed  Google Scholar 

  • Olsen EA, Kim YH, Kuzel TM, Pacheco TR, Foss FM, Parker S, Frankel SR, Chen C, Ricker JL, Arduino JM, Duvic M (2007) Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 25(21):3109–3115. doi:10.1200/JCO.2006.10.2434, JCO.2006.10.2434 [pii]

    CAS  PubMed  Google Scholar 

  • Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans PR, Ballario P, Neuhaus D, Filetici P, Travers AA (2000) The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J 19(22):6141–6149. doi:10.1093/emboj/19.22.6141

    CAS  PubMed  Google Scholar 

  • Ozdemir A, Spicuglia S, Lasonder E, Vermeulen M, Campsteijn C, Stunnenberg HG, Logie C (2005) Characterization of lysine 56 of histone H3 as an acetylation site in Saccharomyces cerevisiae. J Biol Chem 280(28):25949–25952. doi:10.1074/jbc.C500181200

    CAS  PubMed  Google Scholar 

  • Ozer A, Wu LC, Bruick RK (2005) The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proc Natl Acad Sci U S A 102(21):7481–7486. doi:10.1073/pnas.0502716102

    CAS  PubMed  Google Scholar 

  • Panagopoulos I, Fioretos T, Isaksson M, Samuelsson U, Billstrom R, Strombeck B, Mitelman F, Johansson B (2001) Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). Hum Mol Genet 10(4):395–404

    CAS  PubMed  Google Scholar 

  • Panagopoulos I, Micci F, Thorsen J, Gorunova L, Eibak AM, Bjerkehagen B, Davidson B, Heim S (2012) Novel fusion of MYST/Esa1-associated factor 6 and PHF1 in endometrial stromal sarcoma. PLoS One 7(6):e39354. doi:10.1371/journal.pone.0039354, PONE-D-12-09483 [pii]

    CAS  PubMed  Google Scholar 

  • Park YJ, Dyer PN, Tremethick DJ, Luger K (2004) A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome. J Biol Chem 279(23):24274–24282. doi:10.1074/jbc.M313152200, M313152200 [pii]

    CAS  PubMed  Google Scholar 

  • Parthun MR, Widom J, Gottschling DE (1996) The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87(1):85–94, S0092-8674(00)81325-2 [pii]

    CAS  PubMed  Google Scholar 

  • Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, Kasper LH, Lerach S, Tang H, Ma J, Rossi D, Chadburn A, Murty VV, Mullighan CG, Gaidano G, Rabadan R, Brindle PK, Dalla-Favera R (2011) Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471(7337):189–195. doi:10.1038/nature09730, nature09730 [pii]

    CAS  PubMed  Google Scholar 

  • Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328(5979):753–756. doi:10.1126/science.1186088

    CAS  PubMed  Google Scholar 

  • Pena PV, Davrazou F, Shi X, Walter KL, Verkhusha VV, Gozani O, Zhao R, Kutateladze TG (2006) Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442(7098):100–103. doi:10.1038/nature04814

    CAS  PubMed  Google Scholar 

  • Peng L, Ling H, Yuan Z, Fang B, Bloom G, Fukasawa K, Koomen J, Chen J, Lane WS, Seto E (2012) SIRT1 negatively regulates the activities, functions, and protein levels of hMOF and TIP60. Mol Cell Biol 32(14):2823–2836. doi:10.1128/MCB.00496-12

    CAS  PubMed  Google Scholar 

  • Peterson CL, Cote J (2004) Cellular machineries for chromosomal DNA repair. Genes Dev 18(6):602–616. doi:10.1101/gad.1182704

    CAS  PubMed  Google Scholar 

  • Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Masuno M, Tommerup N, van Ommen GJ, Goodman RH, Peters DJ et al (1995) Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376(6538):348–351. doi:10.1038/376348a0

    CAS  PubMed  Google Scholar 

  • Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E, Zeitlinger J, Lewitter F, Gifford DK, Young RA (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122(4):517–527. doi:10.1016/j.cell.2005.06.026

    CAS  PubMed  Google Scholar 

  • Pons D, de Vries FR, van den Elsen PJ, Heijmans BT, Quax PH, Jukema JW (2009) Epigenetic histone acetylation modifiers in vascular remodelling: new targets for therapy in cardiovascular disease. Eur Heart J 30(3):266–277. doi:10.1093/eurheartj/ehn603, ehn603 [pii]

    CAS  PubMed  Google Scholar 

  • Potoyan DA, Papoian GA (2012) Regulation of the H4 tail binding and folding landscapes via Lys-16 acetylation. Proc Natl Acad Sci U S A 109(44):17857–17862. doi:10.1073/pnas.1201805109

    CAS  PubMed  Google Scholar 

  • Pray-Grant MG, Daniel JA, Schieltz D, Yates JR III, Grant PA (2005) Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433(7024):434–438. doi:10.1038/nature03242, nature03242 [pii]

    CAS  PubMed  Google Scholar 

  • Qin S, Parthun MR (2002) Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol Cell Biol 22(23):8353–8365

    CAS  PubMed  Google Scholar 

  • Qin S, Parthun MR (2006) Recruitment of the type B histone acetyltransferase Hat1p to chromatin is linked to DNA double-strand breaks. Mol Cell Biol 26(9):3649–3658. doi:10.1128/MCB.26.9.3649-3658.2006, 26/9/3649 [pii]

    CAS  PubMed  Google Scholar 

  • Qiu Y, Liu L, Zhao C, Han C, Li F, Zhang J, Wang Y, Li G, Mei Y, Wu M, Wu J, Shi Y (2012) Combinatorial readout of unmodified H3R2 and acetylated H3K14 by the tandem PHD finger of MOZ reveals a regulatory mechanism for HOXA9 transcription. Genes Dev 26(12):1376–1391. doi:10.1101/gad.188359.112, 26/12/1376 [pii]

    CAS  PubMed  Google Scholar 

  • Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470(7333):279–283. doi:10.1038/nature09692

    CAS  PubMed  Google Scholar 

  • Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, Schreiber SL, Rando OJ, Madhani HD (2005) Histone variant H2A.Z marks the 5' ends of both active and inactive genes in euchromatin. Cell 123(2):233–248. doi:10.1016/j.cell.2005.10.002, S0092-8674(05)01025-1 [pii]

    CAS  PubMed  Google Scholar 

  • Raja SJ, Charapitsa I, Conrad T, Vaquerizas JM, Gebhardt P, Holz H, Kadlec J, Fraterman S, Luscombe NM, Akhtar A (2010) The nonspecific lethal complex is a transcriptional regulator in Drosophila. Mol Cell 38(6):827–841. doi:10.1016/j.molcel.2010.05.021, S1097-2765(10)00383-7 [pii]

    CAS  PubMed  Google Scholar 

  • Ramanathan B, Smerdon MJ (1989) Enhanced DNA repair synthesis in hyperacetylated nucleosomes. J Biol Chem 264(19):11026–11034

    CAS  PubMed  Google Scholar 

  • Recht J, Tsubota T, Tanny JC, Diaz RL, Berger JM, Zhang X, Garcia BA, Shabanowitz J, Burlingame AL, Hunt DF, Kaufman PD, Allis CD (2006) Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis. Proc Natl Acad Sci U S A 103(18):6988–6993. doi:10.1073/pnas.0601676103

    CAS  PubMed  Google Scholar 

  • Reid JL, Moqtaderi Z, Struhl K (2004) Eaf3 regulates the global pattern of histone acetylation in Saccharomyces cerevisiae. Mol Cell Biol 24(2):757–764

    CAS  PubMed  Google Scholar 

  • Robert C, Rassool FV (2012) HDAC inhibitors: roles of DNA damage and repair. Adv Cancer Res 116:87–129. doi:10.1016/B978-0-12-394387-3.00003-3, B978-0-12-394387-3.00003-3 [pii]

    CAS  PubMed  Google Scholar 

  • Robert F, Pokholok DK, Hannett NM, Rinaldi NJ, Chandy M, Rolfe A, Workman JL, Gifford DK, Young RA (2004) Global position and recruitment of HATs and HDACs in the yeast genome. Mol Cell 16(2):199–209. doi:10.1016/j.molcel.2004.09.021

    CAS  PubMed  Google Scholar 

  • Robert T, Vanoli F, Chiolo I, Shubassi G, Bernstein KA, Rothstein R, Botrugno OA, Parazzoli D, Oldani A, Minucci S, Foiani M (2011) HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471(7336):74–79. doi:10.1038/nature09803, nature09803 [pii]

    CAS  PubMed  Google Scholar 

  • Rodriguez P, Pelletier J, Price GB, Zannis-Hadjopoulos M (2000) NAP-2: histone chaperone function and phosphorylation state through the cell cycle. J Mol Biol 298(2):225–238. doi:10.1006/jmbi.2000.3674

    CAS  PubMed  Google Scholar 

  • Rodriguez-Navarro S (2009) Insights into SAGA function during gene expression. EMBO Rep 10(8):843–850. doi:10.1038/embor.2009.168

    CAS  PubMed  Google Scholar 

  • Roh TY, Cuddapah S, Zhao K (2005) Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev 19(5):542–552. doi:10.1101/gad.1272505

    CAS  PubMed  Google Scholar 

  • Ropero S, Fraga MF, Ballestar E, Hamelin R, Yamamoto H, Boix-Chornet M, Caballero R, Alaminos M, Setien F, Paz MF, Herranz M, Palacios J, Arango D, Orntoft TF, Aaltonen LA, Schwartz S Jr, Esteller M (2006) A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat Genet 38(5):566–569. doi:10.1038/ng1773, ng1773 [pii]

    CAS  PubMed  Google Scholar 

  • Rossetto D, Truman AW, Kron SJ, Cote J (2010) Epigenetic modifications in double-strand break DNA damage signaling and repair. Clin Cancer Res 16(18):4543–4552. doi:10.1158/1078-0432.CCR-10-0513

    CAS  PubMed  Google Scholar 

  • Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120. doi:10.1146/annurev.biochem.70.1.81

    CAS  PubMed  Google Scholar 

  • Rufiange A, Jacques PE, Bhat W, Robert F, Nourani A (2007) Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol Cell 27(3):393–405. doi:10.1016/j.molcel.2007.07.011, S1097-2765(07)00484-4 [pii]

    CAS  PubMed  Google Scholar 

  • Rundlett SE, Carmen AA, Kobayashi R, Bavykin S, Turner BM, Grunstein M (1996) HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci U S A 93(25):14503–14508

    CAS  PubMed  Google Scholar 

  • Rusche LN, Kirchmaier AL, Rine J (2003) The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72:481–516. doi:10.1146/annurev.biochem.72.121801.161547, 121801.161547 [pii]

    CAS  PubMed  Google Scholar 

  • Saksouk N, Avvakumov N, Champagne KS, Hung T, Doyon Y, Cayrou C, Paquet E, Ullah M, Landry AJ, Cote V, Yang XJ, Gozani O, Kutateladze TG, Cote J (2009) HBO1 HAT complexes target chromatin throughout gene coding regions via multiple PHD finger interactions with histone H3 tail. Mol Cell 33(2):257–265. doi:10.1016/j.molcel.2009.01.007, S1097-2765(09)00034-3 [pii]

    CAS  PubMed  Google Scholar 

  • Santisteban MS, Kalashnikova T, Smith MM (2000) Histone H2A.Z regulats transcription and is partially redundant with nucleosome remodeling complexes. Cell 103(3):411–422

    CAS  PubMed  Google Scholar 

  • Sapountzi V, Cote J (2011) MYST-family histone acetyltransferases: beyond chromatin. Cell Mol Life Sci 68(7):1147–1156. doi:10.1007/s00018-010-0599-9

    CAS  PubMed  Google Scholar 

  • Sarg B, Helliger W, Talasz H, Koutzamani E, Lindner HH (2004) Histone H4 hyperacetylation precludes histone H4 lysine 20 trimethylation. J Biol Chem 279(51):53458–53464. doi:10.1074/jbc.M409099200, M409099200 [pii]

    CAS  PubMed  Google Scholar 

  • Schlick T, Hayes J, Grigoryev S (2012) Toward convergence of experimental studies and theoretical modeling of the chromatin fiber. J Biol Chem 287(8):5183–5191. doi:10.1074/jbc.R111.305763

    CAS  PubMed  Google Scholar 

  • Schneider J, Bajwa P, Johnson FC, Bhaumik SR, Shilatifard A (2006) Rtt109 is required for proper H3K56 acetylation: a chromatin mark associated with the elongating RNA polymerase II. J Biol Chem 281(49):37270–37274. doi:10.1074/jbc.C600265200, C600265200 [pii]

    CAS  PubMed  Google Scholar 

  • Schuetz A, Min J, Allali-Hassani A, Schapira M, Shuen M, Loppnau P, Mazitschek R, Kwiatkowski NP, Lewis TA, Maglathin RL, McLean TH, Bochkarev A, Plotnikov AN, Vedadi M, Arrowsmith CH (2008) Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J Biol Chem 283(17):11355–11363. doi:10.1074/jbc.M707362200, M707362200 [pii]

    CAS  PubMed  Google Scholar 

  • Seigneurin-Berny D, Verdel A, Curtet S, Lemercier C, Garin J, Rousseaux S, Khochbin S (2001) Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol Cell Biol 21(23):8035–8044. doi:10.1128/MCB.21.23.8035-8044.2001

    CAS  PubMed  Google Scholar 

  • Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, Kurdistani SK (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435(7046):1262–1266. doi:10.1038/nature03672, nature03672 [pii]

    CAS  PubMed  Google Scholar 

  • Selleck W, Fortin I, Sermwittayawong D, Cote J, Tan S (2005) The Saccharomyces cerevisiae Piccolo NuA4 histone acetyltransferase complex requires the Enhancer of Polycomb A domain and chromodomain to acetylate nucleosomes. Mol Cell Biol 25(13):5535–5542. doi:10.1128/MCB.25.13.5535-5542.2005

    CAS  PubMed  Google Scholar 

  • Selth L, Svejstrup JQ (2007) Vps75, a new yeast member of the NAP histone chaperone family. J Biol Chem 282(17):12358–12362. doi:10.1074/jbc.C700012200

    CAS  PubMed  Google Scholar 

  • Selvi BR, Cassel JC, Kundu TK, Boutillier AL (2010) Tuning acetylation levels with HAT activators: therapeutic strategy in neurodegenerative diseases. Biochim Biophys Acta 1799(10–12):840–853. doi:10.1016/j.bbagrm.2010.08.012, S1874-9399(10)00115-X [pii]

    CAS  PubMed  Google Scholar 

  • Sendra R, Tse C, Hansen JC (2000) The yeast histone acetyltransferase A2 complex, but not free Gcn5p, binds stably to nucleosomal arrays. J Biol Chem 275(32):24928–24934. doi:10.1074/jbc.M003783200, M003783200 [pii]

    CAS  PubMed  Google Scholar 

  • Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100. doi:10.1146/annurev.biochem.76.052705.162114

    CAS  PubMed  Google Scholar 

  • Sharma GG, So S, Gupta A, Kumar R, Cayrou C, Avvakumov N, Bhadra U, Pandita RK, Porteus MH, Chen DJ, Cote J, Pandita TK (2010) MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair. Mol Cell Biol 30(14):3582–3595. doi:10.1128/MCB.01476-09, MCB.01476-09 [pii]

    CAS  PubMed  Google Scholar 

  • Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T, Carney D, Pena P, Lan F, Kaadige MR, Lacoste N, Cayrou C, Davrazou F, Saha A, Cairns BR, Ayer DE, Kutateladze TG, Shi Y, Cote J, Chua KF, Gozani O (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442(7098):96–99. doi:10.1038/nature04835, nature04835 [pii]

    CAS  PubMed  Google Scholar 

  • Shimko JC, North JA, Bruns AN, Poirier MG, Ottesen JJ (2011) Preparation of fully synthetic histone H3 reveals that acetyl-lysine 56 facilitates protein binding within nucleosomes. J Mol Biol 408(2):187–204. doi:10.1016/j.jmb.2011.01.003

    CAS  PubMed  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311(5762):844–847. doi:10.1126/science.1124000, 311/5762/844 [pii]

    CAS  PubMed  Google Scholar 

  • Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314(5797):268–274. doi:10.1126/science.1133427, 1133427 [pii]

    PubMed  Google Scholar 

  • Skowyra D, Zeremski M, Neznanov N, Li M, Choi Y, Uesugi M, Hauser CA, Gu W, Gudkov AV, Qin J (2001) Differential association of products of alternative transcripts of the candidate tumor suppressor ING1 with the mSin3/HDAC1 transcriptional corepressor complex. J Biol Chem 276(12):8734–8739. doi:10.1074/jbc.M007664200

    CAS  PubMed  Google Scholar 

  • Smerdon MJ, Lan SY, Calza RE, Reeves R (1982) Sodium butyrate stimulates DNA repair in UV-irradiated normal and xeroderma pigmentosum human fibroblasts. J Biol Chem 257(22):13441–13447

    CAS  PubMed  Google Scholar 

  • Smith ER, Eisen A, Gu W, Sattah M, Pannuti A, Zhou J, Cook RG, Lucchesi JC, Allis CD (1998) ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proc Natl Acad Sci U S A 95(7):3561–3565

    CAS  PubMed  Google Scholar 

  • Smith ER, Pannuti A, Gu W, Steurnagel A, Cook RG, Allis CD, Lucchesi JC (2000a) The drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol Cell Biol 20(1):312–318

    CAS  PubMed  Google Scholar 

  • Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, Avalos JL, Escalante-Semerena JC, Grubmeyer C, Wolberger C, Boeke JD (2000b) A phylogenetically conserved NAD + −dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci U S A 97(12):6658–6663

    CAS  PubMed  Google Scholar 

  • Smith ER, Cayrou C, Huang R, Lane WS, Cote J, Lucchesi JC (2005) A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol 25(21):9175–9188. doi:10.1128/MCB.25.21.9175-9188.2005

    CAS  PubMed  Google Scholar 

  • Smolle M, Workman JL, Venkatesh S (2013) reSETting chromatin during transcription elongation. Epigenetics 8(1):10–15. doi:10.4161/epi.23333

    CAS  PubMed  Google Scholar 

  • Sobel RE, Cook RG, Perry CA, Annunziato AT, Allis CD (1995) Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci U S A 92(4):1237–1241

    CAS  PubMed  Google Scholar 

  • Spedale G, Timmers HT, Pijnappel WW (2012) ATAC-king the complexity of SAGA during evolution. Genes Dev 26(6):527–541. doi:10.1101/gad.184705.111

    CAS  PubMed  Google Scholar 

  • Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ, O’Malley BW (1997) Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389(6647):194–198. doi:10.1038/38304

    CAS  PubMed  Google Scholar 

  • Stimson L, Rowlands MG, Newbatt YM, Smith NF, Raynaud FI, Rogers P, Bavetsias V, Gorsuch S, Jarman M, Bannister A, Kouzarides T, McDonald E, Workman P, Aherne GW (2005) Isothiazolones as inhibitors of PCAF and p300 histone acetyltransferase activity. Mol Cancer Ther 4(10):1521–1532. doi:10.1158/1535-7163.MCT-05-0135, 4/10/1521 [pii]

    CAS  PubMed  Google Scholar 

  • Su D, Hu Q, Li Q, Thompson JR, Cui G, Fazly A, Davies BA, Botuyan MV, Zhang Z, Mer G (2012) Structural basis for recognition of H3K56-acetylated histone H3-H4 by the chaperone Rtt106. Nature 483(7387):104–107. doi:10.1038/nature10861, nature10861 [pii]

    CAS  PubMed  Google Scholar 

  • Suganuma T, Workman JL (2011) Signals and combinatorial functions of histone modifications. Annu Rev Biochem 80:473–499. doi:10.1146/annurev-biochem-061809-175347

    CAS  PubMed  Google Scholar 

  • Suganuma T, Gutierrez JL, Li B, Florens L, Swanson SK, Washburn MP, Abmayr SM, Workman JL (2008) ATAC is a double histone acetyltransferase complex that stimulates nucleosome sliding. Nat Struct Mol Biol 15(4):364–372. doi:10.1038/nsmb.1397

    CAS  PubMed  Google Scholar 

  • Suganuma T, Mushegian A, Swanson SK, Abmayr SM, Florens L, Washburn MP, Workman JL (2010) The ATAC acetyltransferase complex coordinates MAP kinases to regulate JNK target genes. Cell 142(5):726–736. doi:10.1016/j.cell.2010.07.045

    CAS  PubMed  Google Scholar 

  • Sugiyama T, Cam HP, Sugiyama R, Noma K, Zofall M, Kobayashi R, Grewal SI (2007) SHREC, an effector complex for heterochromatic transcriptional silencing. Cell 128(3):491–504. doi:10.1016/j.cell.2006.12.035, S0092-8674(07)00059-1 [pii]

    CAS  PubMed  Google Scholar 

  • Sun Y, Jiang X, Chen S, Fernandes N, Price BD (2005) A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci U S A 102(37):13182–13187. doi:10.1073/pnas.0504211102, 0504211102 [pii]

    CAS  PubMed  Google Scholar 

  • Sun Y, Jiang X, Xu Y, Ayrapetov MK, Moreau LA, Whetstine JR, Price BD (2009) Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nat Cell Biol 11(11):1376–1382. doi:10.1038/ncb1982, ncb1982 [pii]

    CAS  PubMed  Google Scholar 

  • Sung B, Pandey MK, Ahn KS, Yi T, Chaturvedi MM, Liu M, Aggarwal BB (2008) Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis. Blood 111(10):4880–4891. doi:10.1182/blood-2007-10-117994, blood-2007-10-117994 [pii]

    CAS  PubMed  Google Scholar 

  • Sural TH, Peng S, Li B, Workman JL, Park PJ, Kuroda MI (2008) The MSL3 chromodomain directs a key targeting step for dosage compensation of the Drosophila melanogaster X chromosome. Nat Struct Mol Biol 15(12):1318–1325. doi:10.1038/nsmb.1520

    CAS  PubMed  Google Scholar 

  • Szerlong HJ, Prenni JE, Nyborg JK, Hansen JC (2010) Activator-dependent p300 acetylation of chromatin in vitro: enhancement of transcription by disruption of repressive nucleosome-nucleosome interactions. J Biol Chem 285(42):31954–31964. doi:10.1074/jbc.M110.148718

    CAS  PubMed  Google Scholar 

  • Taddei A, Roche D, Sibarita JB, Turner BM, Almouzni G (1999) Duplication and maintenance of heterochromatin domains. J Cell Biol 147(6):1153–1166

    CAS  PubMed  Google Scholar 

  • Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116(1):51–61

    CAS  PubMed  Google Scholar 

  • Takahashi H, McCaffery JM, Irizarry RA, Boeke JD (2006) Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell 23(2):207–217. doi:10.1016/j.molcel.2006.05.040

    CAS  PubMed  Google Scholar 

  • Takechi S, Nakayama T (1999) Sas3 is a histone acetyltransferase and requires a zinc finger motif. Biochem Biophys Res Commun 266(2):405–410. doi:10.1006/bbrc.1999.1836, S0006-291X(99)91836-3 [pii]

    CAS  PubMed  Google Scholar 

  • Taki T, Sako M, Tsuchida M, Hayashi Y (1997) The t(11;16)(q23;p13) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene. Blood 89(11):3945–3950

    CAS  PubMed  Google Scholar 

  • Tamburini BA, Tyler JK (2005) Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol Cell Biol 25(12):4903–4913. doi:10.1128/MCB.25.12.4903-4913.2005, 25/12/4903 [pii]

    CAS  PubMed  Google Scholar 

  • Tanabe M, Kouzmenko AP, Ito S, Sawatsubashi S, Suzuki E, Fujiyama S, Yamagata K, Zhao Y, Kimura S, Ueda T, Murata T, Matsukawa H, Takeyama K, Kato S (2008) Activation of facultatively silenced Drosophila loci associates with increased acetylation of histone H2AvD. Genes Cells 13(12):1279–1288. doi:10.1111/j.1365-2443.2008.01244.x, GTC1244 [pii]

    CAS  PubMed  Google Scholar 

  • Tanaka A, Tanizawa H, Sriswasdi S, Iwasaki O, Chatterjee AG, Speicher DW, Levin HL, Noguchi E, Noma K (2012) Epigenetic regulation of condensin-mediated genome organization during the cell cycle and upon DNA damage through histone H3 lysine 56 acetylation. Mol Cell 48(4):532–546. doi:10.1016/j.molcel.2012.09.011

    CAS  PubMed  Google Scholar 

  • Tang Y, Holbert MA, Wurtele H, Meeth K, Rocha W, Gharib M, Jiang E, Thibault P, Verreault A, Cole PA, Marmorstein R (2008) Fungal Rtt109 histone acetyltransferase is an unexpected structural homolog of metazoan p300/CBP. Nat Struct Mol Biol 15(9):998. doi:10.1038/nsmb0908-998d, nsmb0908-998d [pii]

    CAS  PubMed  Google Scholar 

  • Tang J, Cho NW, Cui G, Manion EM, Shanbhag NM, Botuyan MV, Mer G, Greenberg RA (2013) Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nat Struct Mol Biol 20:317–325. doi:10.1038/nsmb.2499

    CAS  PubMed  Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272(5260):408–411

    CAS  PubMed  Google Scholar 

  • Taverna SD, Ilin S, Rogers RS, Tanny JC, Lavender H, Li H, Baker L, Boyle J, Blair LP, Chait BT, Patel DJ, Aitchison JD, Tackett AJ, Allis CD (2006) Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol Cell 24(5):785–796. doi:10.1016/j.molcel.2006.10.026, S1097-2765(06)00732-5 [pii]

    CAS  PubMed  Google Scholar 

  • Teng Y, Yu Y, Waters R (2002) The Saccharomyces cerevisiae histone acetyltransferase Gcn5 has a role in the photoreactivation and nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers in the MFA2 gene. J Mol Biol 316(3):489–499. doi:10.1006/jmbi.2001.5383, S0022283601953835 [pii]

    CAS  PubMed  Google Scholar 

  • Thambirajah AA, Dryhurst D, Ishibashi T, Li A, Maffey AH, Ausio J (2006) H2A.Z stabilizes chromatin in a way that is dependent on core histone acetylation. J Biol Chem 281(29):20036–20044. doi:10.1074/jbc.M601975200, M601975200 [pii]

    CAS  PubMed  Google Scholar 

  • Tjeertes JV, Miller KM, Jackson SP (2009) Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J 28(13):1878–1889. doi:10.1038/emboj.2009.119, emboj2009119 [pii]

    CAS  PubMed  Google Scholar 

  • Trievel RC, Rojas JR, Sterner DE, Venkataramani RN, Wang L, Zhou J, Allis CD, Berger SL, Marmorstein R (1999) Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc Natl Acad Sci U S A 96(16):8931–8936

    CAS  PubMed  Google Scholar 

  • Tropberger P, Pott S, Keller C, Kamieniarz-Gdula K, Caron M, Richter F, Li G, Mittler G, Liu ET, Bühler M, Margueron R, Schneider R (2013) Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell 152(4):859–872

    CAS  PubMed  Google Scholar 

  • Tse C, Hansen JC (1997) Hybrid trypsinized nucleosomal arrays: identification of multiple functional roles of the H2A/H2B and H3/H4 N-termini in chromatin fiber compaction. Biochemistry 36(38):11381–11388. doi:10.1021/bi970801n, bi970801n [pii]

    CAS  PubMed  Google Scholar 

  • Tsubota T, Berndsen CE, Erkmann JA, Smith CL, Yang L, Freitas MA, Denu JM, Kaufman PD (2007) Histone H3-K56 acetylation is catalyzed by histone chaperone-dependent complexes. Mol Cell 25(5):703–712. doi:10.1016/j.molcel.2007.02.006, S1097-2765(07)00086-X [pii]

    CAS  PubMed  Google Scholar 

  • Ullah M, Pelletier N, Xiao L, Zhao SP, Wang K, Degerny C, Tahmasebi S, Cayrou C, Doyon Y, Goh SL, Champagne N, Cote J, Yang XJ (2008) Molecular architecture of quartet MOZ/MORF histone acetyltransferase complexes. Mol Cell Biol 28(22):6828–6843. doi:10.1128/MCB.01297-08

    CAS  PubMed  Google Scholar 

  • Utley RT, Cote J (2003) The MYST family of histone acetyltransferases. Curr Top Microbiol Immunol 274:203–236

    CAS  PubMed  Google Scholar 

  • Utley RT, Ikeda K, Grant PA, Cote J, Steger DJ, Eberharter A, John S, Workman JL (1998) Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394(6692):498–502. doi:10.1038/28886

    CAS  PubMed  Google Scholar 

  • Utley RT, Lacoste N, Jobin-Robitaille O, Allard S, Cote J (2005) Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Mol Cell Biol 25(18):8179–8190. doi:10.1128/MCB.25.18.8179-8190.2005, 25/18/8179 [pii]

    CAS  PubMed  Google Scholar 

  • Valdes-Mora F, Song JZ, Statham AL, Strbenac D, Robinson MD, Nair SS, Patterson KI, Tremethick DJ, Stirzaker C, Clark SJ (2012) Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer. Genome Res 22(2):307–321. doi:10.1101/gr.118919.110

    CAS  PubMed  Google Scholar 

  • Vannini A, Volpari C, Filocamo G, Casavola EC, Brunetti M, Renzoni D, Chakravarty P, Paolini C, De Francesco R, Gallinari P, Steinkuhler C, Di Marco S (2004) Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci U S A 101(42):15064–15069. doi:10.1073/pnas.0404603101, 0404603101 [pii]

    CAS  PubMed  Google Scholar 

  • Vaquero A, Sternglanz R, Reinberg D (2007) NAD + −dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene 26(37):5505–5520. doi:10.1038/sj.onc.1210617, 1210617 [pii]

    CAS  PubMed  Google Scholar 

  • Venkatesh S, Smolle M, Li H, Gogol MM, Saint M, Kumar S, Natarajan K, Workman JL (2012) Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes. Nature 489(7416):452–455. doi:10.1038/nature11326

    CAS  PubMed  Google Scholar 

  • Verreault A, Kaufman PD, Kobayashi R, Stillman B (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87(1):95–104

    CAS  PubMed  Google Scholar 

  • Vettese-Dadey M, Grant PA, Hebbes TR, Crane- Robinson C, Allis CD, Workman JL (1996) Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J 15(10):2508–2518

    CAS  PubMed  Google Scholar 

  • Voss AK, Thomas T (2009) MYST family histone acetyltransferases take center stage in stem cells and development. Bioessays 31(10):1050–1061. doi:10.1002/bies.200900051

    CAS  PubMed  Google Scholar 

  • Wan Y, Saleem RA, Ratushny AV, Roda O, Smith JJ, Lin CH, Chiang JH, Aitchison JD (2009) Role of the histone variant H2A.Z/Htz1p in TBP recruitment, chromatin dynamics, and regulated expression of oleate-responsive genes. Mol Cell Biol 29(9):2346–2358. doi:10.1128/MCB.01233-08, MCB.01233-08 [pii]

    CAS  PubMed  Google Scholar 

  • Wang X, Hayes JJ (2008) Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol Cell Biol 28(1):227–236. doi:10.1128/MCB.01245-07, MCB.01245-07 [pii]

    CAS  PubMed  Google Scholar 

  • Wang L, Liu L, Berger SL (1998) Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev 12(5):640–653

    CAS  PubMed  Google Scholar 

  • Wang L, Tang Y, Cole PA, Marmorstein R (2008a) Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr Opin Struct Biol 18(6):741–747. doi:10.1016/j.sbi.2008.09.004, S0959-440X(08)00128-0 [pii]

    CAS  PubMed  Google Scholar 

  • Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K (2008b) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40(7):897–903. doi:10.1038/ng.154

    CAS  PubMed  Google Scholar 

  • Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138(5):1019–1031. doi:10.1016/j.cell.2009.06.049, S0092-8674(09)00841-1 [pii]

    CAS  PubMed  Google Scholar 

  • Watanabe S, Resch M, Lilyestrom W, Clark N, Hansen JC, Peterson C, Luger K (2010) Structural characterization of H3K56Q nucleosomes and nucleosomal arrays. Biochim Biophys Acta 1799(5–6):480–486. doi:10.1016/j.bbagrm.2010.01.009

    CAS  PubMed  Google Scholar 

  • Wen YD, Perissi V, Staszewski LM, Yang WM, Krones A, Glass CK, Rosenfeld MG, Seto E (2000) The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc Natl Acad Sci U S A 97(13):7202–7207, 97/13/7202 [pii]

    CAS  PubMed  Google Scholar 

  • Whittaker SJ, Demierre MF, Kim EJ, Rook AH, Lerner A, Duvic M, Scarisbrick J, Reddy S, Robak T, Becker JC, Samtsov A, McCulloch W, Kim YH (2010) Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol 28(29):4485–4491. doi:10.1200/JCO.2010.28.9066, JCO.2010.28.9066 [pii]

    CAS  PubMed  Google Scholar 

  • Williams SK, Truong D, Tyler JK (2008) Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation. Proc Natl Acad Sci U S A 105(26):9000–9005. doi:10.1073/pnas.0800057105, 0800057105 [pii]

    CAS  PubMed  Google Scholar 

  • Witt O, Deubzer HE, Milde T, Oehme I (2009) HDAC family: what are the cancer relevant targets? Cancer Lett 277(1):8–21. doi:10.1016/j.canlet.2008.08.016, S0304-3835(08)00649-6 [pii]

    CAS  PubMed  Google Scholar 

  • Wolf E, Vassilev A, Makino Y, Sali A, Nakatani Y, Burley SK (1998) Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase. Cell 94(4):439–449, S0092-8674(00)81585-8 [pii]

    CAS  PubMed  Google Scholar 

  • Wu J, Carmen AA, Kobayashi R, Suka N, Grunstein M (2001) HDA2 and HDA3 are related proteins that interact with and are essential for the activity of the yeast histone deacetylase HDA1. Proc Natl Acad Sci U S A 98(8):4391–4396. doi:10.1073/pnas.081560698, 081560698 [pii]

    CAS  PubMed  Google Scholar 

  • Wurtele H, Kaiser GS, Bacal J, St-Hilaire E, Lee EH, Tsao S, Dorn J, Maddox P, Lisby M, Pasero P, Verreault A (2012) Histone H3 lysine 56 acetylation and the response to DNA replication fork damage. Mol Cell Biol 32(1):154–172. doi:10.1128/MCB.05415-11

    CAS  PubMed  Google Scholar 

  • Wyce A, Xiao T, Whelan KA, Kosman C, Walter W, Eick D, Hughes TR, Krogan NJ, Strahl BD, Berger SL (2007) H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex. Mol Cell 27(2):275–288. doi:10.1016/j.molcel.2007.01.035

    CAS  PubMed  Google Scholar 

  • Xie W, Song C, Young NL, Sperling AS, Xu F, Sridharan R, Conway AE, Garcia BA, Plath K, Clark AT, Grunstein M (2009) Histone h3 lysine 56 acetylation is linked to the core transcriptional network in human embryonic stem cells. Mol Cell 33(4):417–427. doi:10.1016/j.molcel.2009.02.004

    CAS  PubMed  Google Scholar 

  • Xie L, Pelz C, Wang W, Bashar A, Varlamova O, Shadle S, Impey S (2011) KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription. EMBO J 30(8):1473–1484. doi:10.1038/emboj.2011.91

    CAS  PubMed  Google Scholar 

  • Xu F, Zhang K, Grunstein M (2005) Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121(3):375–385. doi:10.1016/j.cell.2005.03.011

    CAS  PubMed  Google Scholar 

  • Yamada T, Fischle W, Sugiyama T, Allis CD, Grewal SI (2005) The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol Cell 20(2):173–185. doi:10.1016/j.molcel.2005.10.002

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Horikoshi M (1997) Novel substrate specificity of the histone acetyltransferase activity of HIV-1-Tat interactive protein Tip60. J Biol Chem 272(49):30595–30598

    CAS  PubMed  Google Scholar 

  • Yan Y, Harper S, Speicher DW, Marmorstein R (2002) The catalytic mechanism of the ESA1 histone acetyltransferase involves a self-acetylated intermediate. Nat Struct Biol 9(11):862–869. doi:10.1038/nsb849, nsb849 [pii]

    CAS  PubMed  Google Scholar 

  • Yang XJ (2004) Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays 26(10):1076–1087. doi:10.1002/bies.20104

    CAS  PubMed  Google Scholar 

  • Yang XJ, Seto E (2008a) Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 31(4):449–461. doi:10.1016/j.molcel.2008.07.002, S1097-2765(08)00457-7 [pii]

    CAS  PubMed  Google Scholar 

  • Yang XJ, Seto E (2008b) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9(3):206–218. doi:10.1038/nrm2346

    CAS  PubMed  Google Scholar 

  • Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y (1996) A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382(6589):319–324. doi:10.1038/382319a0

    CAS  PubMed  Google Scholar 

  • Yang X, Yu W, Shi L, Sun L, Liang J, Yi X, Li Q, Zhang Y, Yang F, Han X, Zhang D, Yang J, Yao Z, Shang Y (2011) HAT4, a Golgi apparatus-anchored B-type histone acetyltransferase, acetylates free histone H4 and facilitates chromatin assembly. Mol Cell 44(1):39–50. doi:10.1016/j.molcel.2011.07.032, S1097-2765(11)00683-6 [pii]

    CAS  PubMed  Google Scholar 

  • Yao YL, Yang WM (2011) Beyond histone and deacetylase: an overview of cytoplasmic histone deacetylases and their nonhistone substrates. J Biomed Biotechnol 2011:146493. doi:10.1155/2011/146493

    PubMed  Google Scholar 

  • Ye J, Ai X, Eugeni EE, Zhang L, Carpenter LR, Jelinek MA, Freitas MA, Parthun MR (2005) Histone H4 lysine 91 acetylation a core domain modification associated with chromatin assembly. Mol Cell 18(1):123–130. doi:10.1016/j.molcel.2005.02.031, S1097-2765(05)01148-2 [pii]

    CAS  PubMed  Google Scholar 

  • Yu Y, Teng Y, Liu H, Reed SH, Waters R (2005) UV irradiation stimulates histone acetylation and chromatin remodeling at a repressed yeast locus. Proc Natl Acad Sci U S A 102(24):8650–8655. doi:10.1073/pnas.0501458102, 0501458102 [pii]

    CAS  PubMed  Google Scholar 

  • Yu S, Teng Y, Waters R, Reed SH (2011) How chromatin is remodelled during DNA repair of UV-induced DNA damage in Saccharomyces cerevisiae. PLoS Genet 7(6):e1002124. doi:10.1371/journal.pgen.1002124, PGENETICS-D-11-00428 [pii]

    CAS  PubMed  Google Scholar 

  • Yuan H, Marmorstein R (2012) Structural basis for sirtuin activity and inhibition. J Biol Chem 287:42428–42435. doi:10.1074/jbc.R112.372300, R112.372300 [pii]

    CAS  PubMed  Google Scholar 

  • Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJ (2005) Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309(5734):626–630. doi:10.1126/science.1112178, 1112178 [pii]

    CAS  PubMed  Google Scholar 

  • Yuan J, Pu M, Zhang Z, Lou Z (2009) Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle 8(11):1747–1753

    CAS  PubMed  Google Scholar 

  • Yuan H, Rossetto D, Mellert H, Dang W, Srinivasan M, Johnson J, Hodawadekar S, Ding EC, Speicher K, Abshiru N, Perry R, Wu J, Yang C, Zheng YG, Speicher DW, Thibault P, Verreault A, Johnson FB, Berger SL, Sternglanz R, McMahon SB, Cote J, Marmorstein R (2012) MYST protein acetyltransferase activity requires active site lysine autoacetylation. EMBO J 31(1):58–70. doi:10.1038/emboj.2011.382

    CAS  PubMed  Google Scholar 

  • Zanton SJ, Pugh BF (2006) Full and partial genome-wide assembly and disassembly of the yeast transcription machinery in response to heat shock. Genes Dev 20(16):2250–2265. doi:10.1101/gad.1437506, 20/16/2250 [pii]

    CAS  PubMed  Google Scholar 

  • Zeng L, Zhang Q, Li S, Plotnikov AN, Walsh MJ, Zhou MM (2010) Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature 466(7303):258–262. doi:10.1038/nature09139, nature09139 [pii]

    CAS  PubMed  Google Scholar 

  • Zhang L, Eugeni EE, Parthun MR, Freitas MA (2003) Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma 112(2):77–86. doi:10.1007/s00412-003-0244-6

    CAS  PubMed  Google Scholar 

  • Zhang D, Yoon HG, Wong J (2005a) JMJD2A is a novel N-CoR-interacting protein and is involved in repression of the human transcription factor achaete scute-like homologue 2 (ASCL2/Hash2). Mol Cell Biol 25(15):6404–6414. doi:10.1128/MCB.25.15.6404-6414.2005

    CAS  PubMed  Google Scholar 

  • Zhang H, Roberts DN, Cairns BR (2005b) Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123(2):219–231. doi:10.1016/j.cell.2005.08.036

    CAS  PubMed  Google Scholar 

  • Zheng C, Hayes JJ (2003) Intra- and inter-nucleosomal protein-DNA interactions of the core histone tail domains in a model system. J Biol Chem 278(26):24217–24224. doi:10.1074/jbc.M302817200

    CAS  PubMed  Google Scholar 

  • Zhou BR, Feng H, Ghirlando R, Kato H, Gruschus J, Bai Y (2012) Histone H4 K16Q mutation, an acetylation mimic, causes structural disorder of its N-terminal basic patch in the nucleosome. J Mol Biol 421(1):30–37. doi:10.1016/j.jmb.2012.04.032, S0022-2836(12)00374-9 [pii]

    CAS  PubMed  Google Scholar 

  • Zippo A, Serafini R, Rocchigiani M, Pennacchini S, Krepelova A, Oliviero S (2009) Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 138(6):1122–1136. doi:10.1016/j.cell.2009.07.031, S0092-8674(09)00911-8 [pii]

    CAS  PubMed  Google Scholar 

  • Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, Magoon D, Qi J, Blatt K, Wunderlich M, Taylor MJ, Johns C, Chicas A, Mulloy JC, Kogan SC, Brown P, Valent P, Bradner JE, Lowe SW, Vakoc CR (2011) RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478(7370):524–528. doi:10.1038/nature10334, nature10334 [pii]

    CAS  PubMed  Google Scholar 

  • Zunder RM, Antczak AJ, Berger JM, Rine J (2012) Two surfaces on the histone chaperone Rtt106 mediate histone binding, replication, and silencing. Proc Natl Acad Sci U S A 109(3):E144–E153. doi:10.1073/pnas.1119095109

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to our colleagues whose work could not be referenced due to space limitations. We thank Rhea Utley for correcting the text. Work in our lab was supported by grants from the Canadian Institutes of Health Research (CIHR, MOP-14308/64289). J. Côté holds a Canada Research Chair in Chromatin Biology and Molecular Epigenetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Côté .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Steunou, AL., Rossetto, D., Côté, J. (2014). Regulating Chromatin by Histone Acetylation. In: Workman, J., Abmayr, S. (eds) Fundamentals of Chromatin. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8624-4_4

Download citation

Publish with us

Policies and ethics