Skip to main content

Transcription Through Chromatin

  • Chapter
  • First Online:
Fundamentals of Chromatin

Abstract

All nuclear processes, including transcription by RNA polymerase II, take place in the context of the higher-order packaging of DNA into chromatin. Controlled gene expression requires first unimpeded access to the DNA by the transcriptional machinery and subsequent reformation of DNA into chromatin to avoid aberrant transcription. We will discuss the regulatory mechanisms that promote and limit RNA polymerase II transcription in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9(6):1191–1200

    PubMed  CAS  Google Scholar 

  • Akhtar MS, Heidemann M, Tietjen JR, Zhang DW, Chapman RD, Eick D, Ansari AZ (2009) TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol Cell 34(3):387–393. doi:10.1016/j.molcel.2009.04.016

    PubMed  CAS  Google Scholar 

  • Albert I, Mavrich TN, Tomsho LP, Qi J, Zanton SJ, Schuster SC, Pugh BF (2007) Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446(7135):572–576. doi:10.1038/nature05632

    PubMed  CAS  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:786–794

    PubMed  CAS  Google Scholar 

  • Allison LA, Wong JK, Fitzpatrick VD, Moyle M, Ingles CJ (1988) The C-terminal domain of the largest subunit of RNA polymerase II of Saccharomyces cerevisiae, Drosophila melanogaster, and mammals: a conserved structure with an essential function. Mol Cell Biol 8(1):321–329

    PubMed  CAS  Google Scholar 

  • Ansari A, Hampsey M (2005) A role for the CPF 3′-end processing machinery in RNAP II-dependent gene looping. Genes Dev 19(24):2969–2978. doi:10.1101/gad.1362305

    PubMed  CAS  Google Scholar 

  • Archambault J, Chambers RS, Kobor MS, Ho Y, Cartier M, Bolotin D, Andrews B, Kane CM, Greenblatt J (1997) An essential component of a C-terminal domain phosphatase that interacts with transcription factor IIF in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94(26):14300–14305

    PubMed  CAS  Google Scholar 

  • Armstrong JA, Papoulas O, Daubresse G, Sperling AS, Lis JT, Scott MP, Tamkun JW (2002) The Drosophila BRM complex facilitates global transcription by RNA polymerase II. EMBO J 21(19):5245–5254

    PubMed  CAS  Google Scholar 

  • Asturias FJ, Jiang YW, Myers LC, Gustafsson CM, Kornberg RD (1999) Conserved structures of mediator and RNA polymerase II holoenzyme. Science 283(5404):985–987

    PubMed  CAS  Google Scholar 

  • Auble DT, Hansen KE, Mueller CG, Lane WS, Thorner J, Hahn S (1994) Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev 8(16):1920–1934

    PubMed  CAS  Google Scholar 

  • Badenhorst P, Voas M, Rebay I, Wu C (2002) Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev 16(24):3186–3198. doi:10.1101/gad.1032202

    PubMed  CAS  Google Scholar 

  • Badenhorst P, Xiao H, Cherbas L, Kwon SY, Voas M, Rebay I, Cherbas P, Wu C (2005) The Drosophila nucleosome remodeling factor NURF is required for Ecdysteroid signaling and metamorphosis. Genes Dev 19(21):2540–2545. doi:10.1101/gad.1342605

    PubMed  CAS  Google Scholar 

  • Banerjee T, Chakravarti D (2011) A peek into the complex realm of histone phosphorylation. Mol Cell Biol 31(24):4858–4873. doi:10.1128/MCB.05631-11

    PubMed  CAS  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395. doi:10.1038/cr.2011.22

    PubMed  CAS  Google Scholar 

  • Barilla D, Lee BA, Proudfoot NJ (2001) Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 98(2):445–450. doi:10.1073/pnas.021545298

    PubMed  CAS  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837. doi:10.1016/j.cell.2007.05.009

    PubMed  CAS  Google Scholar 

  • Bartkowiak B, Liu P, Phatnani HP, Fuda NJ, Cooper JJ, Price DH, Adelman K, Lis JT, Greenleaf AL (2010) CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev 24(20):2303–2316. doi:10.1101/gad.1968210

    PubMed  CAS  Google Scholar 

  • Bartolomei MS, Halden NF, Cullen CR, Corden JL (1988) Genetic analysis of the repetitive carboxyl-terminal domain of the largest subunit of mouse RNA polymerase II. Mol Cell Biol 8(1):330–339

    PubMed  CAS  Google Scholar 

  • Bataille AR, Jeronimo C, Jacques PE, Laramee L, Fortin ME, Forest A, Bergeron M, Hanes SD, Robert F (2012) A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol Cell 45(2):158–170. doi:10.1016/j.molcel.2011.11.024

    PubMed  CAS  Google Scholar 

  • Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152(6):1298–1307. doi:10.1016/j.cell.2013.02.012

    PubMed  CAS  Google Scholar 

  • Batta K, Zhang Z, Yen K, Goffman DB, Pugh BF (2011) Genome-wide function of H2B ubiquitylation in promoter and genic regions. Genes Dev 25(21):2254–2265. doi:10.1101/gad.177238.111

    PubMed  CAS  Google Scholar 

  • Becker PB, Workman JL (2013) Nucleosome remodeling and epigenetics. Cold Spring Harb Perspect Biol 5:a017905. doi:10.1101/cshperspect.a017905

    PubMed  Google Scholar 

  • Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D (2003) FACT facilitates transcription-dependent nucleosome alteration. Science 301(5636):1090–1093. doi:10.1126/science.1085703

    PubMed  CAS  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326. doi:10.1016/j.cell.2006.02.041

    PubMed  CAS  Google Scholar 

  • Berretta J, Morillon A (2009) Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO Rep 10(9):973–982. doi:10.1038/embor.2009.181, embor2009181 [pii]

    PubMed  CAS  Google Scholar 

  • Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816. doi:10.1038/nature05874

    PubMed  CAS  Google Scholar 

  • Bitoun E, Oliver PL, Davies KE (2007) The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 16(1):92–106. doi:10.1093/hmg/ddl444

    PubMed  CAS  Google Scholar 

  • Bouazoune K, Brehm A (2005) dMi-2 chromatin binding and remodeling activities are regulated by dCK2 phosphorylation. J Biol Chem 280(51):41912–41920. doi:10.1074/jbc.M507084200

    PubMed  CAS  Google Scholar 

  • Briggs SD, Bryk M, Strahl BD, Cheung WL, Davie JK, Dent SY, Winston F, Allis CD (2001) Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev 15(24):3286–3295. doi:10.1101/gad.940201

    PubMed  CAS  Google Scholar 

  • Briggs SD, Xiao T, Sun ZW, Caldwell JA, Shabanowitz J, Hunt DF, Allis CD, Strahl BD (2002) Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418(6897):498

    PubMed  CAS  Google Scholar 

  • Bumgarner SL, Dowell RD, Grisafi P, Gifford DK, Fink GR (2009) Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proc Natl Acad Sci USA 106(43):18321–18326. doi:10.1073/pnas.0909641106

    PubMed  CAS  Google Scholar 

  • Burgess RJ, Zhang Z (2013) Histone chaperones in nucleosome assembly and human disease. Nat Struct Mol Biol 20(1):14–22. doi:10.1038/nsmb.2461

    PubMed  CAS  Google Scholar 

  • Bushnell DA, Westover KD, Davis RE, Kornberg RD (2004) Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms. Science 303(5660):983–988. doi:10.1126/science.1090838

    PubMed  CAS  Google Scholar 

  • Cadena DL, Dahmus ME (1987) Messenger RNA synthesis in mammalian cells is catalyzed by the phosphorylated form of RNA polymerase II. J Biol Chem 262(26):12468–12474

    PubMed  CAS  Google Scholar 

  • Cai Y, Jin J, Yao T, Gottschalk AJ, Swanson SK, Wu S, Shi Y, Washburn MP, Florens L, Conaway RC, Conaway JW (2007) YY1 functions with INO80 to activate transcription. Nat Struct Mol Biol 14(9):872–874. doi:10.1038/nsmb1276

    PubMed  CAS  Google Scholar 

  • Calvo O, Manley JL (2005) The transcriptional coactivator PC4/Sub1 has multiple functions in RNA polymerase II transcription. EMBO J 24(5):1009–1020. doi:10.1038/sj.emboj.7600575

    PubMed  CAS  Google Scholar 

  • Camblong J, Iglesias N, Fickentscher C, Dieppois G, Stutz F (2007) Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell 131(4):706–717. doi:10.1016/j.cell.2007.09.014

    PubMed  CAS  Google Scholar 

  • Carey M, Li B, Workman JL (2006) RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Mol Cell 24(3):481–487. doi:10.1016/j.molcel.2006.09.012

    PubMed  CAS  Google Scholar 

  • Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engstrom PG, Frith MC, Forrest AR, Alkema WB, Tan SL, Plessy C, Kodzius R, Ravasi T, Kasukawa T, Fukuda S, Kanamori-Katayama M, Kitazume Y, Kawaji H, Kai C, Nakamura M, Konno H, Nakano K et al (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38(6):626–635. doi:10.1038/ng1789

    PubMed  CAS  Google Scholar 

  • Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, Shia WJ, Anderson S, Yates J, Washburn MP, Workman JL (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123(4):581–592. doi:10.1016/j.cell.2005.10.023, S0092-8674(05)01156-6 [pii]

    PubMed  CAS  Google Scholar 

  • Carvalho S, Raposo AC, Martins FB, Grosso AR, Sridhara SC, Rino J, Carmo-Fonseca M, de Almeida SF (2013) Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription. Nucleic Acids Res 41(5):2881–2893. doi:10.1093/nar/gks1472

    PubMed  CAS  Google Scholar 

  • Celona B, Weiner A, Di Felice F, Mancuso FM, Cesarini E, Rossi RL, Gregory L, Baban D, Rossetti G, Grianti P, Pagani M, Bonaldi T, Ragoussis J, Friedman N, Camilloni G, Bianchi ME, Agresti A (2011) Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output. PLoS Biol 9(6):e1001086. doi:10.1371/journal.pbio.1001086

    PubMed  CAS  Google Scholar 

  • Chandrasekharan MB, Huang F, Sun ZW (2009) Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. Proc Natl Acad Sci USA 106(39):16686–16691. doi:10.1073/pnas.0907862106

    PubMed  CAS  Google Scholar 

  • Chang CH, Luse DS (1997) The H3/H4 tetramer blocks transcript elongation by RNA polymerase II in vitro. J Biol Chem 272(37):23427–23434

    PubMed  CAS  Google Scholar 

  • Chapman RD, Palancade B, Lang A, Bensaude O, Eick D (2004) The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability. Nucleic Acids Res 32(1):35–44. doi:10.1093/nar/gkh172

    PubMed  CAS  Google Scholar 

  • Chapman RD, Heidemann M, Hintermair C, Eick D (2008) Molecular evolution of the RNA polymerase II CTD. Trends Genet 24(6):289–296. doi:10.1016/j.tig.2008.03.010

    PubMed  CAS  Google Scholar 

  • Charlop-Powers Z, Zeng L, Zhang Q, Zhou MM (2010) Structural insights into selective histone H3 recognition by the human Polybromo bromodomain 2. Cell Res 20(5):529–538. doi:10.1038/cr.2010.43

    PubMed  CAS  Google Scholar 

  • Chatterjee C, McGinty RK, Fierz B, Muir TW (2010) Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation. Nat Chem Biol 6(4):267–269. doi:10.1038/nchembio.315

    PubMed  CAS  Google Scholar 

  • Chen XF, Kuryan B, Kitada T, Tran N, Li JY, Kurdistani S, Grunstein M, Li B, Carey M (2012) The Rpd3 core complex is a chromatin stabilization module. Curr Biol 22(1):56–63. doi:10.1016/j.cub.2011.11.042

    PubMed  CAS  Google Scholar 

  • Chesnut JD, Stephens JH, Dahmus ME (1992) The interaction of RNA polymerase II with the adenovirus-2 major late promoter is precluded by phosphorylation of the C-terminal domain of subunit IIa. J Biol Chem 267(15):10500–10506

    PubMed  CAS  Google Scholar 

  • Cheung V, Chua G, Batada NN, Landry CR, Michnick SW, Hughes TR, Winston F (2008) Chromatin- and transcription-related factors repress transcription from within coding regions throughout the Saccharomyces cerevisiae genome. PLoS Biol 6(11):e277. doi:10.1371/journal.pbio.0060277

    PubMed  Google Scholar 

  • Chi TH, Wan M, Zhao K, Taniuchi I, Chen L, Littman DR, Crabtree GR (2002) Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes. Nature 418(6894):195–199. doi:10.1038/nature00876

    PubMed  CAS  Google Scholar 

  • Cho EJ, Kobor MS, Kim M, Greenblatt J, Buratowski S (2001) Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev 15(24):3319–3329. doi:10.1101/gad.935901

    PubMed  CAS  Google Scholar 

  • Chu Y, Sutton A, Sternglanz R, Prelich G (2006) The BUR1 cyclin-dependent protein kinase is required for the normal pattern of histone methylation by SET2. Mol Cell Biol 26(8):3029–3038. doi:10.1128/MCB.26.8.3029-3038.2006

    PubMed  CAS  Google Scholar 

  • Churchman LS, Weissman JS (2011) Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469(7330):368–373. doi:10.1038/nature09652

    PubMed  CAS  Google Scholar 

  • Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304

    PubMed  CAS  Google Scholar 

  • Cohen-Armon M, Visochek L, Rozensal D, Kalal A, Geistrikh I, Klein R, Bendetz-Nezer S, Yao Z, Seger R (2007) DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation. Mol Cell 25(2):297–308. doi:10.1016/j.molcel.2006.12.012

    PubMed  CAS  Google Scholar 

  • Conaway JW, Conaway RC (1991) Initiation of eukaryotic messenger RNA synthesis. J Biol Chem 266(27):17721–17724

    PubMed  CAS  Google Scholar 

  • Conaway RC, Conaway JW (2013) The Mediator complex and transcription elongation. Biochim Biophys Acta 1829(1):69–75. doi:10.1016/j.bbagrm.2012.08.017

    PubMed  CAS  Google Scholar 

  • Corden JL (2008) Yeast Pol II start-site selection: the long and the short of it. EMBO Rep 9(11):1084–1086. doi:10.1038/embor.2008.192

    PubMed  CAS  Google Scholar 

  • Cosma MP, Tanaka T, Nasmyth K (1999) Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97(3):299–311

    PubMed  CAS  Google Scholar 

  • Cramer P (2002) Multisubunit RNA polymerases. Curr Opin Struct Biol 12(1):89–97

    PubMed  CAS  Google Scholar 

  • Cramer P (2004) RNA polymerase II structure: from core to functional complexes. Curr Opin Genet Dev 14(2):218–226. doi:10.1016/j.gde.2004.01.003

    PubMed  CAS  Google Scholar 

  • Cramer P, Armache KJ, Baumli S, Benkert S, Brueckner F, Buchen C, Damsma GE, Dengl S, Geiger SR, Jasiak AJ, Jawhari A, Jennebach S, Kamenski T, Kettenberger H, Kuhn CD, Lehmann E, Leike K, Sydow JF, Vannini A (2008) Structure of eukaryotic RNA polymerases. Annu Rev Biophys 37:337–352. doi:10.1146/annurev.biophys.37.032807.130008

    PubMed  CAS  Google Scholar 

  • Curtis CD, Griffin CT (2012) The chromatin-remodeling enzymes BRG1 and CHD4 antagonistically regulate vascular Wnt signaling. Mol Cell Biol 32(7):1312–1320. doi:10.1128/MCB.06222-11

    PubMed  CAS  Google Scholar 

  • Damelin M, Simon I, Moy TI, Wilson B, Komili S, Tempst P, Roth FP, Young RA, Cairns BR, Silver PA (2002) The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in response to stress. Mol Cell 9(3):563–573

    PubMed  CAS  Google Scholar 

  • David L, Huber W, Granovskaia M, Toedling J, Palm CJ, Bofkin L, Jones T, Davis RW, Steinmetz LM (2006) A high-resolution map of transcription in the yeast genome. Proc Natl Acad Sci USA 103(14):5320–5325. doi:10.1073/pnas.0601091103

    PubMed  CAS  Google Scholar 

  • Davies N, Lindsey GG (1994) Histone H2B (and H2A) ubiquitination allows normal histone octamer and core particle reconstitution. Biochim Biophys Acta 1218(2):187–193

    PubMed  CAS  Google Scholar 

  • Devaiah BN, Lewis BA, Cherman N, Hewitt MC, Albrecht BK, Robey PG, Ozato K, Sims RJ 3rd, Singer DS (2012) BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain. Proc Natl Acad Sci USA 109(18):6927–6932. doi:10.1073/pnas.1120422109

    PubMed  CAS  Google Scholar 

  • Dhami P, Saffrey P, Bruce AW, Dillon SC, Chiang K, Bonhoure N, Koch CM, Bye J, James K, Foad NS, Ellis P, Watkins NA, Ouwehand WH, Langford C, Andrews RM, Dunham I, Vetrie D (2010) Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution. PLoS One 5(8):e12339. doi:10.1371/journal.pone.0012339

    PubMed  Google Scholar 

  • Dichtl B, Blank D, Ohnacker M, Friedlein A, Roeder D, Langen H, Keller W (2002) A role for SSU72 in balancing RNA polymerase II transcription elongation and termination. Mol Cell 10(5):1139–1150

    PubMed  CAS  Google Scholar 

  • Dion MF, Altschuler SJ, Wu LF, Rando OJ (2005) Genomic characterization reveals a simple histone H4 acetylation code. Proc Natl Acad Sci USA 102(15):5501–5506. doi:10.1073/pnas.0500136102

    PubMed  CAS  Google Scholar 

  • Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, Rando OJ (2007) Dynamics of replication-independent histone turnover in budding yeast. Science 315(5817):1405–1408. doi:10.1126/science.1134053

    PubMed  CAS  Google Scholar 

  • Drew HR, Travers AA (1985) DNA bending and its relation to nucleosome positioning. J Mol Biol 186(4):773–790

    PubMed  CAS  Google Scholar 

  • Drouin S, Laramee L, Jacques PE, Forest A, Bergeron M, Robert F (2010) DSIF and RNA polymerase II CTD phosphorylation coordinate the recruitment of Rpd3S to actively transcribed genes. PLoS Genet 6(10):e1001173. doi:10.1371/journal.pgen.1001173

    PubMed  Google Scholar 

  • Ebbert R, Birkmann A, Schuller HJ (1999) The product of the SNF2/SWI2 paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex. Mol Microbiol 32(4):741–751

    PubMed  CAS  Google Scholar 

  • Edmunds JW, Mahadevan LC, Clayton AL (2008) Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 27(2):406–420. doi:10.1038/sj.emboj.7601967, 7601967 [pii]

    PubMed  CAS  Google Scholar 

  • Egloff S, Dienstbier M, Murphy S (2012a) Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet 28(7):333–341. doi:10.1016/j.tig.2012.03.007

    PubMed  CAS  Google Scholar 

  • Egloff S, Zaborowska J, Laitem C, Kiss T, Murphy S (2012b) Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes. Mol Cell 45(1):111–122. doi:10.1016/j.molcel.2011.11.006

    PubMed  CAS  Google Scholar 

  • Ehrensberger AH, Kornberg RD (2011) Isolation of an activator-dependent, promoter-specific chromatin remodeling factor. Proc Natl Acad Sci USA 108(25):10115–10120. doi:10.1073/pnas.1101449108

    PubMed  CAS  Google Scholar 

  • Ernst J, Kellis M (2010) Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol 28(8):817–825. doi:10.1038/nbt.1662

    PubMed  CAS  Google Scholar 

  • Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473(7345):43–49. doi:10.1038/nature09906

    PubMed  CAS  Google Scholar 

  • Ezhkova E, Tansey WP (2004) Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Mol Cell 13(3):435–442

    PubMed  CAS  Google Scholar 

  • Fazzio TG, Kooperberg C, Goldmark JP, Neal C, Basom R, Delrow J, Tsukiyama T (2001) Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol Cell Biol 21(19):6450–6460

    PubMed  CAS  Google Scholar 

  • Feaver WJ, Gileadi O, Li Y, Kornberg RD (1991) CTD kinase associated with yeast RNA polymerase II initiation factor b. Cell 67(6):1223–1230

    PubMed  CAS  Google Scholar 

  • Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K, Zhang Y (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12(12):1052–1058

    PubMed  CAS  Google Scholar 

  • Ferreira H, Flaus A, Owen-Hughes T (2007) Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J Mol Biol 374(3):563–579

    PubMed  CAS  Google Scholar 

  • Fierz B, Chatterjee C, McGinty RK, Bar-Dagan M, Raleigh DP, Muir TW (2011) Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat Chem Biol 7(2):113–119. doi:10.1038/nchembio.501

    PubMed  CAS  Google Scholar 

  • Filion GJ, van Bemmel JG, Braunschweig U, Talhout W, Kind J, Ward LD, Brugman W, de Castro IJ, Kerkhoven RM, Bussemaker HJ, van Steensel B (2010) Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143(2):212–224. doi:10.1016/j.cell.2010.09.009

    PubMed  CAS  Google Scholar 

  • Flanagan JF, Mi LZ, Chruszcz M, Cymborowski M, Clines KL, Kim Y, Minor W, Rastinejad F, Khorasanizadeh S (2005) Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438(7071):1181–1185. doi:10.1038/nature04290

    PubMed  CAS  Google Scholar 

  • Flaus A, Owen-Hughes T (2011) Mechanisms for ATP-dependent chromatin remodelling: the means to the end. FEBS J 278(19):3579–3595. doi:10.1111/j.1742-4658.2011.08281.x

    PubMed  Google Scholar 

  • Flaus A, Martin DM, Barton GJ, Owen-Hughes T (2006) Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 34(10):2887–2905. doi:10.1093/nar/gkl295

    PubMed  CAS  Google Scholar 

  • Fleming AB, Kao CF, Hillyer C, Pikaart M, Osley MA (2008) H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol Cell 31(1):57–66. doi:10.1016/j.molcel.2008.04.025

    PubMed  CAS  Google Scholar 

  • Frederiks F, Tzouros M, Oudgenoeg G, van Welsem T, Fornerod M, Krijgsveld J, van Leeuwen F (2008) Nonprocessive methylation by Dot1 leads to functional redundancy of histone H3K79 methylation states. Nat Struct Mol Biol 15(6):550–557. doi:10.1038/nsmb.1432

    PubMed  CAS  Google Scholar 

  • Fuchs SM, Kizer KO, Braberg H, Krogan NJ, Strahl BD (2012) RNA polymerase II carboxyl-terminal domain phosphorylation regulates protein stability of the Set2 methyltransferase and histone H3 di- and trimethylation at lysine 36. J Biol Chem 287(5):3249–3256. doi:10.1074/jbc.M111.273953

    PubMed  CAS  Google Scholar 

  • Fujinaga K, Irwin D, Huang Y, Taube R, Kurosu T, Peterlin BM (2004) Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol Cell Biol 24(2):787–795

    PubMed  CAS  Google Scholar 

  • Ganem C, Devaux F, Torchet C, Jacq C, Quevillon-Cheruel S, Labesse G, Facca C, Faye G (2003) Ssu72 is a phosphatase essential for transcription termination of snoRNAs and specific mRNAs in yeast. EMBO J 22(7):1588–1598. doi:10.1093/emboj/cdg141

    PubMed  CAS  Google Scholar 

  • Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason MJ, Heidersbach A, Ramalho-Santos J, McManus MT, Plath K, Meshorer E, Ramalho-Santos M (2009) Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 460(7257):863–868. doi:10.1038/nature08212

    PubMed  CAS  Google Scholar 

  • Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, Liu T, Yip KY, Robilotto R, Rechtsteiner A, Ikegami K, Alves P, Chateigner A, Perry M, Morris M, Auerbach RK, Feng X, Leng J, Vielle A, Niu W, Rhrissorrakrai K, Agarwal A, Alexander RP, Barber G, Brdlik CM, Brennan J et al (2010) Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330(6012):1775–1787. doi:10.1126/science.1196914

    PubMed  CAS  Google Scholar 

  • Giardina C, Lis JT (1993) Polymerase processivity and termination on Drosophila heat shock genes. J Biol Chem 268(32):23806–23811

    PubMed  CAS  Google Scholar 

  • Gilmour DS, Lis JT (1986) RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. Mol Cell Biol 6(11):3984–3989

    PubMed  CAS  Google Scholar 

  • Gkikopoulos T, Schofield P, Singh V, Pinskaya M, Mellor J, Smolle M, Workman JL, Barton GJ, Owen-Hughes T (2011) A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 333(6050):1758–1760. doi:10.1126/science.1206097

    PubMed  CAS  Google Scholar 

  • Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S, Dewell S, Law M, Guo X, Li X, Wen D, Chapgier A, DeKelver RC, Miller JC, Lee YL, Boydston EA, Holmes MC, Gregory PD, Greally JM, Rafii S, Yang C, Scambler PJ, Garrick D, Gibbons RJ, Higgs DR et al (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140(5):678–691. doi:10.1016/j.cell.2010.01.003

    PubMed  CAS  Google Scholar 

  • Goldmark JP, Fazzio TG, Estep PW, Church GM, Tsukiyama T (2000) The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103(3):423–433

    PubMed  CAS  Google Scholar 

  • Gossett AJ, Lieb JD (2012) In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae. PLoS Genet 8(6):e1002771. doi:10.1371/journal.pgen.1002771

    PubMed  CAS  Google Scholar 

  • Govind CK, Qiu H, Ginsburg DS, Ruan C, Hofmeyer K, Hu C, Swaminathan V, Workman JL, Li B, Hinnebusch AG (2010) Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes. Mol Cell 39(2):234–246. doi:10.1016/j.molcel.2010.07.003, S1097-2765(10)00525-3 [pii]

    PubMed  CAS  Google Scholar 

  • Guccione E, Bassi C, Casadio F, Martinato F, Cesaroni M, Schuchlautz H, Luscher B, Amati B (2007) Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449(7164):933–937. doi:10.1038/nature06166

    PubMed  CAS  Google Scholar 

  • Guidi BW, Bjornsdottir G, Hopkins DC, Lacomis L, Erdjument-Bromage H, Tempst P, Myers LC (2004) Mutual targeting of mediator and the TFIIH kinase Kin28. J Biol Chem 279(28):29114–29120. doi:10.1074/jbc.M404426200

    PubMed  CAS  Google Scholar 

  • Hahn S (2004) Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol 11(5):394–403. doi:10.1038/nsmb763

    PubMed  CAS  Google Scholar 

  • Hainer SJ, Pruneski JA, Mitchell RD, Monteverde RM, Martens JA (2011) Intergenic transcription causes repression by directing nucleosome assembly. Genes Dev 25(1):29–40. doi:10.1101/gad.1975011

    PubMed  CAS  Google Scholar 

  • Hampsey M (1998) Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev 62(2):465–503

    PubMed  CAS  Google Scholar 

  • Han M, Grunstein M (1988) Nucleosome loss activates yeast downstream promoters in vivo. Cell 55(6):1137–1145

    PubMed  CAS  Google Scholar 

  • Hargreaves DC, Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21(3):396–420. doi:10.1038/cr.2011.32

    PubMed  CAS  Google Scholar 

  • Hartley PD, Madhani HD (2009) Mechanisms that specify promoter nucleosome location and identity. Cell 137(3):445–458. doi:10.1016/j.cell.2009.02.043

    PubMed  CAS  Google Scholar 

  • Hassa PO, Haenni SS, Elser M, Hottiger MO (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70(3):789–829. doi:10.1128/MMBR.00040-05

    PubMed  CAS  Google Scholar 

  • Hassan AH, Neely KE, Workman JL (2001) Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104(6):817–827

    PubMed  CAS  Google Scholar 

  • Hassan AH, Prochasson P, Neely KE, Galasinski SC, Chandy M, Carrozza MJ, Workman JL (2002) Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111(3):369–379

    PubMed  CAS  Google Scholar 

  • He X, Khan AU, Cheng H, Pappas DL Jr, Hampsey M, Moore CL (2003) Functional interactions between the transcription and mRNA 3′ end processing machineries mediated by Ssu72 and Sub1. Genes Dev 17(8):1030–1042. doi:10.1101/gad.1075203

    PubMed  CAS  Google Scholar 

  • Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39(3):311–318. doi:10.1038/ng1966

    PubMed  CAS  Google Scholar 

  • Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, Ching KA, Antosiewicz-Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart R, Thomson JA, Crawford GE, Kellis M, Ren B (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459(7243):108–112. doi:10.1038/nature07829

    PubMed  CAS  Google Scholar 

  • Henikoff S (2008) Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet 9(1):15–26. doi:10.1038/nrg2206

    PubMed  CAS  Google Scholar 

  • Hennig BP, Bendrin K, Zhou Y, Fischer T (2012) Chd1 chromatin remodelers maintain nucleosome organization and repress cryptic transcription. EMBO Rep 13(11):997–1003. doi:10.1038/embor.2012.146

    PubMed  CAS  Google Scholar 

  • Herr AJ, Jensen MB, Dalmay T, Baulcombe DC (2005) RNA polymerase IV directs silencing of endogenous DNA. Science 308(5718):118–120. doi:10.1126/science.1106910

    PubMed  CAS  Google Scholar 

  • Hintermair C, Heidemann M, Koch F, Descostes N, Gut M, Gut I, Fenouil R, Ferrier P, Flatley A, Kremmer E, Chapman RD, Andrau JC, Eick D (2012) Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation. EMBO J 31(12):2784–2797. doi:10.1038/emboj.2012.123

    PubMed  CAS  Google Scholar 

  • Hirose Y, Tacke R, Manley JL (1999) Phosphorylated RNA polymerase II stimulates pre-mRNA splicing. Genes Dev 13(10):1234–1239

    PubMed  CAS  Google Scholar 

  • Hirota K, Miyoshi T, Kugou K, Hoffman CS, Shibata T, Ohta K (2008) Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs. Nature 456(7218):130–134. doi:10.1038/nature07348

    PubMed  CAS  Google Scholar 

  • Ho L, Jothi R, Ronan JL, Cui K, Zhao K, Crabtree GR (2009) An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc Natl Acad Sci USA 106(13):5187–5191. doi:10.1073/pnas.0812888106

    PubMed  CAS  Google Scholar 

  • Hondele M, Stuwe T, Hassler M, Halbach F, Bowman A, Zhang ET, Nijmeijer B, Kotthoff C, Rybin V, Amlacher S, Hurt E, Ladurner AG (2013) Structural basis of histone H2A-H2B recognition by the essential chaperone FACT. Nature 499(7456):111–114. doi:10.1038/nature12242

    PubMed  CAS  Google Scholar 

  • Hong L, Schroth GP, Matthews HR, Yau P, Bradbury EM (1993) Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA. J Biol Chem 268(1):305–314

    PubMed  CAS  Google Scholar 

  • Houseley J, Rubbi L, Grunstein M, Tollervey D, Vogelauer M (2008) A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Mol Cell 32(5):685–695. doi:10.1016/j.molcel.2008.09.027

    PubMed  CAS  Google Scholar 

  • Hsiao PW, Fryer CJ, Trotter KW, Wang W, Archer TK (2003) BAF60a mediates critical interactions between nuclear receptors and the BRG1 chromatin-remodeling complex for transactivation. Mol Cell Biol 23(17):6210–6220

    PubMed  CAS  Google Scholar 

  • Hsin JP, Manley JL (2012) The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 26(19):2119–2137. doi:10.1101/gad.200303.112

    PubMed  CAS  Google Scholar 

  • Hsin JP, Sheth A, Manley JL (2011) RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3′ end processing. Science 334(6056):683–686. doi:10.1126/science.1206034

    PubMed  CAS  Google Scholar 

  • Huang RC, Maheshwari N, Bonner J (1960) Enzymatic synthesis of RNA. Biochem Biophys Res Commun 3:689–694

    PubMed  CAS  Google Scholar 

  • Hughes CM, Rozenblatt-Rosen O, Milne TA, Copeland TD, Levine SS, Lee JC, Hayes DN, Shanmugam KS, Bhattacharjee A, Biondi CA, Kay GF, Hayward NK, Hess JL, Meyerson M (2004) Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 13(4):587–597

    PubMed  CAS  Google Scholar 

  • Hughes AL, Jin Y, Rando OJ, Struhl K (2012) A functional evolutionary approach to identify determinants of nucleosome positioning: a unifying model for establishing the genome-wide pattern. Mol Cell 48(1):5–15. doi:10.1016/j.molcel.2012.07.003

    PubMed  CAS  Google Scholar 

  • Huh JW, Wu J, Lee CH, Yun M, Gilada D, Brautigam CA, Li B (2012) Multivalent di-nucleosome recognition enables the Rpd3S histone deacetylase complex to tolerate decreased H3K36 methylation levels. EMBO J 31(17):3564–3574. doi:10.1038/emboj.2012.221

    PubMed  CAS  Google Scholar 

  • Hurwitz J, Bresler A, Diringer R (1960) The enzymic incorporation of ribonucleotides into polyribonucleotides and the effect of DNA. Biochem Biophys Res Commun 3(1):15–19

    CAS  Google Scholar 

  • Huyen Y, Zgheib O, Ditullio RA Jr, Gorgoulis VG, Zacharatos P, Petty TJ, Sheston EA, Mellert HS, Stavridi ES, Halazonetis TD (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432(7015):406–411. doi:10.1038/nature03114

    PubMed  CAS  Google Scholar 

  • Hyllus D, Stein C, Schnabel K, Schiltz E, Imhof A, Dou Y, Hsieh J, Bauer UM (2007) PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes Dev 21(24):3369–3380. doi:10.1101/gad.447007

    PubMed  CAS  Google Scholar 

  • Imbeault D, Gamar L, Rufiange A, Paquet E, Nourani A (2008) The Rtt106 histone chaperone is functionally linked to transcription elongation and is involved in the regulation of spurious transcription from cryptic promoters in yeast. J Biol Chem 283(41):27350–27354. doi:10.1074/jbc.C800147200

    PubMed  CAS  Google Scholar 

  • Ishihama A (1988) Promoter selectivity of prokaryotic RNA polymerases. Trends Genet 4(10):282–286

    PubMed  CAS  Google Scholar 

  • Izban MG, Luse DS (1992) Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. J Biol Chem 267(19):13647–13655

    PubMed  CAS  Google Scholar 

  • Jacquier A (2009) The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet 10(12):833–844. doi:10.1038/nrg2683

    PubMed  CAS  Google Scholar 

  • Jamai A, Imoberdorf RM, Strubin M (2007) Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. Mol Cell 25(3):345–355. doi:10.1016/j.molcel.2007.01.019, S1097-2765(07)00042-1 [pii]

    PubMed  CAS  Google Scholar 

  • Jamai A, Puglisi A, Strubin M (2009) Histone chaperone spt16 promotes redeposition of the original h3-h4 histones evicted by elongating RNA polymerase. Mol Cell 35(3):377–383. doi:10.1016/j.molcel.2009.07.001

    PubMed  CAS  Google Scholar 

  • Jansen A, Verstrepen KJ (2011) Nucleosome positioning in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 75(2):301–320. doi:10.1128/MMBR.00046-10

    PubMed  CAS  Google Scholar 

  • Jiang C, Pugh BF (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10(3):161–172. doi:10.1038/nrg2522

    PubMed  CAS  Google Scholar 

  • Jonsson ZO, Jha S, Wohlschlegel JA, Dutta A (2004) Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. Mol Cell 16(3):465–477

    PubMed  CAS  Google Scholar 

  • Joshi AA, Struhl K (2005) Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell 20(6):971–978. doi:10.1016/j.molcel.2005.11.021

    PubMed  CAS  Google Scholar 

  • Juven-Gershon T, Kadonaga JT (2010) Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev Biol 339(2):225–229. doi:10.1016/j.ydbio.2009.08.009

    PubMed  CAS  Google Scholar 

  • Juven-Gershon T, Hsu JY, Kadonaga JT (2006) Perspectives on the RNA polymerase II core promoter. Biochem Soc Trans 34(Pt 6):1047–1050. doi:10.1042/BST0341047

    PubMed  CAS  Google Scholar 

  • Kamenski T, Heilmeier S, Meinhart A, Cramer P (2004) Structure and mechanism of RNA polymerase II CTD phosphatases. Mol Cell 15(3):399–407. doi:10.1016/j.molcel.2004.06.035

    PubMed  CAS  Google Scholar 

  • Kaneko S, Li G, Son J, Xu CF, Margueron R, Neubert TA, Reinberg D (2010) Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev 24(23):2615–2620. doi:10.1101/gad.1983810

    PubMed  CAS  Google Scholar 

  • Kao CF, Hillyer C, Tsukuda T, Henry K, Berger S, Osley MA (2004) Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes Dev 18(2):184–195

    PubMed  CAS  Google Scholar 

  • Kaplan CD, Laprade L, Winston F (2003) Transcription elongation factors repress transcription initiation from cryptic sites. Science 301(5636):1096–1099. doi:10.1126/science.1087374

    PubMed  CAS  Google Scholar 

  • Kasten M, Szerlong H, Erdjument-Bromage H, Tempst P, Werner M, Cairns BR (2004) Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J 23(6):1348–1359. doi:10.1038/sj.emboj.7600143, 7600143 [pii]

    PubMed  CAS  Google Scholar 

  • Kelley DE, Stokes DG, Perry RP (1999) CHD1 interacts with SSRP1 and depends on both its chromodomain and its ATPase/helicase-like domain for proper association with chromatin. Chromosoma 108(1):10–25

    PubMed  CAS  Google Scholar 

  • Kelly WG, Dahmus ME, Hart GW (1993) RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. J Biol Chem 268(14):10416–10424

    PubMed  CAS  Google Scholar 

  • Keogh MC, Podolny V, Buratowski S (2003) Bur1 kinase is required for efficient transcription elongation by RNA polymerase II. Mol Cell Biol 23(19):7005–7018

    PubMed  CAS  Google Scholar 

  • Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V, Collins SR, Schuldiner M, Chin K, Punna T, Thompson NJ, Boone C, Emili A, Weissman JS, Hughes TR, Strahl BD, Grunstein M, Greenblatt JF, Buratowski S, Krogan NJ (2005) Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123(4):593–605. doi:10.1016/j.cell.2005.10.025, S0092-8674(05)01159-1 [pii]

    PubMed  CAS  Google Scholar 

  • Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst J, Sabo PJ, Larschan E, Gorchakov AA, Gu T, Linder-Basso D, Plachetka A, Shanower G, Tolstorukov MY, Luquette LJ, Xi R, Jung YL, Park RW, Bishop EP, Canfield TK, Sandstrom R, Thurman RE, MacAlpine DM, Stamatoyannopoulos JA, Kellis M et al (2011) Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471(7339):480–485. doi:10.1038/nature09725

    PubMed  CAS  Google Scholar 

  • Kim T, Buratowski S (2009) Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5′ transcribed regions. Cell 137(2):259–272

    PubMed  CAS  Google Scholar 

  • Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green RD, Ren B (2005) A high-resolution map of active promoters in the human genome. Nature 436(7052):876–880. doi:10.1038/nature03877

    PubMed  CAS  Google Scholar 

  • Kim H, Erickson B, Luo W, Seward D, Graber JH, Pollock DD, Megee PC, Bentley DL (2010a) Gene-specific RNA polymerase II phosphorylation and the CTD code. Nat Struct Mol Biol 17(10):1279–1286. doi:10.1038/nsmb.1913

    PubMed  CAS  Google Scholar 

  • Kim JH, Saraf A, Florens L, Washburn M, Workman JL (2010b) Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2. Genes Dev 24(24):2766–2771. doi:10.1101/gad.1979710

    PubMed  CAS  Google Scholar 

  • Kim TS, Liu CL, Yassour M, Holik J, Friedman N, Buratowski S, Rando OJ (2010c) RNA polymerase mapping during stress responses reveals widespread nonproductive transcription in yeast. Genome Biol 11(7):R75. doi:10.1186/gb-2010-11-7-r75

    PubMed  Google Scholar 

  • Kim T, Xu Z, Clauder-Munster S, Steinmetz LM, Buratowski S (2012) Set3 HDAC mediates effects of overlapping noncoding transcription on gene induction kinetics. Cell 150(6):1158–1169. doi:10.1016/j.cell.2012.08.016

    PubMed  CAS  Google Scholar 

  • Kireeva ML, Walter W, Tchernajenko V, Bondarenko V, Kashlev M, Studitsky VM (2002) Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol Cell 9(3):541–552

    PubMed  CAS  Google Scholar 

  • Kirmizis A, Santos-Rosa H, Penkett CJ, Singer MA, Vermeulen M, Mann M, Bahler J, Green RD, Kouzarides T (2007) Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature 449(7164):928–932. doi:10.1038/nature06160

    PubMed  CAS  Google Scholar 

  • Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, Strahl BD (2005) A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 25(8):3305–3316. doi:10.1128/MCB.25.8.3305-3316.2005

    PubMed  CAS  Google Scholar 

  • Kolasinska-Zwierz P, Down T, Latorre I, Liu T, Liu XS, Ahringer J (2009) Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet 41(3):376–381. doi:10.1038/ng.322

    PubMed  CAS  Google Scholar 

  • Konev AY, Tribus M, Park SY, Podhraski V, Lim CY, Emelyanov AV, Vershilova E, Pirrotta V, Kadonaga JT, Lusser A, Fyodorov DV (2007) CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317(5841):1087–1090. doi:10.1126/science.1145339

    PubMed  CAS  Google Scholar 

  • Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184(4139):868–871

    PubMed  CAS  Google Scholar 

  • Kornberg RD (2005) Mediator and the mechanism of transcriptional activation. Trends Biochem Sci 30(5):235–239. doi:10.1016/j.tibs.2005.03.011

    PubMed  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    PubMed  CAS  Google Scholar 

  • Krishnakumar R, Kraus WL (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39(1):8–24. doi:10.1016/j.molcel.2010.06.017

    PubMed  CAS  Google Scholar 

  • Krishnamurthy S, He X, Reyes-Reyes M, Moore C, Hampsey M (2004) Ssu72 Is an RNA polymerase II CTD phosphatase. Mol Cell 14(3):387–394

    PubMed  CAS  Google Scholar 

  • Kristjuhan A, Svejstrup JQ (2004) Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo. EMBO J 23(21):4243–4252. doi:10.1038/sj.emboj.7600433, 7600433 [pii]

    PubMed  CAS  Google Scholar 

  • Krogan NJ, Kim M, Ahn SH, Zhong G, Kobor MS, Cagney G, Emili A, Shilatifard A, Buratowski S, Greenblatt JF (2002) RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol Cell Biol 22(20):6979–6992

    PubMed  CAS  Google Scholar 

  • Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V, Richards DP, Beattie BK, Emili A, Boone C, Shilatifard A, Buratowski S, Greenblatt J (2003) Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 23(12):4207–4218

    PubMed  CAS  Google Scholar 

  • Kuehner JN, Brow DA (2008) Regulation of a eukaryotic gene by GTP-dependent start site selection and transcription attenuation. Mol Cell 31(2):201–211. doi:10.1016/j.molcel.2008.05.018

    PubMed  CAS  Google Scholar 

  • Kuehner JN, Pearson EL, Moore C (2011) Unravelling the means to an end: RNA polymerase II transcription termination. Nat Rev Mol Cell Biol 12(5):283–294. doi:10.1038/nrm3098

    PubMed  CAS  Google Scholar 

  • Kulaeva OI, Hsieh FK, Chang HW, Luse DS, Studitsky VM (2012) Mechanism of transcription through a nucleosome by RNA polymerase II. Biochim Biophys Acta 1829(1):76–83. doi:10.1016/j.bbagrm.2012.08.015

    PubMed  Google Scholar 

  • Kung JT, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193(3):651–669. doi:10.1534/genetics.112.146704

    PubMed  CAS  Google Scholar 

  • Kuryan BG, Kim J, Tran NN, Lombardo SR, Venkatesh S, Workman JL, Carey M (2012) Histone density is maintained during transcription mediated by the chromatin remodeler RSC and histone chaperone NAP1 in vitro. Proc Natl Acad Sci USA 109(6):1931–1936. doi:10.1073/pnas.1109994109

    PubMed  CAS  Google Scholar 

  • Kusch T, Florens L, Macdonald WH, Swanson SK, Glaser RL, Yates JR 3rd, Abmayr SM, Washburn MP, Workman JL (2004) Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306(5704):2084–2087. doi:10.1126/science.1103455

    PubMed  CAS  Google Scholar 

  • Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR (1994) Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370(6489):477–481. doi:10.1038/370477a0

    PubMed  CAS  Google Scholar 

  • Lacoste N, Utley RT, Hunter JM, Poirier GG, Cote J (2002) Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J Biol Chem 277(34):30421–30424. doi:10.1074/jbc.C200366200, C200366200 [pii]

    PubMed  CAS  Google Scholar 

  • Lai AY, Wade PA (2011) Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat Rev Cancer 11(8):588–596. doi:10.1038/nrc3091

    PubMed  CAS  Google Scholar 

  • Lantermann AB, Straub T, Stralfors A, Yuan GC, Ekwall K, Korber P (2010) Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat Struct Mol Biol 17(2):251–257. doi:10.1038/nsmb.1741

    PubMed  CAS  Google Scholar 

  • Latos PA, Pauler FM, Koerner MV, Senergin HB, Hudson QJ, Stocsits RR, Allhoff W, Stricker SH, Klement RM, Warczok KE, Aumayr K, Pasierbek P, Barlow DP (2012) Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338(6113):1469–1472. doi:10.1126/science.1228110

    PubMed  CAS  Google Scholar 

  • Laue K, Daujat S, Crump JG, Plaster N, Roehl HH, Kimmel CB, Schneider R, Hammerschmidt M (2008) The multidomain protein Brpf1 binds histones and is required for Hox gene expression and segmental identity. Development 135(11):1935–1946. doi:10.1242/dev.017160

    PubMed  CAS  Google Scholar 

  • Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science 338(6113):1435–1439. doi:10.1126/science.1231776

    PubMed  CAS  Google Scholar 

  • Lee JM, Greenleaf AL (1989) A protein kinase that phosphorylates the C-terminal repeat domain of the largest subunit of RNA polymerase II. Proc Natl Acad Sci USA 86(10):3624–3628

    PubMed  CAS  Google Scholar 

  • Lee JM, Greenleaf AL (1997) Modulation of RNA polymerase II elongation efficiency by C-terminal heptapeptide repeat domain kinase I. J Biol Chem 272(17):10990–10993

    PubMed  CAS  Google Scholar 

  • Lee JH, Skalnik DG (2008) Wdr82 is a C-terminal domain-binding protein that recruits the Setd1A Histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes. Mol Cell Biol 28(2):609–618. doi:10.1128/MCB.01356-07

    PubMed  CAS  Google Scholar 

  • Lee CK, Shibata Y, Rao B, Strahl BD, Lieb JD (2004) Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet 36(8):900–905

    PubMed  CAS  Google Scholar 

  • Lee JS, Shukla A, Schneider J, Swanson SK, Washburn MP, Florens L, Bhaumik SR, Shilatifard A (2007a) Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 131(6):1084–1096. doi:10.1016/j.cell.2007.09.046

    PubMed  CAS  Google Scholar 

  • Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow C (2007b) A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39(10):1235–1244. doi:10.1038/ng2117

    PubMed  CAS  Google Scholar 

  • Lee JS, Garrett AS, Yen K, Takahashi YH, Hu D, Jackson J, Seidel C, Pugh BF, Shilatifard A (2012) Codependency of H2B monoubiquitination and nucleosome reassembly on Chd1. Genes Dev 26(9):914–919. doi:10.1101/gad.186841.112

    PubMed  CAS  Google Scholar 

  • Li J, Moazed D, Gygi SP (2002) Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation. J Biol Chem 277(51):49383–49388. doi:10.1074/jbc.M209294200, M209294200 [pii]

    PubMed  CAS  Google Scholar 

  • Li B, Howe L, Anderson S, Yates JR 3rd, Workman JL (2003) The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 278(11):8897–8903. doi:10.1074/jbc.M212134200, M212134200 [pii]

    PubMed  CAS  Google Scholar 

  • Li B, Gogol M, Carey M, Lee D, Seidel C, Workman JL (2007a) Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 316(5827):1050–1054. doi:10.1126/science.1139004

    PubMed  CAS  Google Scholar 

  • Li B, Gogol M, Carey M, Pattenden SG, Seidel C, Workman JL (2007b) Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription. Genes Dev 21(11):1422–1430. doi:10.1101/gad.1539307

    PubMed  CAS  Google Scholar 

  • Li B, Jackson J, Simon MD, Fleharty B, Gogol M, Seidel C, Workman JL, Shilatifard A (2009a) Histone H3 lysine 36 dimethylation (H3K36me2) is sufficient to recruit the Rpd3s histone deacetylase complex and to repress spurious transcription. J Biol Chem 284(12):7970–7976. doi:10.1074/jbc.M808220200, M808220200 [pii]

    PubMed  CAS  Google Scholar 

  • Li Y, Trojer P, Xu CF, Cheung P, Kuo A, Drury WJ 3rd, Qiao Q, Neubert TA, Xu RM, Gozani O, Reinberg D (2009b) The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate. J Biol Chem 284(49):34283–34295. doi:10.1074/jbc.M109.034462

    PubMed  CAS  Google Scholar 

  • Liao SM, Zhang J, Jeffery DA, Koleske AJ, Thompson CM, Chao DM, Viljoen M, van Vuuren HJ, Young RA (1995) A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature 374(6518):193–196. doi:10.1038/374193a0

    PubMed  CAS  Google Scholar 

  • Lin PS, Dubois MF, Dahmus ME (2002) TFIIF-associating carboxyl-terminal domain phosphatase dephosphorylates phosphoserines 2 and 5 of RNA polymerase II. J Biol Chem 277(48):45949–45956. doi:10.1074/jbc.M208588200

    PubMed  CAS  Google Scholar 

  • Lis J (1998) Promoter-associated pausing in promoter architecture and postinitiation transcriptional regulation. Cold Spring Harb Symp Quant Biol 63:347–356

    PubMed  CAS  Google Scholar 

  • Litingtung Y, Lawler AM, Sebald SM, Lee E, Gearhart JD, Westphal H, Corden JL (1999) Growth retardation and neonatal lethality in mice with a homozygous deletion in the C-terminal domain of RNA polymerase II. Mol Gen Genet 261(1):100–105

    PubMed  CAS  Google Scholar 

  • Liu P, Greenleaf AL, Stiller JW (2008) The essential sequence elements required for RNAP II carboxyl-terminal domain function in yeast and their evolutionary conservation. Mol Biol Evol 25(4):719–727. doi:10.1093/molbev/msn017

    PubMed  CAS  Google Scholar 

  • Liu Y, Warfield L, Zhang C, Luo J, Allen J, Lang WH, Ranish J, Shokat KM, Hahn S (2009) Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Mol Cell Biol 29(17):4852–4863. doi:10.1128/MCB.00609-09

    PubMed  CAS  Google Scholar 

  • Liu P, Kenney JM, Stiller JW, Greenleaf AL (2010) Genetic organization, length conservation, and evolution of RNA polymerase II carboxyl-terminal domain. Mol Biol Evol 27(11):2628–2641. doi:10.1093/molbev/msq151

    PubMed  CAS  Google Scholar 

  • Liu T, Rechtsteiner A, Egelhofer TA, Vielle A, Latorre I, Cheung MS, Ercan S, Ikegami K, Jensen M, Kolasinska-Zwierz P, Rosenbaum H, Shin H, Taing S, Takasaki T, Iniguez AL, Desai A, Dernburg AF, Kimura H, Lieb JD, Ahringer J, Strome S, Liu XS (2011) Broad chromosomal domains of histone modification patterns in C. elegans. Genome Res 21(2):227–236. doi:10.1101/gr.115519.110

    PubMed  CAS  Google Scholar 

  • Lu H, Zawel L, Fisher L, Egly JM, Reinberg D (1992) Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature 358(6388):641–645. doi:10.1038/358641a0

    PubMed  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260

    PubMed  CAS  Google Scholar 

  • Lusser A, Urwin DL, Kadonaga JT (2005) Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat Struct Mol Biol 12(2):160–166. doi:10.1038/nsmb884

    PubMed  CAS  Google Scholar 

  • Malik S, Roeder RG (2010) The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 11(11):761–772. doi:10.1038/nrg2901

    PubMed  CAS  Google Scholar 

  • Malik S, Barrero MJ, Jones T (2007) Identification of a regulator of transcription elongation as an accessory factor for the human Mediator coactivator. Proc Natl Acad Sci USA 104(15):6182–6187. doi:10.1073/pnas.0608717104

    PubMed  CAS  Google Scholar 

  • Maltby VE, Martin BJ, Schulze JM, Johnson I, Hentrich T, Sharma A, Kobor MS, Howe L (2012) Histone h3 lysine 36 methylation targets the isw1b remodeling complex to chromatin. Mol Cell Biol 32(17):3479–3485. doi:10.1128/MCB.00389-12

    PubMed  CAS  Google Scholar 

  • Marshall NF, Price DH (1995) Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J Biol Chem 270(21):12335–12338

    PubMed  CAS  Google Scholar 

  • Martens JA, Laprade L, Winston F (2004) Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429(6991):571–574. doi:10.1038/nature02538

    PubMed  CAS  Google Scholar 

  • Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A (2007) Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445(7128):666–670. doi:10.1038/nature05519

    PubMed  CAS  Google Scholar 

  • Martin AM, Pouchnik DJ, Walker JL, Wyrick JJ (2004) Redundant roles for histone H3 N-terminal lysine residues in subtelomeric gene repression in Saccharomyces cerevisiae. Genetics 167(3):1123–1132. doi:10.1534/genetics.104.026674

    PubMed  CAS  Google Scholar 

  • Martinez-Rucobo FW, Cramer P (2013) Structural basis of transcription elongation. Biochim Biophys Acta 1829(1):9–19. doi:10.1016/j.bbagrm.2012.09.002

    PubMed  CAS  Google Scholar 

  • Mason PB, Struhl K (2003) The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo. Mol Cell Biol 23(22):8323–8333

    PubMed  CAS  Google Scholar 

  • Mason PB, Struhl K (2005) Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mol Cell 17(6):831–840. doi:10.1016/j.molcel.2005.02.017

    PubMed  CAS  Google Scholar 

  • Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(Spec No 1):R17–R29. doi:10.1093/hmg/ddl046

    PubMed  CAS  Google Scholar 

  • Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, Schuster SC, Albert I, Pugh BF (2008a) A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 18(7):1073–1083. doi:10.1101/gr.078261.108

    PubMed  CAS  Google Scholar 

  • Mavrich TN, Jiang C, Ioshikhes IP, Li X, Venters BJ, Zanton SJ, Tomsho LP, Qi J, Glaser RL, Schuster SC, Gilmour DS, Albert I, Pugh BF (2008b) Nucleosome organization in the Drosophila genome. Nature 453(7193):358–362. doi:10.1038/nature06929

    PubMed  CAS  Google Scholar 

  • Mayer A, Lidschreiber M, Siebert M, Leike K, Soding J, Cramer P (2010) Uniform transitions of the general RNA polymerase II transcription complex. Nat Struct Mol Biol 17(10):1272–1278. doi:10.1038/nsmb.1903

    PubMed  CAS  Google Scholar 

  • Mayer A, Heidemann M, Lidschreiber M, Schreieck A, Sun M, Hintermair C, Kremmer E, Eick D, Cramer P (2012) CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 336(6089):1723–1725. doi:10.1126/science.1219651

    PubMed  CAS  Google Scholar 

  • McCracken S, Fong N, Rosonina E, Yankulov K, Brothers G, Siderovski D, Hessel A, Foster S, Shuman S, Bentley DL (1997a) 5′-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev 11(24):3306–3318

    PubMed  CAS  Google Scholar 

  • McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G, Greenblatt J, Patterson SD, Wickens M, Bentley DL (1997b) The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385(6614):357–361. doi:10.1038/385357a0

    PubMed  CAS  Google Scholar 

  • McGinty RK, Kim J, Chatterjee C, Roeder RG, Muir TW (2008) Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 453(7196):812–816. doi:10.1038/nature06906

    PubMed  CAS  Google Scholar 

  • Meinhart A, Cramer P (2004) Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors. Nature 430(6996):223–226. doi:10.1038/nature02679

    PubMed  CAS  Google Scholar 

  • Meinhart A, Silberzahn T, Cramer P (2003) The mRNA transcription/processing factor Ssu72 is a potential tyrosine phosphatase. J Biol Chem 278(18):15917–15921. doi:10.1074/jbc.M301643200

    PubMed  CAS  Google Scholar 

  • Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20(3):300–307. doi:10.1038/nsmb.2480

    PubMed  CAS  Google Scholar 

  • Messner S, Hottiger MO (2011) Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol 21(9):534–542. doi:10.1016/j.tcb.2011.06.001

    PubMed  CAS  Google Scholar 

  • Miele V, Vaillant C, d’Aubenton-Carafa Y, Thermes C, Grange T (2008) DNA physical properties determine nucleosome occupancy from yeast to fly. Nucleic Acids Res 36(11):3746–3756. doi:10.1093/nar/gkn262

    PubMed  CAS  Google Scholar 

  • Migliori V, Muller J, Phalke S, Low D, Bezzi M, Mok WC, Sahu SK, Gunaratne J, Capasso P, Bassi C, Cecatiello V, De Marco A, Blackstock W, Kuznetsov V, Amati B, Mapelli M, Guccione E (2012) Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat Struct Mol Biol 19(2):136–144. doi:10.1038/nsmb.2209

    PubMed  CAS  Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560. doi:10.1038/nature06008

    PubMed  CAS  Google Scholar 

  • Milne TA, Dou Y, Martin ME, Brock HW, Roeder RG, Hess JL (2005) MLL associates specifically with a subset of transcriptionally active target genes. Proc Natl Acad Sci USA 102(41):14765–14770. doi:10.1073/pnas.0503630102

    PubMed  CAS  Google Scholar 

  • Minsky N, Shema E, Field Y, Schuster M, Segal E, Oren M (2008) Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nat Cell Biol 10(4):483–488

    PubMed  CAS  Google Scholar 

  • Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303(5656):343–348. doi:10.1126/science.1090701

    PubMed  CAS  Google Scholar 

  • Mohan M, Herz HM, Takahashi YH, Lin C, Lai KC, Zhang Y, Washburn MP, Florens L, Shilatifard A (2010) Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev 24(6):574–589. doi:10.1101/gad.1898410

    PubMed  CAS  Google Scholar 

  • Moreau JL, Lee M, Mahachi N, Vary J, Mellor J, Tsukiyama T, Goding CR (2003) Regulated displacement of TBP from the PHO8 promoter in vivo requires Cbf1 and the Isw1 chromatin remodeling complex. Mol Cell 11(6):1609–1620

    PubMed  CAS  Google Scholar 

  • Morris SA, Shibata Y, Noma K, Tsukamoto Y, Warren E, Temple B, Grewal SI, Strahl BD (2005) Histone H3 K36 methylation is associated with transcription elongation in Schizosaccharomyces pombe. Eukaryot Cell 4(8):1446–1454. doi:10.1128/EC.4.8.1446-1454.2005, 4/8/1446 [pii]

    PubMed  CAS  Google Scholar 

  • Mortillaro MJ, Blencowe BJ, Wei X, Nakayasu H, Du L, Warren SL, Sharp PA, Berezney R (1996) A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc Natl Acad Sci USA 93(16):8253–8257

    PubMed  CAS  Google Scholar 

  • Mosley AL, Pattenden SG, Carey M, Venkatesh S, Gilmore JM, Florens L, Workman JL, Washburn MP (2009) Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. Mol Cell 34(2):168–178. doi:10.1016/j.molcel.2009.02.025

    PubMed  CAS  Google Scholar 

  • Mosley AL, Sardiu ME, Pattenden SG, Workman JL, Florens L, Washburn MP (2011) Highly reproducible label free quantitative proteomic analysis of RNA polymerase complexes. Mol Cell Proteomics 10(2):M110 000687. doi:10.1074/mcp.M110.000687

    PubMed  Google Scholar 

  • Moyle-Heyrman G, Viswanathan R, Widom J, Auble DT (2012) Two-step mechanism for modifier of transcription 1 (Mot1) enzyme-catalyzed displacement of TATA-binding protein (TBP) from DNA. J Biol Chem 287(12):9002–9012. doi:10.1074/jbc.M111.333484

    PubMed  CAS  Google Scholar 

  • Mueller D, Bach C, Zeisig D, Garcia-Cuellar MP, Monroe S, Sreekumar A, Zhou R, Nesvizhskii A, Chinnaiyan A, Hess JL, Slany RK (2007) A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 110(13):4445–4454. doi:10.1182/blood-2007-05-090514

    PubMed  CAS  Google Scholar 

  • Murawska M, Kunert N, van Vugt J, Langst G, Kremmer E, Logie C, Brehm A (2008) dCHD3, a novel ATP-dependent chromatin remodeler associated with sites of active transcription. Mol Cell Biol 28(8):2745–2757. doi:10.1128/MCB.01839-07

    PubMed  CAS  Google Scholar 

  • Myers LC, Gustafsson CM, Bushnell DA, Lui M, Erdjument-Bromage H, Tempst P, Kornberg RD (1998) The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain. Genes Dev 12(1):45–54

    PubMed  CAS  Google Scholar 

  • Naar AM, Taatjes DJ, Zhai W, Nogales E, Tjian R (2002) Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation. Genes Dev 16(11):1339–1344. doi:10.1101/gad.987602

    PubMed  CAS  Google Scholar 

  • Natarajan K, Jackson BM, Zhou H, Winston F, Hinnebusch AG (1999) Transcriptional activation by Gcn4p involves independent interactions with the SWI/SNF complex and the SRB/mediator. Mol Cell 4(4):657–664

    PubMed  CAS  Google Scholar 

  • Nathan D, Ingvarsdottir K, Sterner DE, Bylebyl GR, Dokmanovic M, Dorsey JA, Whelan KA, Krsmanovic M, Lane WS, Meluh PB, Johnson ES, Berger SL (2006) Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev 20(8):966–976. doi:10.1101/gad.1404206

    PubMed  CAS  Google Scholar 

  • Nedea E, He X, Kim M, Pootoolal J, Zhong G, Canadien V, Hughes T, Buratowski S, Moore CL, Greenblatt J (2003) Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3′-ends. J Biol Chem 278(35):33000–33010. doi:10.1074/jbc.M304454200

    PubMed  CAS  Google Scholar 

  • Neil H, Malabat C, d’Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A (2009) Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457(7232):1038–1042. doi:10.1038/nature07747

    PubMed  CAS  Google Scholar 

  • Nelson CJ, Santos-Rosa H, Kouzarides T (2006) Proline isomerization of histone H3 regulates lysine methylation and gene expression. Cell 126(5):905–916. doi:10.1016/j.cell.2006.07.026

    PubMed  CAS  Google Scholar 

  • Ng HH, Feng Q, Wang H, Erdjument-Bromage H, Tempst P, Zhang Y, Struhl K (2002) Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 16(12):1518–1527

    PubMed  CAS  Google Scholar 

  • Ng HH, Ciccone DN, Morshead KB, Oettinger MA, Struhl K (2003) Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position-effect variegation. Proc Natl Acad Sci USA 100(4):1820–1825. doi:10.1073/pnas.0437846100

    PubMed  CAS  Google Scholar 

  • Nguyen AT, Zhang Y (2011) The diverse functions of Dot1 and H3K79 methylation. Genes Dev 25(13):1345–1358. doi:10.1101/gad.2057811

    PubMed  CAS  Google Scholar 

  • Nguyen AT, Xiao B, Neppl RL, Kallin EM, Li J, Chen T, Wang DZ, Xiao X, Zhang Y (2011) DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev 25(3):263–274. doi:10.1101/gad.2018511

    PubMed  CAS  Google Scholar 

  • Noma K, Grewal SI (2002) Histone H3 lysine 4 methylation is mediated by Set1 and promotes maintenance of active chromatin states in fission yeast. Proc Natl Acad Sci USA 99(Suppl 4):16438–16445. doi:10.1073/pnas.182436399

    PubMed  CAS  Google Scholar 

  • Nonet M, Sweetser D, Young RA (1987) Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II. Cell 50(6):909–915

    PubMed  CAS  Google Scholar 

  • North JA, Javaid S, Ferdinand MB, Chatterjee N, Picking JW, Shoffner M, Nakkula RJ, Bartholomew B, Ottesen JJ, Fishel R, Poirier MG (2011) Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling. Nucleic Acids Res 39(15):6465–6474. doi:10.1093/nar/gkr304

    PubMed  CAS  Google Scholar 

  • Oh S, Jeong K, Kim H, Kwon CS, Lee D (2010) A lysine-rich region in Dot1p is crucial for direct interaction with H2B ubiquitylation and high level methylation of H3K79. Biochem Biophys Res Commun 399(4):512–517. doi:10.1016/j.bbrc.2010.07.100

    PubMed  CAS  Google Scholar 

  • Olins AL, Olins DE (1974) Spheroid chromatin units (v bodies). Science 183(4122):330–332

    PubMed  CAS  Google Scholar 

  • Orphanides G, LeRoy G, Chang CH, Luse DS, Reinberg D (1998) FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92(1):105–116

    PubMed  CAS  Google Scholar 

  • Ozsolak F, Song JS, Liu XS, Fisher DE (2007) High-throughput mapping of the chromatin structure of human promoters. Nat Biotechnol 25(2):244–248. doi:10.1038/nbt1279

    PubMed  CAS  Google Scholar 

  • Pal M, Ponticelli AS, Luse DS (2005) The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase II. Mol Cell 19(1):101–110. doi:10.1016/j.molcel.2005.05.024

    PubMed  CAS  Google Scholar 

  • Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32(2):232–246. doi:10.1016/j.molcel.2008.08.022

    PubMed  CAS  Google Scholar 

  • Papamichos-Chronakis M, Watanabe S, Rando OJ, Peterson CL (2011) Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144(2):200–213. doi:10.1016/j.cell.2010.12.021

    PubMed  CAS  Google Scholar 

  • Parnell TJ, Huff JT, Cairns BR (2008) RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J 27(1):100–110. doi:10.1038/sj.emboj.7601946

    PubMed  CAS  Google Scholar 

  • Parthun MR (2007) Hat1: the emerging cellular roles of a type B histone acetyltransferase. Oncogene 26(37):5319–5328. doi:10.1038/sj.onc.1210602

    PubMed  CAS  Google Scholar 

  • Pavri R, Zhu B, Li G, Trojer P, Mandal S, Shilatifard A, Reinberg D (2006) Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 125(4):703–717. doi:10.1016/j.cell.2006.04.029

    PubMed  CAS  Google Scholar 

  • Pelechano V, Wei W, Steinmetz LM (2013) Extensive transcriptional heterogeneity revealed by isoform profiling. Nature 497(7447):127–131. doi:10.1038/nature12121

    PubMed  CAS  Google Scholar 

  • Peng J, Marshall NF, Price DH (1998a) Identification of a cyclin subunit required for the function of Drosophila P-TEFb. J Biol Chem 273(22):13855–13860

    PubMed  CAS  Google Scholar 

  • Peng J, Zhu Y, Milton JT, Price DH (1998b) Identification of multiple cyclin subunits of human P-TEFb. Genes Dev 12(5):755–762

    PubMed  CAS  Google Scholar 

  • Petesch SJ, Lis JT (2012a) Activator-induced spread of poly(ADP-ribose) polymerase promotes nucleosome loss at Hsp70. Mol Cell 45(1):64–74. doi:10.1016/j.molcel.2011.11.015

    PubMed  CAS  Google Scholar 

  • Petesch SJ, Lis JT (2012b) Overcoming the nucleosome barrier during transcript elongation. Trends Genet 28(6):285–294. doi:10.1016/j.tig.2012.02.005

    PubMed  CAS  Google Scholar 

  • Phatnani HP, Greenleaf AL (2006) Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 20(21):2922–2936. doi:10.1101/gad.1477006

    PubMed  CAS  Google Scholar 

  • Phillips DM (1963) The presence of acetyl groups of histones. Biochem J 87:258–263

    PubMed  CAS  Google Scholar 

  • Pinskaya M, Gourvennec S, Morillon A (2009) H3 lysine 4 di- and tri-methylation deposited by cryptic transcription attenuates promoter activation. EMBO J 28(12):1697–1707. doi:10.1038/emboj.2009.108

    PubMed  CAS  Google Scholar 

  • Pogo BG, Allfrey VG, Mirsky AE (1966) RNA synthesis and histone acetylation during the course of gene activation in lymphocytes. Proc Natl Acad Sci USA 55(4):805–812

    PubMed  CAS  Google Scholar 

  • Pointner J, Persson J, Prasad P, Norman-Axelsson U, Stralfors A, Khorosjutina O, Krietenstein N, Peter Svensson J, Ekwall K, Korber P (2012) CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe. EMBO J 31(23):4388–4403. doi:10.1038/emboj.2012.289

    PubMed  CAS  Google Scholar 

  • Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E, Zeitlinger J, Lewitter F, Gifford DK, Young RA (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122(4):517–527. doi:10.1016/j.cell.2005.06.026, S0092-8674(05)00645-8 [pii]

    PubMed  CAS  Google Scholar 

  • Pradeepa MM, Sutherland HG, Ule J, Grimes GR, Bickmore WA (2012) Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet 8(5):e1002717. doi:10.1371/journal.pgen.1002717

    PubMed  CAS  Google Scholar 

  • Qiu H, Hu C, Hinnebusch AG (2009) Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol Cell 33(6):752–762. doi:10.1016/j.molcel.2009.02.018

    PubMed  CAS  Google Scholar 

  • Quan TK, Hartzog GA (2010) Histone H3K4 and K36 methylation, Chd1 and Rpd3S oppose the functions of Saccharomyces cerevisiae Spt4-Spt5 in transcription. Genetics 184(2):321–334. doi:10.1534/genetics.109.111526

    PubMed  CAS  Google Scholar 

  • Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470(7333):279–283. doi:10.1038/nature09692

    PubMed  CAS  Google Scholar 

  • Radman-Livaja M, Quan TK, Valenzuela L, Armstrong JA, van Welsem T, Kim T, Lee LJ, Buratowski S, van Leeuwen F, Rando OJ, Hartzog GA (2012) A key role for Chd1 in histone H3 dynamics at the 3′ ends of long genes in yeast. PLoS Genet 8(7):e1002811. doi:10.1371/journal.pgen.1002811

    PubMed  CAS  Google Scholar 

  • Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, Schreiber SL, Rando OJ, Madhani HD (2005) Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123(2):233–248. doi:10.1016/j.cell.2005.10.002, S0092-8674(05)01025-1 [pii]

    PubMed  CAS  Google Scholar 

  • Ramirez-Carrozzi VR, Nazarian AA, Li CC, Gore SL, Sridharan R, Imbalzano AN, Smale ST (2006) Selective and antagonistic functions of SWI/SNF and Mi-2beta nucleosome remodeling complexes during an inflammatory response. Genes Dev 20(3):282–296. doi:10.1101/gad.1383206

    PubMed  CAS  Google Scholar 

  • Ranuncolo SM, Ghosh S, Hanover JA, Hart GW, Lewis BA (2012) Evidence of the involvement of O-GlcNAc-modified human RNA polymerase II CTD in transcription in vitro and in vivo. J Biol Chem 287(28):23549–23561. doi:10.1074/jbc.M111.330910

    PubMed  CAS  Google Scholar 

  • Rao B, Shibata Y, Strahl BD, Lieb JD (2005) Dimethylation of histone H3 at lysine 36 demarcates regulatory and nonregulatory chromatin genome-wide. Mol Cell Biol 25(21):9447–9459. doi:10.1128/MCB.25.21.9447-9459.2005

    PubMed  CAS  Google Scholar 

  • Raschke EE, Albert T, Eick D (1999) Transcriptional regulation of the Ig kappa gene by promoter-proximal pausing of RNA polymerase II. J Immunol 163(8):4375–4382

    PubMed  CAS  Google Scholar 

  • Rasmussen EB, Lis JT (1993) In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc Natl Acad Sci USA 90(17):7923–7927

    PubMed  CAS  Google Scholar 

  • Reisman D, Glaros S, Thompson EA (2009) The SWI/SNF complex and cancer. Oncogene 28(14):1653–1668. doi:10.1038/onc.2009.4

    PubMed  CAS  Google Scholar 

  • Renner DB, Yamaguchi Y, Wada T, Handa H, Price DH (2001) A highly purified RNA polymerase II elongation control system. J Biol Chem 276(45):42601–42609. doi:10.1074/jbc.M104967200

    PubMed  CAS  Google Scholar 

  • Riddle NC, Minoda A, Kharchenko PV, Alekseyenko AA, Schwartz YB, Tolstorukov MY, Gorchakov AA, Jaffe JD, Kennedy C, Linder-Basso D, Peach SE, Shanower G, Zheng H, Kuroda MI, Pirrotta V, Park PJ, Elgin SC, Karpen GH (2011) Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. Genome Res 21(2):147–163. doi:10.1101/gr.110098.110

    PubMed  CAS  Google Scholar 

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166. doi:10.1146/annurev-biochem-051410-092902

    PubMed  CAS  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323. doi:10.1016/j.cell.2007.05.022

    PubMed  CAS  Google Scholar 

  • Roberts CW, Orkin SH (2004) The SWI/SNF complex–chromatin and cancer. Nat Rev Cancer 4(2):133–142. doi:10.1038/nrc1273

    PubMed  CAS  Google Scholar 

  • Robzyk K, Recht J, Osley MA (2000) Rad6-dependent ubiquitination of histone H2B in yeast. Science 287(5452):501–504

    PubMed  CAS  Google Scholar 

  • Roeder RG (1996) The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci 21(9):327–335

    PubMed  CAS  Google Scholar 

  • Roudier F, Ahmed I, Berard C, Sarazin A, Mary-Huard T, Cortijo S, Bouyer D, Caillieux E, Duvernois-Berthet E, Al-Shikhley L, Giraut L, Despres B, Drevensek S, Barneche F, Derozier S, Brunaud V, Aubourg S, Schnittger A, Bowler C, Martin-Magniette ML, Robin S, Caboche M, Colot V (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 30(10):1928–1938. doi:10.1038/emboj.2011.103

    PubMed  CAS  Google Scholar 

  • Rougvie AE, Lis JT (1988) The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell 54(6):795–804

    PubMed  CAS  Google Scholar 

  • Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML, Landolin JM, Bristow CA, Ma L, Lin MF, Washietl S, Arshinoff BI, Ay F, Meyer PE, Robine N, Washington NL, Di Stefano L, Berezikov E, Brown CD, Candeias R, Carlson JW, Carr A, Jungreis I, Marbach D, Sealfon R et al (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330(6012):1787–1797. doi:10.1126/science.1198374

    PubMed  CAS  Google Scholar 

  • Rudra D, Warner JR (2004) What better measure than ribosome synthesis? Genes Dev 18(20):2431–2436. doi:10.1101/gad.1256704

    PubMed  CAS  Google Scholar 

  • Rufiange A, Jacques PE, Bhat W, Robert F, Nourani A (2007) Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol Cell 27(3):393–405. doi:10.1016/j.molcel.2007.07.011

    PubMed  CAS  Google Scholar 

  • Ruhl DD, Jin J, Cai Y, Swanson S, Florens L, Washburn MP, Conaway RC, Conaway JW, Chrivia JC (2006) Purification of a human SRCAP complex that remodels chromatin by incorporating the histone variant H2A.Z into nucleosomes. Biochemistry 45(17):5671–5677. doi:10.1021/bi060043d

    PubMed  CAS  Google Scholar 

  • Sakabe K, Wang Z, Hart GW (2010) Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci USA 107(46):19915–19920. doi:10.1073/pnas.1009023107

    PubMed  CAS  Google Scholar 

  • Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419(6905):407–411. doi:10.1038/nature01080

    PubMed  CAS  Google Scholar 

  • Saunders A, Werner J, Andrulis ED, Nakayama T, Hirose S, Reinberg D, Lis JT (2003) Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo. Science 301(5636):1094–1096. doi:10.1126/science.1085712

    PubMed  CAS  Google Scholar 

  • Saunders A, Core LJ, Lis JT (2006) Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 7(8):557–567. doi:10.1038/nrm1981

    PubMed  CAS  Google Scholar 

  • Schneider EE, Albert T, Wolf DA, Eick D (1999) Regulation of c-myc and immunoglobulin kappa gene transcription by promoter-proximal pausing of RNA polymerase II. Curr Top Microbiol Immunol 246:225–231

    PubMed  CAS  Google Scholar 

  • Schneider J, Wood A, Lee JS, Schuster R, Dueker J, Maguire C, Swanson SK, Florens L, Washburn MP, Shilatifard A (2005) Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol Cell 19(6):849–856. doi:10.1016/j.molcel.2005.07.024

    PubMed  CAS  Google Scholar 

  • Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132(5):887–898

    PubMed  CAS  Google Scholar 

  • Schubeler D, MacAlpine DM, Scalzo D, Wirbelauer C, Kooperberg C, van Leeuwen F, Gottschling DE, O’Neill LP, Turner BM, Delrow J, Bell SP, Groudine M (2004) The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev 18(11):1263–1271. doi:10.1101/gad.1198204

    PubMed  Google Scholar 

  • Schulze JM, Jackson J, Nakanishi S, Gardner JM, Hentrich T, Haug J, Johnston M, Jaspersen SL, Kobor MS, Shilatifard A (2009) Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation. Mol Cell 35(5):626–641. doi:10.1016/j.molcel.2009.07.017

    PubMed  CAS  Google Scholar 

  • Schwabish MA, Struhl K (2006) Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II. Mol Cell 22(3):415–422. doi:10.1016/j.molcel.2006.03.014

    PubMed  CAS  Google Scholar 

  • Schwer B, Shuman S (2011) Deciphering the RNA polymerase II CTD code in fission yeast. Mol Cell 43(2):311–318. doi:10.1016/j.molcel.2011.05.024

    PubMed  CAS  Google Scholar 

  • Serizawa H, Conaway JW, Conaway RC (1994) An oligomeric form of the large subunit of transcription factor (TF) IIE activates phosphorylation of the RNA polymerase II carboxyl-terminal domain by TFIIH. J Biol Chem 269(32):20750–20756

    PubMed  CAS  Google Scholar 

  • Shah S, Henriksen MA (2011) A novel disrupter of telomere silencing 1-like (DOT1L) interaction is required for signal transducer and activator of transcription 1 (STAT1)-activated gene expression. J Biol Chem 286(48):41195–41204. doi:10.1074/jbc.M111.284190

    PubMed  CAS  Google Scholar 

  • Shahbazian MD, Zhang K, Grunstein M (2005) Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1. Mol Cell 19(2):271–277

    PubMed  CAS  Google Scholar 

  • Shen X, Xiao H, Ranallo R, Wu WH, Wu C (2003) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299(5603):112–114. doi:10.1126/science.1078068

    PubMed  CAS  Google Scholar 

  • Shieh GS, Pan CH, Wu JH, Sun YJ, Wang CC, Hsiao WC, Lin CY, Tung L, Chang TH, Fleming AB, Hillyer C, Lo YC, Berger SL, Osley MA, Kao CF (2011) H2B ubiquitylation is part of chromatin architecture that marks exon-intron structure in budding yeast. BMC Genomics 12:627. doi:10.1186/1471-2164-12-627

    PubMed  CAS  Google Scholar 

  • Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 100(23):13225–13230. doi:10.1073/pnas.1735528100

    PubMed  CAS  Google Scholar 

  • Shilatifard A (2012) The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81:65–95. doi:10.1146/annurev-biochem-051710-134100

    PubMed  CAS  Google Scholar 

  • Shim YS, Choi Y, Kang K, Cho K, Oh S, Lee J, Grewal SI, Lee D (2012) Hrp3 controls nucleosome positioning to suppress non-coding transcription in eu- and heterochromatin. EMBO J 31(23):4375–4387. doi:10.1038/emboj.2012.267

    PubMed  CAS  Google Scholar 

  • Shivaswamy S, Bhinge A, Zhao Y, Jones S, Hirst M, Iyer VR (2008) Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol 6(3):e65. doi:10.1371/journal.pbio.0060065

    PubMed  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311(5762):844–847. doi:10.1126/science.1124000

    PubMed  CAS  Google Scholar 

  • Sikorski TW, Buratowski S (2009) The basal initiation machinery: beyond the general transcription factors. Curr Opin Cell Biol 21(3):344–351. doi:10.1016/j.ceb.2009.03.006

    PubMed  CAS  Google Scholar 

  • Silva AC, Xu X, Kim HS, Fillingham J, Kislinger T, Mennella TA, Keogh MC (2012) The replication-independent histone H3-H4 chaperones HIR, ASF1, and RTT106 co-operate to maintain promoter fidelity. J Biol Chem 287(3):1709–1718. doi:10.1074/jbc.M111.316489

    PubMed  CAS  Google Scholar 

  • Simic R, Lindstrom DL, Tran HG, Roinick KL, Costa PJ, Johnson AD, Hartzog GA, Arndt KM (2003) Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J 22(8):1846–1856. doi:10.1093/emboj/cdg179

    PubMed  CAS  Google Scholar 

  • Sims RJ 3rd, Chen CF, Santos-Rosa H, Kouzarides T, Patel SS, Reinberg D (2005) Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J Biol Chem 280(51):41789–41792. doi:10.1074/jbc.C500395200

    PubMed  CAS  Google Scholar 

  • Sims RJ 3rd, Rojas LA, Beck D, Bonasio R, Schuller R, Drury WJ 3rd, Eick D, Reinberg D (2011) The C-terminal domain of RNA polymerase II is modified by site-specific methylation. Science 332(6025):99–103. doi:10.1126/science.1202663

    PubMed  CAS  Google Scholar 

  • Smale ST, Kadonaga JT (2003) The RNA polymerase II core promoter. Annu Rev Biochem 72:449–479. doi:10.1146/annurev.biochem.72.121801.161520

    PubMed  CAS  Google Scholar 

  • Smolle M, Venkatesh S, Gogol MM, Li H, Zhang Y, Florens L, Washburn MP, Workman JL (2012) Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat Struct Mol Biol 19(9):884–892. doi:10.1038/nsmb.2312

    PubMed  CAS  Google Scholar 

  • Smolle M, Workman JL, Venkatesh S (2013) reSETting chromatin during transcription elongation. Epigenetics 8(1):10–15. doi:10.4161/epi.23333

    PubMed  CAS  Google Scholar 

  • Sobel RE, Cook RG, Perry CA, Annunziato AT, Allis CD (1995) Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci USA 92(4):1237–1241

    PubMed  CAS  Google Scholar 

  • Sogaard TM, Svejstrup JQ (2007) Hyperphosphorylation of the C-terminal repeat domain of RNA polymerase II facilitates dissociation of its complex with mediator. J Biol Chem 282(19):14113–14120. doi:10.1074/jbc.M701345200

    PubMed  CAS  Google Scholar 

  • Spies N, Nielsen CB, Padgett RA, Burge CB (2009) Biased chromatin signatures around polyadenylation sites and exons. Mol Cell 36(2):245–254. doi:10.1016/j.molcel.2009.10.008

    PubMed  CAS  Google Scholar 

  • Srinivasan S, Armstrong JA, Deuring R, Dahlsveen IK, McNeill H, Tamkun JW (2005) The Drosophila trithorax group protein Kismet facilitates an early step in transcriptional elongation by RNA Polymerase II. Development 132(7):1623–1635. doi:10.1242/dev.01713

    PubMed  CAS  Google Scholar 

  • Steger DJ, Lefterova MI, Ying L, Stonestrom AJ, Schupp M, Zhuo D, Vakoc AL, Kim JE, Chen J, Lazar MA, Blobel GA, Vakoc CR (2008) DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol 28(8):2825–2839. doi:10.1128/MCB.02076-07

    PubMed  CAS  Google Scholar 

  • Sterner DE, Lee JM, Hardin SE, Greenleaf AL (1995) The yeast carboxyl-terminal repeat domain kinase CTDK-I is a divergent cyclin-cyclin-dependent kinase complex. Mol Cell Biol 15(10):5716–5724

    PubMed  CAS  Google Scholar 

  • Stevens A (1960) Incorporation of the adenine ribonucleotide into RNA by cell fractions from E. coli B. Biochem Biophys Res Commun 3(1):92–96

    CAS  Google Scholar 

  • Stiller JW, Cook MS (2004) Functional unit of the RNA polymerase II C-terminal domain lies within heptapeptide pairs. Eukaryot Cell 3(3):735–740. doi:10.1128/EC.3.3.735-740.2004

    PubMed  CAS  Google Scholar 

  • Strahl BD, Grant PA, Briggs SD, Sun ZW, Bone JR, Caldwell JA, Mollah S, Cook RG, Shabanowitz J, Hunt DF, Allis CD (2002) Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol 22(5):1298–1306

    PubMed  CAS  Google Scholar 

  • Struhl K, Segal E (2013) Determinants of nucleosome positioning. Nat Struct Mol Biol 20(3):267–273. doi:10.1038/nsmb.2506

    PubMed  CAS  Google Scholar 

  • Studitsky VM, Clark DJ, Felsenfeld G (1994) A histone octamer can step around a transcribing polymerase without leaving the template. Cell 76(2):371–382

    PubMed  CAS  Google Scholar 

  • Studitsky VM, Kassavetis GA, Geiduschek EP, Felsenfeld G (1997) Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase. Science 278(5345):1960–1963

    PubMed  CAS  Google Scholar 

  • Stuwe T, Hothorn M, Lejeune E, Rybin V, Bortfeld M, Scheffzek K, Ladurner AG (2008) The FACT Spt16 “peptidase” domain is a histone H3-H4 binding module. Proc Natl Acad Sci U S A 105(26):8884–8889. doi:10.1073/pnas.0712293105

    PubMed  CAS  Google Scholar 

  • Sudarsanam P, Iyer VR, Brown PO, Winston F (2000) Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97(7):3364–3369. doi:10.1073/pnas.050407197

    PubMed  CAS  Google Scholar 

  • Suh MH, Meyer PA, Gu M, Ye P, Zhang M, Kaplan CD, Lima CD, Fu J (2010) A dual interface determines the recognition of RNA polymerase II by RNA capping enzyme. J Biol Chem 285(44):34027–34038. doi:10.1074/jbc.M110.145110

    PubMed  CAS  Google Scholar 

  • Sun ZW, Hampsey M (1996) Synthetic enhancement of a TFIIB defect by a mutation in SSU72, an essential yeast gene encoding a novel protein that affects transcription start site selection in vivo. Mol Cell Biol 16(4):1557–1566

    PubMed  CAS  Google Scholar 

  • Svejstrup JQ, Li Y, Fellows J, Gnatt A, Bjorklund S, Kornberg RD (1997) Evidence for a mediator cycle at the initiation of transcription. Proc Natl Acad Sci USA 94(12):6075–6078

    PubMed  CAS  Google Scholar 

  • Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116(1):51–61

    PubMed  CAS  Google Scholar 

  • Tan-Wong SM, Zaugg JB, Camblong J, Xu Z, Zhang DW, Mischo HE, Ansari AZ, Luscombe NM, Steinmetz LM, Proudfoot NJ (2012) Gene loops enhance transcriptional directionality. Science 338(6107):671–675. doi:10.1126/science.1224350

    PubMed  CAS  Google Scholar 

  • Taverna SD, Ilin S, Rogers RS, Tanny JC, Lavender H, Li H, Baker L, Boyle J, Blair LP, Chait BT, Patel DJ, Aitchison JD, Tackett AJ, Allis CD (2006) Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol Cell 24(5):785–796. doi:10.1016/j.molcel.2006.10.026

    PubMed  CAS  Google Scholar 

  • Tietjen JR, Zhang DW, Rodriguez-Molina JB, White BE, Akhtar MS, Heidemann M, Li X, Chapman RD, Shokat K, Keles S, Eick D, Ansari AZ (2010) Chemical-genomic dissection of the CTD code. Nat Struct Mol Biol 17(9):1154–1161. doi:10.1038/nsmb.1900

    PubMed  CAS  Google Scholar 

  • Tirosh I, Sigal N, Barkai N (2010) Widespread remodeling of mid-coding sequence nucleosomes by Isw1. Genome Biol 11(5):R49. doi:10.1186/gb-2010-11-5-r49

    PubMed  Google Scholar 

  • Tolkunov D, Zawadzki KA, Singer C, Elfving N, Morozov AV, Broach JR (2011) Chromatin remodelers clear nucleosomes from intrinsically unfavorable sites to establish nucleosome-depleted regions at promoters. Mol Biol Cell 22(12):2106–2118. doi:10.1091/mbc.E10-10-0826

    PubMed  CAS  Google Scholar 

  • Tong JK, Hassig CA, Schnitzler GR, Kingston RE, Schreiber SL (1998) Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395(6705):917–921. doi:10.1038/27699

    PubMed  CAS  Google Scholar 

  • Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992):689–693. doi:10.1126/science.1192002

    PubMed  CAS  Google Scholar 

  • Tsubota T, Berndsen CE, Erkmann JA, Smith CL, Yang L, Freitas MA, Denu JM, Kaufman PD (2007) Histone H3-K56 acetylation is catalyzed by histone chaperone-dependent complexes. Mol Cell 25(5):703–712. doi:10.1016/j.molcel.2007.02.006, S1097-2765(07)00086-X [pii]

    PubMed  CAS  Google Scholar 

  • Tsukiyama T, Palmer J, Landel CC, Shiloach J, Wu C (1999) Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev 13(6):686–697

    PubMed  CAS  Google Scholar 

  • Tsukuda T, Fleming AB, Nickoloff JA, Osley MA (2005) Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438(7066):379–383. doi:10.1038/nature04148

    PubMed  CAS  Google Scholar 

  • Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng K, Malek JA, Costa G, McKernan K, Sidow A, Fire A, Johnson SM (2008) A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18(7):1051–1063. doi:10.1101/gr.076463.108

    PubMed  CAS  Google Scholar 

  • van Dijk EL, Chen CL, d’Aubenton-Carafa Y, Gourvennec S, Kwapisz M, Roche V, Bertrand C, Silvain M, Legoix-Ne P, Loeillet S, Nicolas A, Thermes C, Morillon A (2011) XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475(7354):114–117. doi:10.1038/nature10118

    PubMed  Google Scholar 

  • van Werven FJ, Neuert G, Hendrick N, Lardenois A, Buratowski S, van Oudenaarden A, Primig M, Amon A (2012) Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell 150(6):1170–1181. doi:10.1016/j.cell.2012.06.049

    PubMed  Google Scholar 

  • VanDemark AP, Kasten MM, Ferris E, Heroux A, Hill CP, Cairns BR (2007) Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation. Mol Cell 27(5):817–828. doi:10.1016/j.molcel.2007.08.018

    PubMed  CAS  Google Scholar 

  • Venkatesh S, Workman JL (2013) Set2 mediated H3 lysine 36 methylation: regulation of transcription elongation and implications in organismal development. WIREs Dev Biol. doi:10.1002/wdev.109

  • Venkatesh S, Smolle M, Li H, Gogol MM, Saint M, Kumar S, Natarajan K, Workman JL (2012) Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes. Nature 489(7416):452–455. doi:10.1038/nature11326

    PubMed  CAS  Google Scholar 

  • Venkatesh S, Workman JL, Smolle M (2013) UpSETing chromatin during non-coding RNA production. Epigenetics Chromatin 6(1):16. doi:10.1186/1756-8935-6-16

    PubMed  CAS  Google Scholar 

  • Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F, Lee KK, Olsen JV, Hyman AA, Stunnenberg HG, Mann M (2010) Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142(6):967–980. doi:10.1016/j.cell.2010.08.020

    PubMed  CAS  Google Scholar 

  • Vezzoli A, Bonadies N, Allen MD, Freund SM, Santiveri CM, Kvinlaug BT, Huntly BJ, Gottgens B, Bycroft M (2010) Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nat Struct Mol Biol 17(5):617–619. doi:10.1038/nsmb.1797

    PubMed  CAS  Google Scholar 

  • Wada T, Takagi T, Yamaguchi Y, Ferdous A, Imai T, Hirose S, Sugimoto S, Yano K, Hartzog GA, Winston F, Buratowski S, Handa H (1998a) DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev 12(3):343–356

    PubMed  CAS  Google Scholar 

  • Wada T, Takagi T, Yamaguchi Y, Watanabe D, Handa H (1998b) Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. EMBO J 17(24):7395–7403. doi:10.1093/emboj/17.24.7395

    PubMed  CAS  Google Scholar 

  • Wade PA, Jones PL, Vermaak D, Wolffe AP (1998) A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr Biol 8(14):843–846

    PubMed  CAS  Google Scholar 

  • Wagner EJ, Carpenter PB (2012) Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 13(2):115–126. doi:10.1038/nrm3274

    PubMed  CAS  Google Scholar 

  • Walfridsson J, Bjerling P, Thalen M, Yoo EJ, Park SD, Ekwall K (2005) The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres. Nucleic Acids Res 33(9):2868–2879. doi:10.1093/nar/gki579

    PubMed  CAS  Google Scholar 

  • Walfridsson J, Khorosjutina O, Matikainen P, Gustafsson CM, Ekwall K (2007) A genome-wide role for CHD remodelling factors and Nap1 in nucleosome disassembly. EMBO J 26(12):2868–2879. doi:10.1038/sj.emboj.7601728

    PubMed  CAS  Google Scholar 

  • Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914. doi:10.1016/j.molcel.2011.08.018

    PubMed  CAS  Google Scholar 

  • Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, Tempst P, Rosenfeld MG, Glass CK, Kurokawa R (2008a) Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454(7200):126–130. doi:10.1038/nature06992

    PubMed  CAS  Google Scholar 

  • Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K (2008b) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40(7):897–903. doi:10.1038/ng.154

    PubMed  CAS  Google Scholar 

  • Wei W, Pelechano V, Jarvelin AI, Steinmetz LM (2011) Functional consequences of bidirectional promoters. Trends Genet 27(7):267–276. doi:10.1016/j.tig.2011.04.002

    PubMed  CAS  Google Scholar 

  • West ML, Corden JL (1995) Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations. Genetics 140(4):1223–1233

    PubMed  CAS  Google Scholar 

  • Westover KD, Bushnell DA, Kornberg RD (2004) Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science 303(5660):1014–1016. doi:10.1126/science.1090839

    PubMed  CAS  Google Scholar 

  • Whitehouse I, Rando OJ, Delrow J, Tsukiyama T (2007) Chromatin remodelling at promoters suppresses antisense transcription. Nature 450(7172):1031–1035

    PubMed  CAS  Google Scholar 

  • Wierzbicki AT, Ream TS, Haag JR, Pikaard CS (2009) RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat Genet 41(5):630–634. doi:10.1038/ng.365

    PubMed  CAS  Google Scholar 

  • Williams SK, Truong D, Tyler JK (2008) Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation. Proc Natl Acad Sci USA 105(26):9000–9005. doi:10.1073/pnas.0800057105

    PubMed  CAS  Google Scholar 

  • Wilson BG, Roberts CW (2011) SWI/SNF nucleosome remodellers and cancer. Nate Rev Cancer 11(7):481–492. doi:10.1038/nrc3068

    CAS  Google Scholar 

  • Winkler DD, Muthurajan UM, Hieb AR, Luger K (2011) Histone chaperone FACT coordinates nucleosome interaction through multiple synergistic binding events. J Biol Chem 286(48):41883–41892. doi:10.1074/jbc.M111.301465

    PubMed  CAS  Google Scholar 

  • Wong MM, Cox LK, Chrivia JC (2007) The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A.Z at promoters. J Biol Chem 282(36):26132–26139. doi:10.1074/jbc.M703418200

    PubMed  CAS  Google Scholar 

  • Wood A, Krogan NJ, Dover J, Schneider J, Heidt J, Boateng MA, Dean K, Golshani A, Zhang Y, Greenblatt JF, Johnston M, Shilatifard A (2003) Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol Cell 11(1):267–274

    PubMed  CAS  Google Scholar 

  • Woodcock CL, Safer JP, Stanchfield JE (1976) Structural repeating units in chromatin. I. Evidence for their general occurrence. Exp Cell Res 97:101–110

    PubMed  CAS  Google Scholar 

  • Workman JL (2006) Nucleosome displacement in transcription. Genes Dev 20(15):2009–2017. doi:10.1101/gad.1435706

    PubMed  CAS  Google Scholar 

  • Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67:545–579. doi:10.1146/annurev.biochem.67.1.545

    PubMed  CAS  Google Scholar 

  • Wyrick JJ, Holstege FC, Jennings EG, Causton HC, Shore D, Grunstein M, Lander ES, Young RA (1999) Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402(6760):418–421. doi:10.1038/46567

    PubMed  CAS  Google Scholar 

  • Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J, Kauer M, Tackett AJ, Chait BT, Badenhorst P, Wu C, Allis CD (2006) A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442(7098):86–90. doi:10.1038/nature04815

    PubMed  CAS  Google Scholar 

  • Xiang K, Manley JL, Tong L (2012a) An unexpected binding mode for a Pol II CTD peptide phosphorylated at Ser7 in the active site of the CTD phosphatase Ssu72. Genes Dev 26(20):2265–2270. doi:10.1101/gad.198853.112

    PubMed  CAS  Google Scholar 

  • Xiang K, Manley JL, Tong L (2012b) The yeast regulator of transcription protein Rtr1 lacks an active site and phosphatase activity. Nat Commun 3:946. doi:10.1038/ncomms1947

    PubMed  Google Scholar 

  • Xiao H, Sandaltzopoulos R, Wang HM, Hamiche A, Ranallo R, Lee KM, Fu D, Wu C (2001) Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions. Mol Cell 8(3):531–543

    PubMed  CAS  Google Scholar 

  • Xiao T, Hall H, Kizer KO, Shibata Y, Hall MC, Borchers CH, Strahl BD (2003) Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev 17(5):654–663. doi:10.1101/gad.1055503

    PubMed  CAS  Google Scholar 

  • Xiao T, Kao CF, Krogan NJ, Sun ZW, Greenblatt JF, Osley MA, Strahl BD (2005) Histone H2B ubiquitylation is associated with elongating RNA polymerase II. Mol Cell Biol 25(2):637–651

    PubMed  CAS  Google Scholar 

  • Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Munster S, Camblong J, Guffanti E, Stutz F, Huber W, Steinmetz LM (2009) Bidirectional promoters generate pervasive transcription in yeast. Nature 457(7232):1033–1037. doi:10.1038/nature07728

    PubMed  CAS  Google Scholar 

  • Xue Y, Wong J, Moreno GT, Young MK, Cote J, Wang W (1998) NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2(6):851–861

    PubMed  CAS  Google Scholar 

  • Yadon AN, Tsukiyama T (2011) SnapShot: chromatin remodeling: ISWI. Cell 144(3):453. doi:10.1016/j.cell.2011.01.019, e451

    PubMed  Google Scholar 

  • Yadon AN, Van de Mark D, Basom R, Delrow J, Whitehouse I, Tsukiyama T (2010) Chromatin remodeling around nucleosome-free regions leads to repression of noncoding RNA transcription. Mol Cell Biol 30(21):5110–5122. doi:10.1128/MCB.00602-10

    PubMed  CAS  Google Scholar 

  • Yadon AN, Singh BN, Hampsey M, Tsukiyama T (2013) DNA looping facilitates targeting of a chromatin remodeling enzyme. Mol Cell 50(1):93–103. doi:10.1016/j.molcel.2013.02.005

    PubMed  CAS  Google Scholar 

  • Yaffe MB, Schutkowski M, Shen M, Zhou XZ, Stukenberg PT, Rahfeld JU, Xu J, Kuang J, Kirschner MW, Fischer G, Cantley LC, Lu KP (1997) Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278(5345):1957–1960

    PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A, Sugimoto S, Hasegawa J, Handa H (1999) NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97(1):41–51

    PubMed  CAS  Google Scholar 

  • Yap KL, Zhou MM (2010) Keeping it in the family: diverse histone recognition by conserved structural folds. Crit Rev Biochem Mol Biol 45(6):488–505. doi:10.3109/10409238.2010.512001

    PubMed  CAS  Google Scholar 

  • Yoh SM, Cho H, Pickle L, Evans RM, Jones KA (2007) The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export. Genes Dev 21(2):160–174. doi:10.1101/gad.1503107

    PubMed  CAS  Google Scholar 

  • Youdell ML, Kizer KO, Kisseleva-Romanova E, Fuchs SM, Duro E, Strahl BD, Mellor J (2008) Roles for Ctk1 and Spt6 in regulating the different methylation states of histone H3 lysine 36. Mol Cell Biol 28(16):4915–4926. doi:10.1128/MCB.00001-08

    PubMed  CAS  Google Scholar 

  • Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJ (2005) Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309(5734):626–630. doi:10.1126/science.1112178

    PubMed  CAS  Google Scholar 

  • Yun M, Wu J, Workman JL, Li B (2011) Readers of histone modifications. Cell Res 21(4):564–578. doi:10.1038/cr.2011.42

    PubMed  CAS  Google Scholar 

  • Zehring WA, Lee JM, Weeks JR, Jokerst RS, Greenleaf AL (1988) The C-terminal repeat domain of RNA polymerase II largest subunit is essential in vivo but is not required for accurate transcription initiation in vitro. Proc Natl Acad Sci USA 85(11):3698–3702

    PubMed  CAS  Google Scholar 

  • Zeitlinger J, Stark A, Kellis M, Hong JW, Nechaev S, Adelman K, Levine M, Young RA (2007) RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 39(12):1512–1516

    PubMed  CAS  Google Scholar 

  • Zeng L, Zhang Q, Li S, Plotnikov AN, Walsh MJ, Zhou MM (2010) Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature 466(7303):258–262. doi:10.1038/nature09139

    PubMed  CAS  Google Scholar 

  • Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20(3):259–266. doi:10.1038/nsmb.2470

    PubMed  CAS  Google Scholar 

  • Zhang H, Roberts DN, Cairns BR (2005) Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123(2):219–231. doi:10.1016/j.cell.2005.08.036

    PubMed  CAS  Google Scholar 

  • Zhang S, Roche K, Nasheuer HP, Lowndes NF (2011a) Modification of histones by sugar beta-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated. J Biol Chem 286(43):37483–37495. doi:10.1074/jbc.M111.284885

    PubMed  CAS  Google Scholar 

  • Zhang Z, Wippo CJ, Wal M, Ward E, Korber P, Pugh BF (2011b) A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332(6032):977–980. doi:10.1126/science.1200508

    PubMed  CAS  Google Scholar 

  • Zhang DW, Mosley AL, Ramisetty SR, Rodriguez-Molina JB, Washburn MP, Ansari AZ (2012) Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II C-terminal domain is essential for viability and transcription termination. J Biol Chem 287(11):8541–8551. doi:10.1074/jbc.M111.335687

    PubMed  CAS  Google Scholar 

  • Zhou M, Deng L, Lacoste V, Park HU, Pumfery A, Kashanchi F, Brady JN, Kumar A (2004) Coordination of transcription factor phosphorylation and histone methylation by the P-TEFb kinase during human immunodeficiency virus type 1 transcription. J Virol 78(24):13522–13533. doi:10.1128/JVI.78.24.13522-13533.2004

    PubMed  CAS  Google Scholar 

  • Zhou K, Kuo WH, Fillingham J, Greenblatt JF (2009) Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Proc Natl Acad Sci USA 106(17):6956–6961. doi:10.1073/pnas.0806302106

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michaela Smolle or Swaminathan Venkatesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smolle, M., Venkatesh, S. (2014). Transcription Through Chromatin. In: Workman, J., Abmayr, S. (eds) Fundamentals of Chromatin. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8624-4_11

Download citation

Publish with us

Policies and ethics