Skip to main content

Roles of Long Non-coding RNAs in Genomic Imprinting

  • Chapter
  • First Online:
Molecular Biology of Long Non-coding RNAs

Abstract

The first long noncoding RNA identified was the product of a gene subject to regulation by genomic imprinting. It is now known that lncRNAs are associated with almost every imprinted cluster in mammalian genomes. These lncRNAs are imprinted themselves and play major roles in the regulation of surrounding imprinted genes. Here we discuss what is known about the function of several imprinted lncRNAs. Two themes emerge: first, imprinted lncRNAs can recruit repressive histone modification complexes to silenced alleles, and secondly, the act of transcription of these lncRNAs may also play important regulatory roles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brannan, C. I., Dees, E. C., Ingram, R. S., & Tilghman, S. M. (1990). The product of the H19 gene may function as an RNA. Molecular and Cellular Biology, 10(1), 28–36.

    PubMed  CAS  Google Scholar 

  • Bartolomei, M. S., Zemel, S., & Tilghman, S. M. (1991). Parental imprinting of the mouse H19 gene. Nature, 351(6322), 153–155.

    Article  PubMed  CAS  Google Scholar 

  • Cai, X., & Cullen, B. R. (2007). The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA, 13(3), 313–316. doi:10.1261/rna.351707.

    Article  PubMed  CAS  Google Scholar 

  • Poirier, F., Chan, C. T., Timmons, P. M., Robertson, E. J., Evans, M. J., & Rigby, P. W. (1991). The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo. Development, 113(4), 1105–1114.

    PubMed  CAS  Google Scholar 

  • Pachnis, V., Brannan, C. I., & Tilghman, S. M. (1988). The structure and expression of a novel gene activated in early mouse embryogenesis. EMBO Journal, 7(3), 673–681.

    PubMed  CAS  Google Scholar 

  • Castle, J. C., Armour, C. D., Lower, M., Haynor, D., Biery, M., Bouzek, H., et al. (2010). Digital genome-wide ncRNA expression, including SnoRNAs, across 11 human tissues using polyA-neutral amplification. PLoS ONE, 5(7), e11779. doi:10.1371/journal.pone.0011779.

    Article  PubMed  Google Scholar 

  • Dudek, K. A., Lafont, J. E., Martinez-Sanchez, A., & Murphy, C. L. (2010). Type II collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes. Journal of Biological Chemistry, 285(32), 24381–24387. doi:10.1074/jbc.M110.111328.

    Article  PubMed  CAS  Google Scholar 

  • Leighton, P. A., Ingram, R. S., Eggenschwiler, J., Efstratiadis, A., & Tilghman, S. M. (1995). Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature, 375(6526), 34–39.

    Article  PubMed  CAS  Google Scholar 

  • Ripoche, M. A., Kress, C., Poirier, F., & Dandolo, L. (1997). Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes & Development, 11(12), 1596–1604.

    Article  CAS  Google Scholar 

  • Gabory, A., Ripoche, M. A., Le Digarcher, A., Watrin, F., Ziyyat, A., Forne, T., et al. (2009). H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development, 136(20), 3413–3421. doi:10.1242/dev.036061.

    Article  PubMed  CAS  Google Scholar 

  • Varrault, A., Gueydan, C., Delalbre, A., Bellmann, A., Houssami, S., Aknin, C., et al. (2006). Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Developmental Cell, 11(5), 711–722. doi:10.1016/j.devcel.2006.09.003.

    Article  PubMed  CAS  Google Scholar 

  • Lyle, R., Watanabe, D., te Vruchte, D., Lerchner, W., Smrzka, O. W., Wutz, A., et al. (2000). The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nature Genetics, 25(1), 19–21.

    Article  PubMed  CAS  Google Scholar 

  • Sleutels, F., Zwart, R., & Barlow, D. P. (2002). The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature, 415(6873), 810–813.

    Article  PubMed  CAS  Google Scholar 

  • Latos, P. A., Pauler, F. M., Koerner, M. V., Senergin, H. B., Hudson, Q. J., Stocsits, R. R., et al. (2012). Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science, 338(6113), 1469–1472. doi:10.1126/science.1228110.

    Article  PubMed  CAS  Google Scholar 

  • Santoro, F., Mayer, D., Klement, R. M., Warczok, K. E., Stukalov, A., Barlow, D. P., et al. (2013). Imprinted Igf2r silencing depends on continuous Airn lncRNA expression and is not restricted to a developmental window. Development, 140(6), 1184–1195. doi:10.1242/dev.088849.

    Article  PubMed  CAS  Google Scholar 

  • Zwart, R., Sleutels, F., Wutz, A., Schinkel, A. H., & Barlow, D. P. (2001). Bidirectional action of the Igf2r imprint control element on upstream and downstream imprinted genes. Genes & Development, 15(18), 2361–2366.

    Article  CAS  Google Scholar 

  • Nagano, T., Mitchell, J. A., Sanz, L. A., Pauler, F. M., Ferguson-Smith, A. C., Feil, R., et al. (2008). The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science, 322(5908), 1717–1720. doi:10.1126/science.1163802.

    Article  PubMed  CAS  Google Scholar 

  • Pauler, F. M., Barlow, D. P., & Hudson, Q. J. (2012). Mechanisms of long range silencing by imprinted macro non-coding RNAs. Current Opinion in Genetics & Development, 22(3), 283–289. doi:10.1016/j.gde.2012.02.005.

    Article  CAS  Google Scholar 

  • Verona, R. I., Mann, M. R., & Bartolomei, M. S. (2003). Genomic imprinting: Intricacies of epigenetic regulation in clusters. Annual Review of Cell and Developmental Biology, 19, 237–259. doi:10.1146/annurev.cellbio.19.111401.092717.

    Article  PubMed  CAS  Google Scholar 

  • Golding, M. C., Magri, L. S., Zhang, L., Lalone, S. A., Higgins, M. J., & Mann, M. R. (2011). Depletion of Kcnq1ot1 non-coding RNA does not affect imprinting maintenance in stem cells. Development, 138(17), 3667–3678. doi:10.1242/dev.057778.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, R. R., Mondal, T., Mohammad, F., Enroth, S., Redrup, L., Komorowski, J., et al. (2008). Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Molecular Cell, 32(2), 232–246. doi:10.1016/j.molcel.2008.08.022.

    Article  PubMed  CAS  Google Scholar 

  • Redrup, L., Branco, M. R., Perdeaux, E. R., Krueger, C., Lewis, A., Santos, F., et al. (2009). The long noncoding RNA Kcnq1ot1 organises a lineage-specific nuclear domain for epigenetic gene silencing. Development, 136(4), 525–530. doi:10.1242/dev.031328.

    Article  PubMed  CAS  Google Scholar 

  • Huang, R., Jaritz, M., Guenzl, P., Vlatkovic, I., Sommer, A., Tamir, I. M., et al. (2011). An RNA-Seq strategy to detect the complete coding and non-coding transcriptome including full-length imprinted macro ncRNAs. PLoS ONE, 6(11), e27288. doi:10.1371/journal.pone.0027288.

    Article  PubMed  CAS  Google Scholar 

  • Paulsen, M., Davies, K. R., Bowden, L. M., Villar, A. J., Franck, O., Fuermann, M., et al. (1998). Syntenic organization of the mouse distal chromosome 7 imprinting cluster and the Beckwith-Wiedemann syndrome region in chromosome 11p15.5. Human Molecular Genetics, 7(7), 1149–1159.

    Article  PubMed  CAS  Google Scholar 

  • Umlauf, D., Goto, Y., Cao, R., Cerqueira, F., Wagschal, A., Zhang, Y., et al. (2004). Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nature Genetics, 36(12), 1296–1300. doi:10.1038/ng1467.

    Article  PubMed  CAS  Google Scholar 

  • Shin, J. Y., Fitzpatrick, G. V., & Higgins, M. J. (2008). Two distinct mechanisms of silencing by the KvDMR1 imprinting control region. EMBO Journal, 27(1), 168–178. doi:10.1038/sj.emboj.7601960.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, A., Mitsuya, K., Umlauf, D., Smith, P., Dean, W., Walter, J., et al. (2004). Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nature Genetics, 36(12), 1291–1295. doi:10.1038/ng1468.

    Article  PubMed  CAS  Google Scholar 

  • Caspary, T., Cleary, M. A., Baker, C. C., Guan, X. J., & Tilghman, S. M. (1998). Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 gene cluster. Molecular and Cellular Biology, 18(6), 3466–3474.

    PubMed  CAS  Google Scholar 

  • Engemann, S., Strodicke, M., Paulsen, M., Franck, O., Reinhardt, R., Lane, N., et al. (2000). Sequence and functional comparison in the Beckwith-Wiedemann region: Implications for a novel imprinting centre and extended imprinting. Human Molecular Genetics, 9(18), 2691–2706.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick G. V., Soloway P. D., Higgins M. J. (2002) Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nature Genetics, 32,426–431.

    Google Scholar 

  • Mancini-Dinardo, D., Steele, S. J., Levorse, J. M., Ingram, R. S., & Tilghman, S. M. (2006). Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes & Development, 20(10), 1268–1282. doi:10.1101/gad.1416906.

    Article  CAS  Google Scholar 

  • Mohammad, F., Pandey, R. R., Nagano, T., Chakalova, L., Mondal, T., Fraser, P., et al. (2008). Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region. Molecular and Cellular Biology, 28(11), 3713–3728. doi:10.1128/MCB.02263-07.

    Article  PubMed  CAS  Google Scholar 

  • Paulsen, M., Khare, T., Burgard, C., Tierling, S., & Walter, J. (2005). Evolution of the Beckwith-Wiedemann syndrome region in vertebrates. Genome Research, 15(1), 146–153. doi:10.1101/gr.2689805.

    Article  PubMed  CAS  Google Scholar 

  • Mancini-DiNardo, D., Steele, S. J., Ingram, R. S., & Tilghman, S. M. (2003). A differentially methylated region within the gene Kcnq1 functions as an imprinted promoter and silencer. Human Molecular Genetics, 12(3), 283–294.

    Article  PubMed  CAS  Google Scholar 

  • Mager, J., Montgomery, N. D., de Villena, F. P., & Magnuson, T. (2003). Genome imprinting regulated by the mouse Polycomb group protein Eed. Nature Genetics, 33(4), 502–507.

    Article  PubMed  CAS  Google Scholar 

  • Terranova, R., Yokobayashi, S., Stadler, M. B., Otte, A. P., van Lohuizen, M., Orkin, S. H., et al. (2008). Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Developmental Cell, 15(5), 668–679. doi:10.1016/j.devcel.2008.08.015.

    Article  PubMed  CAS  Google Scholar 

  • Wagschal, A., Sutherland, H. G., Woodfine, K., Henckel, A., Chebli, K., Schulz, R., et al. (2008). G9a histone methyltransferase contributes to imprinting in the mouse placenta. Molecular and Cellular Biology, 28(3), 1104–1113. doi:10.1128/MCB.01111-07.

    Article  PubMed  CAS  Google Scholar 

  • Mohammad, F., Pandey, G. K., Mondal, T., Enroth, S., Redrup, L., Gyllensten, U., et al. (2012). Long noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing. Development, 139(15), 2792–2803. doi:10.1242/dev.079566.

    Article  PubMed  CAS  Google Scholar 

  • Hagan J. P., O’Neill B. L., Stewart C. L., Kozlov S. V., Croce C. M. (2009) At least ten genes define the imprinted Dlk1-Dio3 cluster on mouse chromosome 12qF1. PLoS One 4(2):e4352. doi: 4310.1371/journal.pone.0004352. Epub 0002009 Feb 0004355.

  • Buiting K., Gross S., Lich C., Gillessen-Kaesbach G., el-Maarri O., Horsthemke B. (2003) Epimutations in Prader-Willi and angelman syndromes: A molecular study of 136 patients with an imprinting defect. The American Journal of Human Genetics 72(3), 571–577.

    Google Scholar 

  • Sekita, Y., Wagatsuma, H., Irie, M., Kobayashi, S., Kohda, T., Matsuda, J., et al. (2006). Aberrant regulation of imprinted gene expression in Gtl2lacZ mice. Cytogenet Genome Res, 113(1–4), 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N., Okamoto A., Kobayashi R., Shirai M., Obata Y., Ogawa H., Sotomaru Y., Kono T. (2009) Deletion of Gtl2, imprinted non-coding RNA, with its differentially methylated region induces lethal parent-origin-dependent defects in mice. Human Molecular Genetics 18(10), 1879–1888. doi: 1810.1093/hmg/ddp1108. Epub 2009 Mar 1874.

    Google Scholar 

  • Tierling S., Dalbert S., Schoppenhorst S., Tsai C. E., Oliger S., Ferguson-Smith A. C., Paulsen M., Walter J. (2006) High-resolution map and imprinting analysis of the Gtl2-Dnchc1 domain on mouse chromosome 12. Genomics 87(2), 225–235. Epub 2005 November 2023.

    Google Scholar 

  • Takada, S., Tevendale, M., Baker, J., Georgiades, P., Campbell, E., Freeman, T., et al. (2000). Delta-like and gtl2 are reciprocally expressed, differentially methylated linked imprinted genes on mouse chromosome 12. Current Biology, 10(18), 1135–1138.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., Ohsumi, T. K., Kung, J. T., Ogawa, Y., Grau, D. J., Sarma, K., et al. (2010). Genome-wide identification of polycomb-associated RNAs by RIP-seq. Molecular Cell, 40(6), 939–953. doi:10.1016/j.molcel.2010.12.011.

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y., Zhang X., Klibanski A. (2012) MEG3 noncoding RNA: A tumor suppressor. Journal of Molecular Endocrinology 48(3), R45–53. doi: 10.1530/JME-1512-0008. Print 2012.

    Google Scholar 

  • Zhao J., Dahle D., Zhou Y., Zhang X., Klibanski A. (2005) Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. The Journal of Clinical Endocrinology and Metabolism 90(4), 2179–2186. Epub 2005 Jan 2111.

    Google Scholar 

  • Zhou Y., Zhong Y., Wang Y., Zhang X., Batista D. L., Gejman R., Ansell P. J., Zhao J., Weng C., Klibanski A. (2007) Activation of p53 by MEG3 non-coding RNA. Journal of Biological Chemistry 282(34), 24731–24742. Epub 22007 Jun 24713.

    Google Scholar 

  • Seitz, H., Youngson, N., Lin, S. P., Dalbert, S., Paulsen, M., Bachellerie, J. P., et al. (2003). Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nature Genetics, 34(3), 261–262.

    Article  PubMed  CAS  Google Scholar 

  • Davis, E., Caiment, F., Tordoir, X., Cavaille, J., Ferguson-Smith, A., Cockett, N., et al. (2005). RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Current Biology, 15(8), 743–749.

    Article  PubMed  CAS  Google Scholar 

  • Bachellerie, J. P., Cavaille, J., & Huttenhofer, A. (2002). The expanding snoRNA world. Biochimie, 84(8), 775–790.

    Article  PubMed  CAS  Google Scholar 

  • Cavaille, J., Seitz, H., Paulsen, M., Ferguson-Smith, A. C., & Bachellerie, J. P. (2002). Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region. Human Molecular Genetics, 11(13), 1527–1538.

    Article  PubMed  CAS  Google Scholar 

  • Seitz H., Royo H., Bortolin M. L., Lin S. P., Ferguson-Smith A. C., Cavaille J. (2004) A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Research 14(9), 1741–1748. Epub 2004 August 1712.

    Google Scholar 

  • Lin S. P., Youngson N., Takada S., Seitz H., Reik W., Paulsen M., Cavaille J., Ferguson-Smith A. C. (2003) Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nature Genetics 35(1), 97–102. Epub 2003 August 2024.

    Google Scholar 

  • Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439(7074), 283–289.

    Article  PubMed  CAS  Google Scholar 

  • Benetatos L., Hatzimichael E., Londin E., Vartholomatos G., Loher P., Rigoutsos I., Briasoulis E. (2013) The microRNAs within the DLK1-DIO3 genomic region: Involvement in disease pathogenesis. Cellular and Molecular Life Sciences 70(5), 795–814. doi: 710.1007/s00018-00012-01080-00018. Epub 02012 July 00024.

  • Frohlich L. F., Mrakovcic M., Steinborn R., Chung U. I., Bastepe M., Juppner H. (2010) Targeted deletion of the Nesp55 DMR defines another Gnas imprinting control region and provides a mouse model of autosomal dominant PHP-Ib. Proceedings of the National Academy of Science of the United States of America 107(20), 9275–9280. doi: 9210.1073/pnas.0910224107. Epub 0910222010 Apr 0910224128.

  • Coombes, C., Arnaud, P., Gordon, E., Dean, W., Coar, E. A., Williamson, C. M., et al. (2003). Epigenetic properties and identification of an imprint mark in the Nesp-Gnasxl domain of the mouse Gnas imprinted locus. Molecular and Cellular Biology, 23(16), 5475–5488.

    Article  PubMed  CAS  Google Scholar 

  • Williamson C. M., Turner M. D., Ball S. T., Nottingham W. T., Glenister P., Fray M., Tymowska-Lalanne Z., Plagge A., Powles-Glover N., Kelsey G., Maconochie M., Peters J. (2006) Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster. Nature Genetics 38(3), 350–355. Epub 2006 February 2005.

    Google Scholar 

  • Williamson C. M., Ball S. T., Dawson C., Mehta S., Beechey C. V., Fray M., Teboul L., Dear T. N., Kelsey G., Peters J. (2011) Uncoupling antisense-mediated silencing and DNA methylation in the imprinted Gnas cluster. PLoS Genetics 7(3):e1001347. doi: 1001310.1001371/journal.pgen.1001347. Epub 1002011 Mar 1001324.

    Google Scholar 

  • Ooi, S. K., Qiu, C., Bernstein, E., Li, K., Jia, D., Yang, Z., et al. (2007). DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature, 448(7154), 714–717.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y., Jurkowska R., Soeroes S., Rajavelu A., Dhayalan A., Bock I., Rathert P., Brandt O., Reinhardt R., Fischle W., Jeltsch A. (2010) Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Research 38(13), 4246–4253. doi: 4210.1093/nar/gkq4147. Epub 2010 March 4211.

    Google Scholar 

  • Chotalia, M., Smallwood, S. A., Ruf, N., Dawson, C., Lucifero, D., Frontera, M., et al. (2009). Transcription is required for establishment of germline methylation marks at imprinted genes. Genes & Development, 23(1), 105–117. doi:110.1101/gad.495809.

    Article  CAS  Google Scholar 

  • Liu, J., Litman, D., Rosenberg, M. J., Yu, S., Biesecker, L. G., & Weinstein, L. S. (2000a). A GNAS1 imprinting defect in pseudohypoparathyroidism type IB. Journal of Clinical Investigation, 106(9), 1167–1174.

    Article  PubMed  CAS  Google Scholar 

  • Yu, S., Yu, D., Lee, E., Eckhaus, M., Lee, R., Corria, Z., et al. (1998). Variable and tissue-specific hormone resistance in heterotrimeric Gs protein alpha-subunit (Gsalpha) knockout mice is due to tissue-specific imprinting of the gsalpha gene. Proceedings of National Academy Science of the United States of America, 95(15), 8715–8720.

    Article  CAS  Google Scholar 

  • Liu, J., Yu, S., Litman, D., Chen, W., & Weinstein, L. S. (2000b). Identification of a methylation imprint mark within the mouse Gnas locus. Molecular and Cellular Biology, 20(16), 5808–5817.

    Article  PubMed  CAS  Google Scholar 

  • Bastepe M., Frohlich L. F., Linglart A., Abu-Zahra H. S., Tojo K., Ward L. M., Juppner H. (2005) Deletion of the NESP55 differentially methylated region causes loss of maternal GNAS imprints and pseudohypoparathyroidism type Ib. Nature Genetics 37(1), 25–27. Epub 2004 December 2012.

    Google Scholar 

  • Eaton S. A., Williamson C. M., Ball S. T., Beechey C. V., Moir L., Edwards J., Teboul L., Maconochie M., Peters J. (2012) New mutations at the imprinted Gnas cluster show gene dosage effects of Gsalpha in postnatal growth and implicate XLalphas in bone and fat metabolism but not in suckling. Molecular and Cellular Biology 32(5), 1017–1029. doi: 1010.1128/MCB.06174-06111. Epub 02012 Jan 06173.

  • Liu J., Chen M., Deng C., Bourc’his D., Nealon J. G., Erlichman B., Bestor T. H., Weinstein L. S. (2005) Identification of the control region for tissue-specific imprinting of the stimulatory G protein alpha-subunit. Proceedings of National Academy Science of the United States of America 102(15), 5513–5518. Epub 2005 April 5515.

    Google Scholar 

  • Williamson C. M., Ball S. T., Nottingham W. T., Skinner J. A., Plagge A., Turner M. D., Powles N., Hough T., Papworth D., Fraser W. D., Maconochie M., Peters J. (2004) A cis-acting control region is required exclusively for the tissue-specific imprinting of Gnas. Nature Genetics 36(8), 894–899. Epub 2004 July 2025.

    Google Scholar 

  • Rougeulle, C., Cardoso, C., Fontes, M., Colleaux, L., & Lalande, M. (1998). An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nature Genetics, 19(1), 15–16.

    Article  PubMed  CAS  Google Scholar 

  • Meng L., Person R. E., Beaudet A. L. (2012) Ube3a-ATS is an atypical RNA polymerase II transcript that represses the paternal expression of Ube3a. Human Molecular Genetics. doi:10.1093/hmg/dds130.

  • Wevrick, R., & Francke, U. (1997). An imprinted mouse transcript homologous to the human imprinted in Prader-Willi syndrome (IPW) gene. Human Molecular Genetics, 6(2), 325–332.

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain, S. J., & Brannan, C. I. (2001). The Prader-Willi syndrome imprinting center activates the paternally expressed murine Ube3a antisense transcript but represses paternal Ube3a. Genomics, 73(3), 316–322.

    Article  PubMed  CAS  Google Scholar 

  • Rougeulle, C., Glatt, H., & Lalande, M. (1997). The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nature Genetics, 17(1), 14–15.

    Article  PubMed  CAS  Google Scholar 

  • Hogart, A., Patzel, K. A., & LaSalle, J. M. (2008). Gender influences monoallelic expression of ATP10A in human brain. Human Genetics, 124(3), 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Dubose A. J., Johnstone K. A., Smith E. Y., Hallett R. A, Resnick J. L. (2009) Atp10a, a gene adjacent to the PWS/AS gene cluster, is not imprinted in mouse and is insensitive to the PWS-IC. Neurogenetics, 11(2), 145–151.

    Google Scholar 

  • Saitoh, S., Buiting, K., Rogan, P. K., Buxton, J. L., Driscoll, D. J., Arnemann, J., et al. (1996). Minimal definition of the imprinting center and fixation of chromosome 15q11-q13 epigenotype by imprinting mutations. Proceedings of National Academy Science of the United States of America, 93(15), 7811–7815.

    Article  CAS  Google Scholar 

  • Brannan, C. I., & Bartolomei, M. S. (1999). Mechanisms of genomic imprinting. Current Opinion in Genetics & Development, 9(2), 164–170.

    Article  CAS  Google Scholar 

  • Buiting, K., Barnicoat, A., Lich, C., Pembrey, M., Malcolm, S., & Horsthemke, B. (2001). Disruption of the bipartite imprinting center in a family with Angelman syndrome. American Journal of Human Genetics, 68(5), 1290–1294.

    Article  PubMed  CAS  Google Scholar 

  • Smith, E. Y., Futtner, C. R., Chamberlain, S. J., Johnstone, K. A., & Resnick, J. L. (2011). Transcription is required to establish maternal imprinting at the Prader-Willi syndrome and Angelman syndrome locus. PLoS Genetics, 7(12), e1002422. doi:10.1371/journal.pgen.1002422.

    Article  PubMed  CAS  Google Scholar 

  • Numata, K., Kohama, C., Abe, K., & Kiyosawa, H. (2011). Highly parallel SNP genotyping reveals high-resolution landscape of mono-allelic Ube3a expression associated with locus-wide antisense transcription. Nucleic Acids Research, 39(7), 2649–2657. doi:10.1093/nar/gkq1201.

    Article  PubMed  CAS  Google Scholar 

  • Wevrick, R., Kerns, J. A., & Francke, U. (1994). Identification of a novel paternally expressed gene in the Prader- Willi-syndrome region. Human Molecular Genetics, 3(10), 1877–1882.

    Article  PubMed  CAS  Google Scholar 

  • Landers, M., Bancescu, D. L., Le Meur, E., Rougeulle, C., Glatt-Deeley, H., Brannan, C., et al. (2004). Regulation of the large (approximately 1000 kb) imprinted murine Ube3a antisense transcript by alternative exons upstream of Snurf/Snrpn. Nucleic Acids Research, 32(11), 3480–3492.

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain, S. J., Chen, P. F., Ng, K. Y., Bourgois-Rocha, F., Lemtiri-Chlieh, F., Levine, E. S., et al. (2010). Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proceedings of National Academy Science of the United States of America, 107(41), 17668–17673.

    Article  CAS  Google Scholar 

  • Ning, Y., Roschke, A., Christian, S. L., Lesser, J., Sutcliffe, J. S., & Ledbetter, D. H. (1996). Identification of a novel paternally expressed transcript adjacent to snRPN in the Prader-Willi syndrome critical region. Genome Research, 6(8), 742–746.

    Article  PubMed  CAS  Google Scholar 

  • Cavaille, J., Buiting, K., Kiefmann, M., Lalande, M., Brannan, C. I., Horsthemke, B., et al. (2000). Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proceedings of National Academy Science of the United States of America, 97(26), 14311–14316.

    Article  CAS  Google Scholar 

  • Yin Q. -F., Yang, L., Zhang, Y., Xiang, J. -F., Wu, Y.-W., Carmichael, G. G., Chen, L. -L. (2012) Long noncoding RNAs with snoRNA ends. Molecular Cell (48(2), 219–230 In press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stormy J. Chamberlain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martins-Taylor, K., Chamberlain, S. . (2013). Roles of Long Non-coding RNAs in Genomic Imprinting. In: Khalil, A., Coller, J. (eds) Molecular Biology of Long Non-coding RNAs. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8621-3_4

Download citation

Publish with us

Policies and ethics