Skip to main content

Horizontal Gene Transfer Through Genetic Transformation

  • Chapter
  • First Online:
Alien Gene Transfer in Crop Plants, Volume 1

Abstract

Gene transfer technology in crop plants has tremendous potential to introduce newer and better traits through development of transgenics and broaden the genetic base of crop plants by transferring genes from novel sources overcoming the species and genus barriers. Nevertheless, development of efficient transformation systems remains a prerequisite and might involve many years of exhaustive research. This chapter overviews the different methods of alien gene transfer through genetic transformation and factors affecting efficient transformation across different crop species. A comparative study on Agrobacterium and biolistics-mediated transformation including methods for production of marker-free transgenics are described in detail. Addressing the growing concerns over the biosafety issue constraining wider application of GM products in agriculture this chapter also focuses on improved methods of choice with respect to a crop family and also deals with future strategies which can help in further exploiting the existing technologies to develop improved crop varieties which can help to combat poverty, hunger and global agro-climatic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the Tobacco mosaic virus coat protein gene. Science 232:738–743

    CAS  PubMed  Google Scholar 

  • Al-Abed D, Madasamy P, Talla R, Goldman S, Rudrabhatla S (2007) Genetic engineering of maize with the Arabidopsis DREB1A/CBF3 gene using split-seed explants. Crop Sci 47:2390–2402

    CAS  Google Scholar 

  • Alimohammadi M, Bagherieh-Najjar MB (2009) Agrobacterium-mediated transformation of plants: Basic principles and influencing factors. Afr J Biotechnol 8:5142–5148

    CAS  Google Scholar 

  • Altpeter F, Vasil V, Srivastava V, Stöger E, Vasil IK (1996) Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep 1:612–617

    Google Scholar 

  • Araki H, Jearnpipatkul A, Tatsumi H, Sakurai T, Ushino K, Muta T, Oshima Y (1987) Molecular and functional organization of yeast plasmid pSR1. J Mol Biol 182:191–203

    Google Scholar 

  • Arencibia AD, Carmona ERC, Tellez P, Chan MT, Yu SM, Trujillo LE, Oramas P (1998) An efficient protocol for sugarcane (Saccharum s:L) transformation mediated by Agrobacterium tumefaciens. Transgenic Res 7:213-222

    CAS  Google Scholar 

  • Armaleo D, Ye GN, Klein TM, Shark KB, Sanford JC, Johnston SA (1990) Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi. Curr Genet 17:97–103

    CAS  PubMed  Google Scholar 

  • Armstrong CL, Rout JR (2001) A novel Agrobacterium-mediated plant transformation method. Int Patent Publ WOO1/09302 A2

    Google Scholar 

  • Asif MA, Zafar Y, Iqbal J, Iqbal MM, Rashid U, Ali GM, Arif A, Nazir F (2011) Enhanced expression of AtNHX1, in transgenic groundnut Arachis hypogaea L. improves salt and drought tolerance. Mol Biotechnol 49:250–256

    CAS  PubMed  Google Scholar 

  • Bai X, Wang Q, Chu C (2008) Excision of a selective marker in transgenic rice using a novel Cre/loxP system controlled by a floral specific promoter. Transgenic Res 17:1035–1043

    CAS  PubMed  Google Scholar 

  • Barampuram S, Zhang ZJ (2011) Recent advances in plant transformation. Methods Mol Biol 701:1–35

    CAS  PubMed  Google Scholar 

  • Barghchi M (1995) High-Frequency and efficient Agrobacterium-mediated transformation of Arabidopsis thaliana ecotypes “24” and “Landsberg erecta” using Agrobacterium tumefaciencs. In: Gartland KMA, Davey MR (eds) Methods in molecular biology: Agrobacterium protocols, vol 44. Humana Press Inc, Totowa, NJ, pp 135–147

    Google Scholar 

  • Barro F, Cannell ME, Lazzeri PA, Barcelo P (1998) The influence of auxins on transformation of wheat and tritordeum and analysis of transgene integration patterns in transformants. Transgenic Res 97:684–695

    CAS  Google Scholar 

  • Bates GW (1994) Genetic transformation of plants by protoplast electroporation. Mol Biotechnol 2:135–145

    CAS  PubMed  Google Scholar 

  • Beclin C, Charlot F, Botton E, Jouanin L, Dore C (1993) Potential use of aux2 gene from Agrobacterium rhizogenes as a conditional negative marker in transgenic cabbage. Transgenic Res 2:48–55

    CAS  Google Scholar 

  • Bhatnagar M, Prasad K, Bhatnagar-Mathur P, Narasu ML, Waliyar F, Sharma KK (2010) An efficient method for the production of marker-free transgenic plants of peanut (Arachis hypogaea L.). Plant Cell Rep 29:495–502

    CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Devi MJ, Lavanya M, Vani G, Sharma KK (2009) Genetic engineering of chickpea Cicer arietinum L. with the P5CSF129A gene for osmoregulation with implications on drought tolerance. Mol Breed 23:591–606

    CAS  Google Scholar 

  • Bidney D, Scelonge C, Martich J, Burrus M, Sims L, Huffman G (1992) Microprojectile bombardment of plant tissues increase transformation frequency by Agrobacterium tumefaciens. Plant Mol Biol 18:301–313

    CAS  PubMed  Google Scholar 

  • Bilang R, Zhang S, Leduc N, Iglesias VA, Gisel A, Simmonds J, Potrykus I, Sautter C (1993) Transient gene expression in vegetative shoot apical meristems of wheat after ballistic microtargeting. Plant J 4:735–744

    CAS  Google Scholar 

  • Birch RG (1997) Plant transformation problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    CAS  PubMed  Google Scholar 

  • Bohnert HJ, Nelson DF, Jenson RG (1995) Adaptation to environmental stresses. Plant Cell 7:1099–1111

    CAS  PubMed  Google Scholar 

  • Bolton GW, Nester EW, Gordon MP (1986) Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 232:983–985

    CAS  PubMed  Google Scholar 

  • Borda’s M, Montesinos C, Dabauza M, Salvador A, Roig LA, Serrano R, Moreno V (1997) Transfer of the yeast salt tolerance gene HAL1 to Cucumis melo L. cultivars and in vitro evaluation of salt tolerance. Transgenic Res 5:1–10

    Google Scholar 

  • Bottinger P, Steinmetz A, Scheider O, Pickardt T (2001) Agrobacterium mediated transformation of Vicia faba. Mol Breed 8:243–254

    CAS  Google Scholar 

  • Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035–1040

    CAS  PubMed  Google Scholar 

  • Brookes G, Barfoot P (2005) GM crops The global economic and environmental impact. The first nine years 1996–2004. AgBioForum 8:187–196

    Google Scholar 

  • Bucher E, Lohuis D, van Popple PMJA, Geerts-Dimitriadou C, Goldbach R, Prins M (2006) Multiple virus resistance at a high frequency using a single transgene construct. Journal of General Virology 87:3697–3701

    CAS  PubMed  Google Scholar 

  • Cadoza V, Stewart CN (2003) Increased Agrobacterium mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyls segment explants. Plant Cell Rep 21:599–604

    Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101:9909–9914

    CAS  PubMed  Google Scholar 

  • Castillo AM, Vasil V, Vasil IK (1994) Rapid production of fertile transgenic plants of rye Secale cereale L. Bio Technol 12:1366–1371

    CAS  Google Scholar 

  • Chang SS, Park SK, Kim BC, Kang BJ, Kim DU (1994) Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta. Plant J 5:551–558

    CAS  Google Scholar 

  • Chee PP, Fober KA, Slightom JL (1989) Transformation of soybean (Glycine max) by Agrobacterium tumefaciens. Plant Physiol 91:1212–1218

    CAS  PubMed  Google Scholar 

  • Cheng M, Hu T, Layton JI, Liu CN, Fry JE (2003) Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell Dev Biol Plant 39:595–604

    CAS  Google Scholar 

  • Cheng M, Fry JE (2000) An improved efficient Agrobacterium-mediated plant transformation method. Int. Patent publ. WO 0034/491

    Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou I, Hironaka C, Duncan DRI, Conner TWL, Wang Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    CAS  PubMed  Google Scholar 

  • Chibbar RN, Kartha KK, Leung N, Qureshi J, Caswell K (1991) Transient expression of marker genes in immature zygotic embryos of spring wheat (Triticum aestivum) through microparticle bombardment. Genome 34:453–460

    CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    CAS  Google Scholar 

  • Cho YG (2009) Auto-excision of selectable marker genes from transgenic tobacco via a stress inducible FLP/FRT site-specific recombination system. Transgenic Res 18:455–465

    PubMed  Google Scholar 

  • Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu CY, Bi FY (1995) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sip 18:659–668

    Google Scholar 

  • Clough S, Bent JAF, Dip F (1998) A simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735

    CAS  PubMed  Google Scholar 

  • Cober ER, Rioux S, Rajcan I, Donaldson PA, Simmonds DH (2003) Partial resistance to white mold in a transgenic soybean line. Crop Sci 4:392–395

    Google Scholar 

  • Collinge DB, Lund OS, Thordal-Christensen H (2008) What are the prospects for genetically engineered, disease resistant plants? Eur J Plant Pathol 121:217–231

    CAS  Google Scholar 

  • Cortina C, Culianez-Macia F (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 16:75–82

    Google Scholar 

  • Cuellar W, Gaudin A, Solorzano D, Casas A, Nopo L, Chudalayandi P, Medrano G, Kreuze J, Ghislain M (2006) Self-excision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system from transgenic potato. Plant Mol Biol 62:71–82

    CAS  PubMed  Google Scholar 

  • Cui M, Takayanagi K, Kamada H, Nishimura S, Handa T (2001) Efficient shoot regeneration from hairy roots of Antirrhinum majus L transformed by the rol-type MAT vector system. Plant Cell Rep 20:55–59

    CAS  Google Scholar 

  • Czako M, Marton L (1994) The herpes simplex virus thymidine kinase gene as a conditional negative-selection marker gene in Arabidopsis thaliana. Plant Physiol 104:1067–1071

    CAS  PubMed  Google Scholar 

  • Dafny-Yelin M, Tzfira T (2007) Delivery of multiple transgenes to plant cells. Plant Physiol 145:1118–1128

    CAS  Google Scholar 

  • Dale PJ, Irwin JA, Scheffler JA (1993) The experimental and commercial release of transgenic crop plants. Plant Breed 111:1–22

    CAS  Google Scholar 

  • Dale EC, David WO (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88:10558–10562

    CAS  PubMed  Google Scholar 

  • Dale PJ, Clarke B, Fontes EMG (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20:567–574

    CAS  PubMed  Google Scholar 

  • Dana MD, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730

    Google Scholar 

  • Daniell H, Wiebe PO, Millan AF (2001) Antibiotic-free chloroplast genetic engineering—an environmentally friendly approach. Trend Plant Sci 6:237–239

    CAS  Google Scholar 

  • Darbani B, Elimanifar A, Stewart CN, Camargo WN (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83–90

    CAS  PubMed  Google Scholar 

  • De Block M and Debrouwer D (1991) Two T-DNA’s cotransformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet 82:257–263

    Google Scholar 

  • de Neve M, de Buck S, Jacobs A, van Montagu M, Depicker A (1997) T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J 1:15–29

    Google Scholar 

  • de Villiers SM, Hoisington AD (2011) The trends and future of biotechnology crops for insect pest control. Afr J Biotechnol 10:4677–4681

    Google Scholar 

  • Dehestani A, Ahmadian G, Salmanian AH, Jelodar NB, Kazemitabar K (2010) Transformation efficiency enhancement of Arabidopsis vacuum infiltration by surfactant application and apical inflorescence removal. Trakia J Sci 81:19–26

    Google Scholar 

  • Depicker AG, Jacobs AM, van Montagu MC (1988) A negative selection scheme for tobacco protoplast-derived cells expressing the T-DNA gene. Plant Cell Rep 7:63–66

    CAS  Google Scholar 

  • Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 12:895–904

    Google Scholar 

  • Dias BBA, Cunha WG, Morais LS, Vianna GR, Rech EL, de Capdeville G et al (2006) Expression of an oxalate decarboxylase gene from Flammulina sp in transgenic lettuce (Lactuca sativa) plants and resistance to Sclerotinia sclerotiorum. Plant Pathol 55:187–193

    CAS  Google Scholar 

  • Dillen W, de Clercq J, Kapila J, Zambre M, van Montagu M, Angenon G (1997) The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. Plant J 12: 1459–1463

    CAS  Google Scholar 

  • Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    CAS  Google Scholar 

  • Dong J, Teng W, Buchholz WG, Hall TC (1996) Agrobacterium-mediated transformation of Javanic rice. Mol Breeding 2:267–276

    CAS  Google Scholar 

  • Dong XB, Ji RQ, Guo XL, Foster SJ, Chen H, Dong CH et al (2008) Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta 228:331–340

    CAS  PubMed  Google Scholar 

  • Dorantes-Acosta AE, Sánchez-Hernández CV, Arteaga-Vázquez MA (2012) Biotic stress in plants life lessons from your parents and grandparents. Front Gene 32:56

    Google Scholar 

  • Downes S, Mahon RJ, Rossiter L, Kauter G, Leven T, Fitt G, Baker G (2010) Adaptive management of pest resistance by Helicoverpa species (Noctuidae) in Australia to the Cry2Ab Bt toxin in Bollgard II ® cotton. Evol Appl 3:574–584

    Google Scholar 

  • Draper J, Scott R, Armitage P (1988) Plant genetic transformation and gene expression a laboratory manual. Blackwell Scientific Publishers, Oxford

    Google Scholar 

  • Duan CG, Wang CH, Fang RX, Guo HS (2008) Artificial MicroRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol 82:11084–11095

    CAS  PubMed  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA 94:2117–2121

    CAS  PubMed  Google Scholar 

  • Ebinuma H, Komamine A (2001) MAT multi-auto-transformation vector system. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants. In Vitro Cell Dev Biol Plant 37:103–113

    CAS  PubMed  Google Scholar 

  • Ellstrand NC (2001) When transgeneswander shouldweworry? Plant Physiol 125:1543–1545

    CAS  PubMed  Google Scholar 

  • Ellstrand NC (2003) Current knowledge of gene flow in plants: implications for transgene flow. Philos Trans R Soc B Biol Sci 35:1163–1170

    Google Scholar 

  • Enriquez-Obregon GA, Prieto-Samsonov DL, de la Riva GA, Perez MI, Selman-Housein G, Vazquz-Padron RI (1999) Agrobacteriummediated Japonica rice transformation a procedure assisted by an antinecrotic treatment. Plant Cell Tiss Organ Cult 59:159–168

    CAS  Google Scholar 

  • Feldmann KA, Marks MD (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana a non-tissue culture approach. Mol Gen Genet 20:81–89

    Google Scholar 

  • Ferrari S, Galletti R, Vairo D, Cervone F, de Lorenzo G (2006) Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. Mol Plant Microbe Interact 19:931–936

    CAS  PubMed  Google Scholar 

  • Fladung M, Schenk TMH, Polak O, Becker D (2010) Elimination of marker genes and targeted integration via FLP⁄FRT recombination system from yeast in hybrid aspen Populus tremula L P tremuloides Michx. Tree Genet Genome 6:205–217

    Google Scholar 

  • Food and Agriculture Organization/World Health Organization (2000) Safety aspects of genetically modified foods of plantorigin. Report of a Joint FAO/WHO Consultation on FoodsDerived from Biotechnology (Geneva: World Health Organization)

    CAS  PubMed  Google Scholar 

  • Frame BR, Shou H, Chikwamba RK, Zhang ZI, Xiang CI, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    CAS  PubMed  Google Scholar 

  • Fry J, Barnason A, Horsch RB (1987) Transformation of Brassica napus with Agrobacterium tumefaciens based vectors. Plant Cell Rep 6:321–325

    CAS  Google Scholar 

  • Fu X, Duc LT, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D, Twyman RM, Christou P, Kohli A (2000) Linear transgene constructs lacking vector backbone sequences generate low-copynumber transgenic plants with simpl integration patterns. Transgenic Res 9:11–19

    CAS  PubMed  Google Scholar 

  • Galau GA, Bijaisoradat N, Hughes DW (1987) Accumulation kinetics of cotton late embryogenesis-abundent (Lea) mRNAs and storage protein mRNAs coordinate regulation during embryogenesis and role of abscisic acid. Dev Biol 123:198–212

    CAS  PubMed  Google Scholar 

  • Gan C (1989) Gene gun accelerates DNA-coated particles to transform intact cells. The Scientist 3:25

    Google Scholar 

  • Gao M, Sakamoto A, Miura K, Murata N, Sugiura A, Tao R (2000) Transformation of Japanese persimmon (Diospyros kaki Thunb.) with a bacterial gene for choline oxidase. Mol Breed 6:501–510

    CAS  Google Scholar 

  • Gao Z, Xie X, Ling Y, Muthukrishnan S, Liang HG (2005) Agrobacterium tumefaciens transformation using a mannose selection system. Plant Biotechnol J 3:591–597

    CAS  PubMed  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YC, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    CAS  PubMed  Google Scholar 

  • Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146:881–887

    CAS  PubMed  Google Scholar 

  • Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 51:223–256

    CAS  PubMed  Google Scholar 

  • Gheysen G, Angenon G, van Montagu M (1998) Agrobacterium-mediated plant transformation a scientifically intriguing story with significant applications. In: Lindsey K (ed) Transgenic Plant Research. Harwood Academic Publishers, New Jersey, NJ, pp 1–33

    Google Scholar 

  • Giovannetti M, Sbrana C, Turrini A (2005) The impact of genetically modified crops on soil microbial communities. Riv Biol-Biol Forum 98:393–417

    Google Scholar 

  • Gisbert C, Rus AM, Bolarin MC, Lopez-Coronado M, Arrillaga I, Montesinos C, Caro M, Serrano R, Moreno V (2000) The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol 123:393–402

    CAS  PubMed  Google Scholar 

  • Gleave AP, Mitra DS, Mudge S, Morris BAM (1999) Selectable marker-free transgenic plants without sexual crossing transient expression of Cre recombinase and use of the conditional lethal dominant gene. Plant Mol Biol 40:223–235

    CAS  PubMed  Google Scholar 

  • Godwin I, Todd G, Ford-Lloyd B, Newbury HJ (1991) The effects of acetosyringone and pH on Agrobacterium mediated transformation vary according to plant species. Plant Cell Rep 9:671–675

    CAS  Google Scholar 

  • Goldsbrough AP, Lastrella CN, Yoder JI (1993) Transposition-mediated re-positioning and subsequent elimination of marker genes from transgenic tomatoes. Biotechnology 11:1286–1292

    CAS  Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O´brien JV, Chambers SA, Adams WR, Jr Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618

    CAS  PubMed  Google Scholar 

  • Guo M, Zhang YL, Meng ZJ, Jiang J (2012) Optimization of factors affecting Agrobacterium-mediated transformation of Micro-Tom tomatoes. Genet Mol Res 111:661–671

    Google Scholar 

  • Haldrup A, Petersen SG, Okkels FT (1998) Positive selection: a plant selection principle based on xylose isom-erase an enzyme used in the food industry. Plant Cell Rep 18:76–81

    CAS  Google Scholar 

  • Hansen G, Chilton MD (1996) ‘Agrolistic’ transformation of plant cells integration of T-strands generated in planta. Proc Natl Acad Sci USA 93:14978–14983

    CAS  PubMed  Google Scholar 

  • Hashizume F, Tsuchiya T, Ugaki M, Niwa Y, Tachibana N, Kowyama Y (1999) Efficient Agrobacterium-mediated transformation and the usefulness of a synthetic GFP reporter gene in leading varieties of japonical rice. Plant Biotechnol 16:397–401

    CAS  Google Scholar 

  • Herrera-Estrella L, De Block M, Messens E, Heradsteens J, van Montagu M and Schell J (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J 2:987–995

    CAS  PubMed  Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    CAS  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oriza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    CAS  PubMed  Google Scholar 

  • Hoa TT, Bong BB, Huq E, Hodges TK (2002) Cre/lox sitespecific recombination controls the excision of a transgene from the rice genome. Theor Appl Genet 104:518–525

    CAS  PubMed  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperpoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTi Bo542 outside of T-DNA. J Bacteriol 168:1291–1301

    CAS  PubMed  Google Scholar 

  • Howe AR, Gasser CS, Brown SM, Padgette SR, Hart J, Parker G, Fromm ME, Armstrong CL (2002) Glyphosate as a selective agent for production fertile transgenic maize (Zea mays L.) plant. Mol Breed 10:153–164

    CAS  Google Scholar 

  • Hu T, Meltz S, Chay C, Zhou HP, Biest N, Chen G, Cheng M, Feng X, Radionenka M, Lu F, Fry JE (2003) Agrobacterium-mediated large scale transformation of wheat (Triticum aestivum L.). Plant Cell Rep 21:1010–1019

    CAS  PubMed  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    CAS  PubMed  Google Scholar 

  • Ishitani M, Xiong L, Stevenson B, Zhu JK (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9:1935–1949

    CAS  PubMed  Google Scholar 

  • James C (2011) Global Status of Commercialized Biotech/GM Crops, vol 43. ISAAA Brief, Ithaca, USA

    Google Scholar 

  • Janni M, Sella L, Favaron F, Blechl AE, De Lorenzo G, D’Ovidio R (2008) The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol Plant Microbe Interact 21:171–177

    CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Beven MW (1987) GUS fusions bglucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Joersbo M, Okkels FT (1996) A novel principle for selection of transgenic plant cells: positive selection. Plant Cell Rep 16:219–221

    CAS  Google Scholar 

  • Joersbo M, Brunstedt J (1990) Direct gene transfer to plant protoplasts by mild sonication. Plant Cell Rep 9:207–210

    CAS  Google Scholar 

  • Joersbo M, Donaldson I, Kreiber J, Peterson SG, Brunstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111–117

    CAS  Google Scholar 

  • Joubert DA, Kars I, Wagemakers L, Bergmann C, Kemp G, Vivier MA, van Kan JAL (2007) A polygalacturonase-inhibiting protein from grapevine reduces the symptoms of the endopolygalacturonase BcPG2 from Botrytis cinereain Nicotiana benthamiana leaves without any evidence for in vitro interaction. Mol Plant Microbe Interact 20:392–402

    CAS  PubMed  Google Scholar 

  • Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA 104:15270–15275

    CAS  PubMed  Google Scholar 

  • Karlin-Neumann GA, Brusslan JA, Tobin EM (1991) Phytochrome control of the tms2 gene in transgenic Arabidopsis: a strategy for selecting mutants in the signal transduction pathway. Plant Cell 3:573–582

    CAS  PubMed  Google Scholar 

  • Karthikeyan A, Valarmathi R, Nandini S, Nandhakumar MR (2012) Genetically modified crops insect resistance. Biotechnology 11(3):119–126

    Google Scholar 

  • Katavic V, Haughn GW, Reed D, Martin M, Kunst L (1994) In planta transformation of Arabidopsis thaliana. Mol Gen Genet 2:363–370

    Google Scholar 

  • Ke XY, McCormac AC, Harvey A, Lonsdale D, Chen DF, Elliot MC (2002) Manipulation of discriminatory T-DNA delivery by Agrobacterium into cells of immature embryos of barley and wheat. Euphytica 126:333–343

    CAS  Google Scholar 

  • Keshamma ES, Rohini KS, Madhusudhan RB, Kumar MU, Kumar MU (2008) Molecular biology and physiology. J Cotton Sci 12:264–272

    CAS  Google Scholar 

  • Khan RS, Nakamura I, Mii M (2010a) Production and selection of marker-free transgenic plants of Petunia hybrida using sitespecific recombination. Biol Plant 54:265–271

    CAS  Google Scholar 

  • Khan RS, Ntui VO, Chin DP, Nakamura I, Mii M (2010b) Production of marker-free disease-resistant potato using isopentenyl transferase gene as a positive selection marker. Plant Cell Rep 30:587–597

    PubMed  Google Scholar 

  • Khan RS, Thirukkumaran G, Nakamura I, Mii M (2010c) Rol root loci gene as a positive selection marker to produce markerfree Petunia hybrida. Plant Cell Tiss Organ Cult 101:279–285

    CAS  Google Scholar 

  • Khanna HK, Daggard GE (2003) Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyaminesupplemented regeneration medium. Plant Cell Rep 2:429–436

    Google Scholar 

  • Klee H, Horsch R, Rogers S (1987) Agrobacterium-mediated plant transformation and its further applications to plant biology. Annu Rev Plant Physiol 38:467–486

    CAS  Google Scholar 

  • Klee H (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451

    PubMed  Google Scholar 

  • Kobayashi T, Hisajima S, Stougaard J, Ichikawa HA (1995) Conditional negative selection for Arabidopsis expressing a bacterial cytosine deaminase gene. Jpn J Genet 70:409–422

    CAS  PubMed  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    CAS  PubMed  Google Scholar 

  • Kondo T, Hasegawa H, Suzuki M (2000) Transformation and regeneration of garlic (Allium sativum L.) by Agrobacterium-mediated gene transfer. Plant Cell Rep 19:989–993

    CAS  Google Scholar 

  • Koprek T, Hänsch R, Nerlich A, Mendel RR, Schulze J (1996) Fertile transgenic barley of different cultivars obtained by adjustment of bombardment conditions to tissue response. Plant Sci 11:979–991

    Google Scholar 

  • Kruger M, van Rensburg JBJ, van den Berg J (2009) Perspective on the development of stem borer resistance to Bt maize and refuge compliance at the Vaalharts irrigation scheme in South Africa. Crop Prot 28:684–689

    Google Scholar 

  • Kumar S, Arul L, Talwar D (2010) Generation of marker-free Bt transgenic indica rice and evaluation of its yellow stem borer resistance. J Appl Genet 51:243–257

    CAS  PubMed  Google Scholar 

  • Kumar V, Parkhi V, Kenerley CM, Rathore KS (2009) Defense-related gene expression and enzyme activities in transgenic cotton plants expressing an endochitinase gene from Trichoderma virens in response to interaction with Rhizoctonia solani. Planta 230:277–291

    CAS  PubMed  Google Scholar 

  • Kumlehn J, Serazetdinora L, Hensel G, Becker D, Loerz H (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen culture with Agrobacterum tumefaciens. Plant Biotechnol J 4:251–258

    CAS  PubMed  Google Scholar 

  • Kung YJ, Bau HJ, Wu YL, Huang CH,Chen TM, Yeh SD(2009) Generation of transgenic papaya with double resistance to Papaya ringspot virus and Papaya leaf-distortion mosaic virus. Phytopathology 99:1312–1320

    CAS  Google Scholar 

  • Kunze I, Ebneth M, Heim U, Geiger M, Sonnewald U, Herbers K (2001) 2-Deoxyglucose resistance: a novel selection marker for plant transformation. Mol Breed 7:221–227

    CAS  Google Scholar 

  • Le VQ, Belles-Isles J, Dusabenyagusani M, Tremblay FM (2001) An improved procedure for production of white pruce (Picea glauca) transgenic plants using Agrobacterium tumefaciens J Exp Bot 52:2089–2095

    CAS  Google Scholar 

  • Lee JT, Prasad V, Yang PT, Wu JF, David Ho TH, Charng YY, Chan MT (2003) Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield. Plant Cell Environ 26:1181–1190

    CAS  Google Scholar 

  • Lee LY, Gelvin SB (2008) T-DNABinary vectors and systems. Plant Physiol 146:325–332

    CAS  PubMed  Google Scholar 

  • Li B, Li N, Duan X, Wei A, Yang A, Zhang J (2010) Generation of marker-free transgenic maize with improved salt tolerance using the FLP/FRT recombination system. J Biotechnol 145:206–213

    CAS  PubMed  Google Scholar 

  • Li KT, Charng YC (2012) The use of hygromycin phosphotransferase gene hpt with an artificial intron to obtain marker-off transgenic plants. Afr J Biotechnol 116:1330–1336

    Google Scholar 

  • Limanton-Grevet A, Jullien M (2001) Agrobacterium-mediated transformation Asparagus officinalis L. Molecular and genetic analysis of transgenic plants. Mol Breed 7:141–150

    CAS  Google Scholar 

  • Lin C, Jun F, Xu X, Zhao T, Cheng J, Tu J, Ye G, Shen Z (2008) A built-in strategy for containment of transgenic plants Creation of selectively terminable transgenic rice. PLoS One 31:818

    Google Scholar 

  • Lin SS, Henriques R, Wu HW, Niu QW, Yeh SD, Chua NH (2007) Strategies and mechanisms of plant virus resistance. Plant Biotechnol Rep 1:125–134

    Google Scholar 

  • Lindbo JA, Silva-Rosales L, Proebsting WM, Dougherty WG (1993) Induction of a highly specific antiviral state in transgenic plants implications for regulation of gene expression and virus resistance. Plant Cell 5(17):49–59

    Google Scholar 

  • Lindsey K, Jones MGK (1989) Plant Biotechnology in Agriculture. Open University Press, Milton Keynes, UK

    Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    CAS  Google Scholar 

  • Liu X, Brost J, Hutcheon C, Guilfoil R, Wilson AK, Leung S, Shewmaker CK, Rooke S, Nguyen T, Kiser J (2012) Transformation of the oilseed crop Camelina sativa by Agrobacterium-mediated floral dip and simple large-scale screening of transformants. In Vitro Cellular Develop Biol 485:462–468

    Google Scholar 

  • Lonsdale D, Ontec S, Cuming A (1990) Transient expression of exogenous DNA in intact, viable wheat embryos following particle bombardment. J Exp Bot 41:1161–1165

    CAS  Google Scholar 

  • Lucca P, Ye X, Potrykus I (2001) Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol Breed 7:43–49

    CAS  Google Scholar 

  • Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007) ‘GM-gene-deleter’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 5:263–274

    CAS  PubMed  Google Scholar 

  • Ma BG, Duan XY, Niu JX, Ma C, Hao QN, Zhang LX, Zhang HP (2009) Expression of stilbene synthase gene in transgenic tomato using salicylic acid-inducible Cre/loxP recombination system with self-excision of selectable marker. Biotechnol Lett 31:163–169

    CAS  Google Scholar 

  • Manfredini C, Sicilia F, Ferrari S, Pontiggia D, Salvi G, Caprari C, Lorito M, de Lorenzo G (2005) Polygalacturonase-inhibiting protein 2 of Phaseolus vulgaris inhibits BcPG1, a polygalacturonase of Botrytis cinerea important for pathogenicity, and protects transgenic plants from infection. Physiol Mol Plant Pathol 67:108–115

    CAS  Google Scholar 

  • Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 4:866–870

    Google Scholar 

  • May GD, Afza R, Mason HS, Wiecko A, Novak FJ, Arntzen CJ (1995) Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Bio/Technol 13:486–492

    CAS  Google Scholar 

  • McCormac AC, Fowler MR, Chen DF, Elliott MC (2001) Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs the effect of T-DNA size and implications for genetic separation. Transgenic Res 10:143–155

    CAS  PubMed  Google Scholar 

  • McKnight TD, Lillis MT, Simpson RB (1987) Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Mol Biol 8:439–445

    CAS  Google Scholar 

  • McNeil SD, Nuccio ML, Rhodes D, Shachar-Hill Y, Hanson AD (2000) Radiotracer and computer modeling evidence that phosphobase methylation is the main route of choline synthesis in tobacco. Plant Physiol 12:3371–3380

    Google Scholar 

  • Mercer KL, Andow DA, Wyse DL, Shaw RG (2007) Stress and domestication traits increase the relative fitness of crop-wild hybrids in sunflower. Ecol Lett 10:383–393

    PubMed  Google Scholar 

  • Miller M, Tagliani L, Wang N, Berka B, Bidney D (2002) High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11:381–396

    CAS  PubMed  Google Scholar 

  • Mithofer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    PubMed  Google Scholar 

  • Mlynarova L, Conner AJ, Nap JPH (2006) Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotechnol J 4:445–452

    CAS  PubMed  Google Scholar 

  • Moloney MM, Walker JM, Sharma KK (1989) An efficient method for Agrobacterium-mediated transformation in Brassica napus cotyledon explants. Plant Cell Rep 8:238–242

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    CAS  Google Scholar 

  • Nandadeva YL, Lupi CG, Meyer CS, Devi PS, Potrykus I, Bilang R (1999) Microprojectile mediated transient and integrative transformation of rice embryogenic suspension cells effect of osmotic cell conditioning and of the physical configuration of plasmid DNA. Plant Cell Rep 18:500–504

    CAS  Google Scholar 

  • Nandy S, Srivastava V (2011) Site-specific gene integration in rice genome mediated by the FLP–FRT recombination system. Plant Biotechnol J 9:713–721

    CAS  PubMed  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense supression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    CAS  PubMed  Google Scholar 

  • Nanto K, Ebinuma H (2008) Marker-free site-specific integrationplants. Transgenic Res 17:337–344

    CAS  PubMed  Google Scholar 

  • Nauerby B, Billing K, Wyndaele R (1997) Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Sci 123:169–177

    CAS  Google Scholar 

  • Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    CAS  PubMed  Google Scholar 

  • O’Keefe DP, Tepperman JM, Dean C, Leto KJ, Erbes DL, Odell JT (1994) Plant expression of a bacterial cyto-chrome P450 that catalyzes activation of a sulfonylurea pro- herbicide. Plant Physiol 105:473–482

    PubMed  Google Scholar 

  • O'Callaghan M, Glare TR, Burgess EPJ, Malone LA (2005) Effects of plants genetically modified for insect resistance on non-target organisms. Annu Rev Entomol 50:271–292

    PubMed  Google Scholar 

  • Okkels FT, Ward J, Joersb M (1997) Synthesis of cytoki-nin glucuronides for the selection of transgenic plant cells. Phytochemistry 46:801–804

    CAS  PubMed  Google Scholar 

  • Oliveira AR, Castro TR, Capalbo DMF, Delalibera I (2007) Toxicological evaluation of genetically modified cotton BollgardR and Dipel RWP on the non-target soil mite Scheloribates praeincisus Acari: Oribatida. Exp Appl Acarol 41:191–201

    PubMed  Google Scholar 

  • Opabode JT (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol Mol Biol Rev 11:12–20

    Google Scholar 

  • Perl A, Kless H, Blumenthal A, Galili G, Galun E (1992) Improvement of plant regeneration and GUS expression in scutellar wheat calli by optimization of culture conditions and DNAmicroprojectile delivery procedures. Mol Gen Genet 235:279–284

    CAS  PubMed  Google Scholar 

  • Petolino JF, Hopkins NL, Kosegi BD, Skokut M (2000) Whisker-mediated transformation of embryogenic callus of maize. Plant Cell Rep 19:781–786

    CAS  Google Scholar 

  • Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jeuken JW, Weisbeek, Smeekens SCM (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107:125–130

    CAS  PubMed  Google Scholar 

  • Pradhan C, Das AB, Chand PK (2012) Agrobacterium tumefaciens-mediated transformation and efficient regeneration of a timber yielding plant Dalbergia sissoo Roxb. Physiol Mol Biol Plants. doi:10.1007/s12298-012-0120-z

    Google Scholar 

  • Pratap A, Gupta SK (2009) Biotechnological interventions in host plant resistance. In: Peshin R, Dhawan AK (eds) Integrated Pest Management: Innovation, Dissemination and Impact. Springer Publishers, Dordrecht, UK, pp 183–207

    Google Scholar 

  • Prins M, Laimer M, Noris E,Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Molecular Plant Pathology 1:73–83

    Google Scholar 

  • Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81:6690–6699

    CAS  PubMed  Google Scholar 

  • Ramana Rao MV, Parameswari C, Sripriya R, Veluthambi K (2011) Transgene stacking and marker elimination in transgenic rice by sequential Agrobacterium-mediated co-transformation with the same selectable marker gene. Plant Cell Rep 307:1241–1252

    Google Scholar 

  • Ramana Rao MV, Veluthambi K (2010) Selectable marker elimination in the T0 generation by Agrobacterium-mediated co-transformation involving Mungbean yellow mosaic virus TrAP as a non-conditional negative selectable marker and bar for transient positive selection. Plant Cell Rep 29:473–483

    CAS  Google Scholar 

  • Rao K, Chodisetti B, Mangamoori LN, Giri A (2012) Agrobacterium-mediated transformation in Alpinia galanga Linn Willd. for enhanced acetoxychavicol acetate production. Appl Biochem Biotechnol 1682:339–437

    Google Scholar 

  • Rao SK, Rohini VK (1999) Agrobacterium mediated transformation of sunflower (Helianthus annus L.) a simple protocol. Ann Bot 83:347–354

    CAS  Google Scholar 

  • Rasco-Gaunt S, Riley A, Barcelo P, Lazzeri PA (1999) Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Rep 19(118–127):106

    Google Scholar 

  • Rashid H, Yokoi S, Toriyama K, Hinata K (1996) Transgenic plant production mediated by Agrobacterium in Indica rice. Plant Cell Rep 15:727–730

    CAS  Google Scholar 

  • Reichel C, Mathur J, Eckes P, Langenhemper K, Koncz C, Schell J, Reiss B, Maas C (1996) Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent protein mutant in mono and dicotyledonous plant cells. Proc Natl Acad Sci USA 93: 5888–5893

    CAS  PubMed  Google Scholar 

  • Reiser V, Raitt D, Saito H (2003) Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. Yeast 20:S169

    Google Scholar 

  • Reiss B, Sprengel R, Will H (1984) A new sensitive method for quantitative and qualitative assay of neomycin phosphotransferase in crude cell extracts. Gene 30:211

    CAS  PubMed  Google Scholar 

  • Ritala A, Aspegren K, Kurtén U, Salmenkallio-Marttila M, Mannonen L, Hannus R, Kauppinen V, Teeri TH, Enari TM (1994) Fertile transgenic barley by particle bombardment of immature embryos. Plant Mol Biol 24:317–325

    CAS  PubMed  Google Scholar 

  • Rohini VK, Rao SK (2000a) Embryo transformation—a practical approach for realizing transgenic plants of safflower (Carthamus tinctorius L.). Ann Bot 86:1043–1049

    CAS  Google Scholar 

  • Rohini VK, Rao SK (2000b) Transformation of peanut (Arachis hypogaea L.) a non-tissue culture based approach for generating transgenic plants. Plant Sci 150:41–49

    CAS  Google Scholar 

  • Russel JA, Roy MK, Sanford JC (1992) Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation. Plant Physiol 98:1050–1056

    Google Scholar 

  • Saelim L, Phansiri S, Suksangpanomrung M, Netrphan S, Narangajavana J (2009) Evaluation of a morphological marker selection and excision system to generate marker-free transgenic cassava plants. Plant Cell Rep 28:445–455

    CAS  PubMed  Google Scholar 

  • Sakamoto A, Valverde R, Alia, Chen TH, Murata N. (2000) Tranformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants. Plant J 22:449–453

    Google Scholar 

  • Salas MC, Park SH, Srivatanakul M, Smith RH (2001) Temperature influence on stable T-DNA integration in plant cells. Plant Cell Rep 20:701–705

    CAS  Google Scholar 

  • Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. Particul Sci Technol 5:27–37

    CAS  Google Scholar 

  • Schlaman HRM, Hooykaas PJJ (1997) Effectiveness of the bacterial gene codA encoding cytosine deaminase as a negative selectable marker in Agrobacterium-mediated plant transformation. Plant J 11:1377–1385

    CAS  Google Scholar 

  • Schwind N, Zwiebel M, Itaya A, Ding B, Wang MB, Krczal G, Wassenegger M (2009) RNAi-mediated resistance to Potato spindle tuber viroid in transgenic tomato expressing a viroid hairpin RNA construct. Mol Plant Pathol 10:459–469

    CAS  PubMed  Google Scholar 

  • Shan XY, Shan BL, Zhang JR (2006) Production of marker-free transgenic tobacco plants by Flp/frt recombination system. Chinese J Biotechnol 22:744–749

    CAS  Google Scholar 

  • Sharma KK, Anjaiah V (2000) An efficient method for the production transgenic plants for peanut Arachis hypogea L. through Agrobacterium tumefaciens mediated genetic transformation. Plant Sci 1:597–19

    Google Scholar 

  • Sharma KK, Bhatnagar-Mathur P, Thorpe TA (2005a) Genetic transformation technology: status and problems. In Vitro Cell Dev Biol Plant 41:102–112

    CAS  Google Scholar 

  • Sharma KK, Bhatnagar-Mathur P, Thorpe TA (2005b) Genetic transformation technology: status and problems. In Vitro Cell Dev Biol 41:102–112

    CAS  Google Scholar 

  • Sharma KK, Bhojwani SS, Thorpe TA (1990) High frequency regeneration of shoots and roots from cotyledon explants of Brassica juncea L. Czern Plant Sci 66:247–253

    CAS  Google Scholar 

  • Sheen J, Hwang S, Niwa Y, Kobayashi H, Galbraith DW (1995) Green-fluorescent protein as a new vital marker in plant cells. Plant J 8:777–784

    CAS  PubMed  Google Scholar 

  • Shiva Prakash N, Bhojaraja R, Shivbachan SK, Hari Priya GG, Nagraj TK, Prasad V, Srikanth Babu V, Jayaprakash TL, Dasgupta S, Spencer TM, Boddupalli R (2009) Marker-free transgenic corn plant production through cobombardment. Plant Cell Rep 28:1655–1668

    CAS  PubMed  Google Scholar 

  • Simon-Mateo C, Antonio Garcıa J (2006) MicroRNA-guided processing impairs plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. J Virol 80: 2429–2436

    CAS  PubMed  Google Scholar 

  • Simpson GC, Filipowcz W (1996) Splicing of pre-cursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organization of the spliceosomal machinery. Plant Mol Biol 32:1–41

    CAS  PubMed  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–131

    CAS  PubMed  Google Scholar 

  • Smith RH, Hood EE (1995) Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci 35:301–309

    Google Scholar 

  • Somers DA, Rines HW, Gu W, Kaeppler HF, Bushnell WR (1992) Fertile, transgenic oat plants. Bio/Technol 10:1589–1594

    CAS  Google Scholar 

  • Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899

    CAS  PubMed  Google Scholar 

  • Soyfer VN (1980) Hereditary variability of plants under the action of exogenous DNA. Theor Appl Genet 58:225–235

    Google Scholar 

  • Sreekala C, Wu L, Gu K, Wang D, Tian D, Yin Z (2005) Excision of a selectable marker in transgenic rice Oryza sativa L using a chemically regulated Cre/loxP system. Plant Cell Rep 24:86–94

    CAS  PubMed  Google Scholar 

  • Sripriya R, Raghupathy V, Veluthambi K (2008) Generation of selectable marker-free sheath blight resistant transgenic rice plants by efficient co-transformation of a cointegrate vector T-DNA and a binary vector T-DNA in one Agrobacterium tumefaciens strain. Plant Cell Rep 27: 1635–1644

    CAS  PubMed  Google Scholar 

  • Sripriya R, Sangeetha M, Parameswari C, Veluthambi B, Veluthambi K (2011) Improved Agrobacterium-mediated cotransformation and selectable marker elimination in transgenic rice by using a high copy number pBin19-derived binary vector. Plant Sci 180:766–774

    CAS  PubMed  Google Scholar 

  • Stachel SE, Zambryski PC (1989) Generic trans-kingdom sex? Nature 340:190–191

    CAS  PubMed  Google Scholar 

  • Sunikumar G, Rathore KS (2001) Transgenic cotton factors influencing Agrobacterium-mediated transformation and regeneration. Mol Breed 8:37–52

    Google Scholar 

  • Tabashnik BE, van Rensburg JB, Carriere Y (2009) Field-evolved insect resistance to Bt crops: definition, theory and data. J Econ Entomol 102:2011–2025

    CAS  PubMed  Google Scholar 

  • Tabashnik BE, Gassmann AJ, Crowder DW, Carriere Y (2008) Field-evolved resistance to Bt toxins Nat. Biotechnol 26:1074–1076

    CAS  Google Scholar 

  • Tamura T, Hara K, Yamaguchi Y, Koizumi N, Sano H (2003) Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiol 131:454–462

    CAS  PubMed  Google Scholar 

  • Tenllado F, Llave C, Dıaz-Ruız JR (2004) RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res 102:85–96

    CAS  PubMed  Google Scholar 

  • Thirukkumarana G, Ntui VO, Khan RS, Nakamura I, Mii M (2010) Generation of phenotypically normal marker-free transgenic plants of Kalanchoe blossfeldiana through hairy root induction. Plant Biotechnol J 27:147–153

    CAS  Google Scholar 

  • Thomashow MF, Nutter R, Montoya AL, Gordon MP, Nester EW (1980) Integration and organization of Ti plasmid sequences in crown gall tumors. Cell 19:729–739

    CAS  PubMed  Google Scholar 

  • Thu TT, Mai TTX, Deade E, Farsi S, Tadesse Y, Angenum G, Jacobs M (2003) In vitro regeneration and transformation of pigeonpea Cajanus cajan L Mills P. Mol Breed 11:159–168

    CAS  Google Scholar 

  • Tissier AF, Marillonnet S, Klimyuk V, Patel K, Torres MA, Murphy G, Jones JDG (1999) Multiple independent defective Suppressor-mutator transposon insertions in Arabidopsis: A tool for functional genomics. Plant Cell 11:1841–1852

    CAS  PubMed  Google Scholar 

  • Tomes DT, Weissinger AK, Ross M, Higgins R, Drummond BJ, Schaff S, Malone-Schoneberg J, Staebell M, Flynn P, Anderson J, Howard J (1990) Transgenic tobacco plants and their progeny derived by microprojectile bombardment of tobacco leaves. Plant Mol Biol 14:261–268

    CAS  PubMed  Google Scholar 

  • Trick HN, Finer JJ (1997) SAAT sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–337

    CAS  Google Scholar 

  • Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou T-J, Katagi H, Dewbre GR, Weigel D, Harrison MJ (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531–541

    CAS  PubMed  Google Scholar 

  • Tuteja N, Verma S, Sahoo RK, Raveendar S (2012) Recent advances in development of marker-free transgenic plants: Regulation and biosafety concern. J Biosci 371:167–197

    Google Scholar 

  • Untergasser A, Bijl GJM, Liu W, Bisseling T, Schaart JG, Geurts R (2012) One-Step Agrobacterium mediated transformation of eight genes essential for Rhizobium symbiotic signalling using the novel binary vector system pHUGE. PLoS ONE 710:e47885. doi:10.1371/journal.pone.0047885

    Google Scholar 

  • Urushibara S, Tozawa Y, Kawagishi-Kobayashi M, Wakasa K (2001) Efficient transformation of suspension-cultured rice cells mediated by Agrobacterium tumefaciens. Breed Sci 5:33–38

    Google Scholar 

  • Usami S, Okamoto S, Takebe I, Machida Y (1988) Factor inducing Agrobacterium tumefaciens vir gene expression is present in monocotyledonous plants. Proc Natl Acad Sci USA 853:748–752

    Google Scholar 

  • Uzé M, Wünn J, Puonto-Kaerlas J, Potrykus I, Sautter C (1997) Plasmolysis of precultured immature embryos improves Agrobacterium mediated gene transfer to rice (Oryza sativa L.). Plant Sci 1:3087–3095

    Google Scholar 

  • Vain P, McMullen MD, Finer JJ (1993) Osmotic treatment enhances particle bombardment mediated transient and stable transformation of maize. Plant Cell Rep 12:84–88

    Google Scholar 

  • van der Krol AR, Mur LA, Beld M, Mol JNM, Stuitje A (1990) Flavonoid genes in petunia addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299

    PubMed  Google Scholar 

  • van der Vossen EAG, Gros J, Sikkema A, Muskens M, Wouters D, Wolters P, Pereira A, Allefs S (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. Plant J 44:208–222

    PubMed  Google Scholar 

  • Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10:667–674

    CAS  Google Scholar 

  • Vassilakos N (2012) Stability of Transgenic Resistance Against Plant Viruses, Transgenic Plants- Advances and Limitations, PhD. Yelda Ozden Çiftçi (Ed.), ISBN: 978-953-51-0181-9, InTech, DOI: 10.5772/33133. Available from: http://www.intechopen.com/books/transgenic-plants-advances-and-limitations/stability-of-transgenic-resistance-against-plant-viruses

  • Vaucheret H, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Mourrain P, Palauqui JC, Vernhettes S (1998) Transgene-induced gene silencing in plants. Plant J 16:651–659

    CAS  PubMed  Google Scholar 

  • Verweire D, Verleyen K, De Buck S, Claeys M, Angenon G (2007) Marker-free transgenic plants through genetically programmed auto-excision. Plant Physiol 145:1220–1231

    CAS  PubMed  Google Scholar 

  • Vijayachandra K, Palanichelvam K, Veluthambi K (1995) Rice scutellum induces Agrobacterium tumefaciens vir genes and T-strand generation. Plant Mol Biol 29:125–133

    CAS  PubMed  Google Scholar 

  • Waie B, Rajam MV (2003) Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci 164: 727–734

    CAS  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Wally O, Punja ZK (2010) Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. GM Crops 14:199–206

    Google Scholar 

  • Walz A, Zingen-Sell I, Loeffler M, Sauer M (2008) Expression of an oxalate oxidase gene in tomato and severity of disease caused by Botrytis cinerea and Sclerotinia sclerotiorum. Plant Pathol 57:453–458

    CAS  Google Scholar 

  • Wan Y, Lemaux PG (1994) Generation of large number of independently transformed fertile barley plants. Plant Physiol 104:37–48

    CAS  PubMed  Google Scholar 

  • Wang AS, Evans RA, Altendorf PR, Hanten JA, Doyle MC, Rosichan JL (2000) A mannose selection system for production of fertile transgenic maize. Plant Cell Rep 19:654–660

    CAS  Google Scholar 

  • Wang K, Drayton P, Frame B, Dunwell J, Thompson J (1995) Whisker-mediated plant transformation an alternative technology. In Vitro Cell Dev Biol-Plant 31:101–104

    CAS  Google Scholar 

  • Wang MB, Abbott DC, Upadhyaya NM, Jacobsen JV, Waterhouse PM (2001) Agrobacterium tumefaciens- mediated transformation of an elite Australian barley cultivar with virus resistance and reporter genes. Aust J Plant Physiol 28:149–156

    Google Scholar 

  • Wang MB, Upadhyaya NM, Brettell RIS, Waterhouse PM (1997) Intron mediated improvement of a selectable marker gene for plant transformation using Agrobacterium tumefaciens. J Genet Breed 51:25–334

    Google Scholar 

  • Wang Y, Chen B, Hu Y, Li J, Lin Z (2005) Inducible excision of selectable marker gene from transgenic plants by the Cre/lox site-specific recombination system. Transgenic Res 14: 605–614

    CAS  PubMed  Google Scholar 

  • Weber G, Monajembashi S, Greulich KO, Wolfrum J (1988) Genetic manipulation of plant cells and organelles with a laser microbeam. Plant Cell Tissue Organ Cult 12:219–222

    Google Scholar 

  • Wilmink A, Dons JJM (1993) Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol Biol Rep 11:165–185

    CAS  Google Scholar 

  • Woo HJ, Cho HS, Lim SH, Shin KS, Lee SM, Lee KJ, Kim DH, Cho YG (2009) Auto-excision of selectable marker genes from transgenic tobacco via a stress inducible FLP/FRT sitespecific recombination system. Transgenic Res 18:455–465

    CAS  PubMed  Google Scholar 

  • Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize Zea mays L and wheat Triticum aestivum L using the phospho-mannose isomerise gene pmi as the selectable marker. Plant Cell Rep 20:429–436

    CAS  Google Scholar 

  • Wu KM (2007) Monitoring and management strategy for Helicoverpa armigera resistance to Bt cotton in China. J Invertebr Pathol 95:220–223

    PubMed  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2008) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    PubMed  Google Scholar 

  • Xiong L, Ishitani M (2006) Stress signal transduction components, pathways, and network integration. In: Rai AK, Takabe T (eds) Abiotic Stress Tolerance in Plants Toward the Improvement of Global Environment and Food. Springer, Dordercht, The Netherlands, pp 3–29

    Google Scholar 

  • Xu DQ, Huang J, Guo SQ, Yang X, Bao YM, Tang HJ, Zhang HS (2008) Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett 582:1037–1043

    CAS  PubMed  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R (2006) Sub1A is an ethylene-response-factor–like gene that confers submergence tolerance to rice. Nature 442:705–708

    CAS  PubMed  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56: 1975–1981

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Kiyosue T, Shinozaki K (1994) Function and regulation of genes that are induced by dehydration stress in Arabidopsis thaliana. JIRCAS J 1:69–79

    Google Scholar 

  • Yang G, Rhodes D, Joly RJ (1996) Effects of high temperature on membrane stability and chlorophyll fluorescence in glycine betaine-deficient and glycine betaine containing maize lines. Aust J Plant Physiol 23:437–443

    CAS  Google Scholar 

  • Ye GN, Stone D, Pang SZ, Creely W, Gonzalez K, Hinchee M (1999) Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J 19:249–257

    PubMed  Google Scholar 

  • Yoder JI, Goldsbrough AP (1994) Transformation systems for generating marker-free transgenic plants. Biotechnology 12:263–267

    CAS  Google Scholar 

  • Zambryski PC (1992) Chronicles from the Agrobacterium-plant cell DNA transfer story. Annu Rev Plant Physiol Plant Mol Biol 43:465–490

    CAS  Google Scholar 

  • Zelasco S, Ressegotti V, Confalonieri M, Carbonera D, Calligari P, Bonadei M, Bisoffi S, Yamada K, Balestrazzi A (2007) Evaluation of MAT-vector system in white poplar Populus alba L and production of ipt marker-free transgenic plants by ‘singlestep transformation’. Plant Cell Tissue Organ Cult 91:61–72

    CAS  Google Scholar 

  • Zhang FL, Takahata Y, Watanabe M, Xu JB (2000) Agrobacterium mediated transformation of cotyledonary explants of chined cabbage Brassica campestris L. ssp. pekinensis. Plant Cell Rep 19:569–575

    Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    CAS  PubMed  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    CAS  PubMed  Google Scholar 

  • Zhang J, Tan W, Yang XH, Zhang HX (2008) Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco. Plant Cell Rep 27:1113–1124

    CAS  PubMed  Google Scholar 

  • Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L (2003) Cre/lox-mediated marker excision in transgenic maize Zea mays L plants. Theor Appl Genet 107: 1157–1168

    CAS  PubMed  Google Scholar 

  • Zhang X, Li H, Zhang J, Zhang C, Gong P, Ziaf K, Xiao F, Ye Z (2011) Expression of artificial microRNAs in tomato confers efficient and stable virus resistance in a cell-autonomous manner. Transgenic Res 20:569–581

    CAS  PubMed  Google Scholar 

  • Zhang Y, Li H, Ouyang B, Lu Y, Ye Z (2006) Chemical-induced autoexcision of selectable markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran insects. Biotechnol Lett 28:1247–1253

    CAS  PubMed  Google Scholar 

  • Zhao BY, Lin XH, Poland J, Trick H, Leach J, Hulbert S (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci USA 1021:5383–5388

    Google Scholar 

  • Zhao ZY, Cai T, Tagliani L, Miller M, Wang NH, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium mediated sorghum transformation. Plant Mol Biol 44: 789–798

    CAS  PubMed  Google Scholar 

  • Zhao ZY, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333

    CAS  Google Scholar 

  • Zheng ZL, Nafisi M, Tam A, Li HM, Crowell DN, Chary SN, Schroeder JI, Shen J, Yang Z (2002) Plasma membrane associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis. Plant Cell 14:2787–2797

    CAS  PubMed  Google Scholar 

  • Zhong H, Sun B, Warkentin D, Zhang S, Wu R, Wu T, Sticklen MB (1996) The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes. Plant Physiol 110:1097–1107

    CAS  PubMed  Google Scholar 

  • Zhou GY, Weng J, Haung J, Qian S, Liu Q (1983) Introduction of exogenous DNA into cotton embryos. Methods Enzymol 101:433–481

    CAS  PubMed  Google Scholar 

  • Zuo J, Niu QW, Moller SG, Chua NH (2001) Chemical regulated site-specific DNA excision in transgenic plants. Nat Biotechnol 19:157–161

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Bhatnagar-Mathur Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bhatnagar-Mathur, P., Palit, P., Sharma, K.K. (2014). Horizontal Gene Transfer Through Genetic Transformation. In: Pratap, A., Kumar, J. (eds) Alien Gene Transfer in Crop Plants, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8585-8_5

Download citation

Publish with us

Policies and ethics