Skip to main content

Monitoring the EEG for Assessing Depth of Anesthesia

  • Chapter
  • First Online:
Monitoring Technologies in Acute Care Environments

Abstract

The action of anesthetic drugs on the brain is reflected by changes in the electrical activity of the brain, as measured by scalp electroencephalography (EEG). Typically, anesthetics lead to a larger and slower EEG activity. Although this has been known for many decades, it is only in the last 15 years or so that monitors for intraoperative brain monitoring have become commercially available. This chapter presents the basic principles behind five of those monitors, discussing their use and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collura TF. History and evolution of electroencephalographic instruments and techniques. J Clin Neurophysiol. 1993;10(4):476–504.

    Article  PubMed  CAS  Google Scholar 

  2. Caton R. The electric currents of the brain. Br Med J. 1875;2:278.

    Google Scholar 

  3. Berger H. Über das Elektrenkephalogramm des Menschen. Arch Psychiatr Nervenkr. 1929;87:527–70.

    Article  Google Scholar 

  4. Gibbs FA, Gibbs EL, Lenox WG. Effect on electroencephalogram of certain drugs which influence nervous activity. Arch Intern Med. 1937;60:154–66.

    Article  Google Scholar 

  5. Kiersey DK, Bickford RG, Faulconer Jr A. Electro-encephalographic patterns produced by thiopental sodium during surgical operations; description and classification. Br J Anaesth. 1951;23:141–52.

    Article  PubMed  CAS  Google Scholar 

  6. Vanderwolf CH. Are neocortical gamma waves related to consciousness? Brain Res. 2000;855(2):217–24.

    Article  PubMed  CAS  Google Scholar 

  7. Brown EN, Lydic R, Schiff ND. General anesthesia, sleep and coma. N Engl J Med. 2010;363:2638–50.

    Article  PubMed  CAS  Google Scholar 

  8. Hudetz A. Cortical disintegration mechanism of anesthetic-induced unconsciousness. In: Hudetz A, Pearce R, editors. Suppressing the mind. New York: Humana Press; 2010.

    Chapter  Google Scholar 

  9. Rampil H, Lockhart SH, Eger 2nd EI, Yasuda N, Weiskopf RB, Cahalan MK. The electroencephalographic effects of desflurane in humans. Anesthesiology. 1991;74:434–9.

    Article  PubMed  CAS  Google Scholar 

  10. Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology. 1998;89:980–1002.

    Article  PubMed  CAS  Google Scholar 

  11. Viertö-Oja H, Maja V, Särkelä M, Talja P, Tenkanen N, Tolvanen-Laakso H, et al. Description of the entropy algorithm as applied in the Datex-Ohmeda S/5 entropy module. Acta Anaesthesiol Scand. 2004;48:154–61.

    Article  Google Scholar 

  12. Kreuer S, Wilhelm W. The Narcotrend monitor. Best Pract Res Clin Anaesthesiol. 2006;20(1):111–9.

    Article  PubMed  CAS  Google Scholar 

  13. Zikov T, Bibian S, Dumont GA, Huzmezan M, Ries CR. Quantifying cortical activity during general anesthesia using wavelet analysis. IEEE Trans Biomed Eng. 2006;53(4):617–32.

    Article  PubMed  Google Scholar 

  14. Prichep LS, Gugino LD, John ER, Chabot RJ, Howard B, Merkin H, et al. The patient state index as an indicator of the level of hypnosis under general anesthesia. Br J Anaesth. 2004;92(3):393–9.

    Article  PubMed  CAS  Google Scholar 

  15. Bibian S, Dumont GA, Zikov T. Dynamic behavior of BIS, M-entropy and NeuroSENSE brain function monitors. J Clin Monit Comput. 2011;25(1):81–7.

    Article  PubMed  Google Scholar 

  16. Otto KA. EEG power spectrum analysis for monitoring depth of anaesthesia during experimental surgery. Lab Anim. 2008;42:45–61.

    Article  PubMed  CAS  Google Scholar 

  17. Ellerkman RK, Grass A, Hoeft A, Soehle M. The response of the composite variability index to a standardized noxious stimulus during propofol-remifentanil anesthesia. Anesth Analg. 2013;116(3):580–8.

    Article  Google Scholar 

  18. Schell R, Cole D, Lichtor JL, Miller R. Neurophysiologic monitors. In: Atlas of anesthesia, vol. 3. New York: Current Medicine; 2002.

    Google Scholar 

  19. Patel S, White D, Collop N, Crapo J. Bone’s atlas of pulmonary and critical care medicine. New York: Current Medicine; 2002.

    Google Scholar 

Download references

Conflict of Interest Statement

GA Dumont is coinventor of the NeuroSENSE monitor (NeuroWave Systems Inc., Cleveland, OH). He has consulted for NeuroWave Systems Inc and GE Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy A. Dumont PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dumont, G.A. (2014). Monitoring the EEG for Assessing Depth of Anesthesia. In: Ehrenfeld, J., Cannesson, M. (eds) Monitoring Technologies in Acute Care Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8557-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8557-5_30

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8556-8

  • Online ISBN: 978-1-4614-8557-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics