Skip to main content

Critically Ill Patient on Renal Replacement Therapy: Nutritional Support by Enteral and Parenteral Routes

  • Living reference work entry
  • First Online:
Diet and Nutrition in Critical Care

Abstract

Acute kidney injury (AKI) in critically ill patients often occurs as a component of the multiple organ failure syndrome, in the course of the severe and prolonged catabolic phases of critical illness, and is intensified by the specific metabolic derangements associated with the acute loss of kidney function. Patients with AKI often develop protein-energy wasting (PEW), which by itself represents a major negative prognostic factor. Nutritional support is frequently required in this clinical setting, in the form of parenteral and/or enteral nutrition, even though there is no evidence from randomized controlled studies concerning its favorable effect on major outcomes.

Patients with AKI on renal replacement therapy (RRT) should receive at least 1.5 g/kg/day of proteins and no more than 25 nonprotein calories or 1.3 × BEE (basal energy expenditure) calculated by the Harris–Benedict equation, with lipid supply representing about 30–35 % of energy intake. To compensate for protein and amino acid losses during renal replacement therapy, protein supply should be increased by 0.2 g/kg/day. Even in patients with AKI, the enteral route represents the preferred method of nutrient delivery; however, parenteral nutrition is often required to meet nutritional requirements.

Since AKI comprises a highly heterogeneous group of patients, with nutrient needs which vary widely even during the clinical course in the same patient, nutritional requirements should be frequently reassessed, individualized, and carefully integrated with renal replacement therapy. Nutrient needs in patients with AKI can be difficult to estimate and should be directly measured, especially in the intensive care unit setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AKI:

Acute kidney injury

BEE:

Basal energy expenditure

BUN:

Blood urea nitrogen

BW:

Body weight

CKD:

Chronic kidney disease

CRRT:

Continuous renal replacement therapy

CVVH:

Continuous venovenous hemofiltration

CVVHDF:

Continuous venovenous hemodiafiltration

EAA:

Essential amino acids

EN:

Enteral nutrition

ESPEN:

European Society for Parenteral and Enteral Nutrition

ESRD:

End-stage renal disease

GI:

Gastrointestinal

HDL:

High-density lipoprotein

ICU:

Intensive care unit

ISRNM:

International Society of Renal Nutrition and Metabolism

LCT:

Long-chain triglycerides

LDL:

Low-density lipoprotein

MCT:

Medium-chain triglycerides

NEAA:

Nonessential amino acids

PCR:

Protein catabolic rate

PEW:

Protein-energy wasting

PICU:

Pediatric intensive care unit

PN:

Parenteral nutrition

RCT:

Randomized controlled trial

RRT:

Renal replacement therapy

SGA:

Subjective global assessment

SLED:

Sustained low-efficiency dialysis

VLDL:

Very low-density lipoprotein

References

  • Ali T, Khan I, Simpson W, et al. Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J Am Soc Nephrol. 2007;18:1292–8.

    Article  PubMed  CAS  Google Scholar 

  • Alkandari O, Eddington KA, Hyder A, et al. Acute kidney injury is an independent risk factor for pediatric intensive care unit mortality, longer length of stay and prolonged mechanical ventilation in critically ill children: a two-center retrospective cohort study. Crit Care. 2011;15(3):R146.

    Article  PubMed  PubMed Central  Google Scholar 

  • Basi S, Pupim LB, Simmons EM, et al. Insulin resistance in critically ill patients with acute renal failure. Am J Physiol Renal Physiol. 2005;289:F259–64.

    Article  PubMed  CAS  Google Scholar 

  • Bellomo R, Tan HK, Bhonagiri S, et al. High protein intake during continuous hemodiafiltration: impact on amino acids and nitrogen balance. Int J Artif Organs. 2002;25:261–8.

    PubMed  CAS  Google Scholar 

  • Berger MM, Pichard C. Best timing for energy provision during critical illness. Crit Care. 2012;16:215.

    PubMed  PubMed Central  Google Scholar 

  • Berger MM, Shenkin A, Revelly JP, et al. Copper, selenium, zinc, and thiamine balances during continuous venovenous hemodiafiltration in critically ill patients. Am J Clin Nutr. 2004;80:410–6.

    PubMed  CAS  Google Scholar 

  • Cano N, Fiaccadori E, Tesinski P, et al. ESPEN guidelines on enteral nutrition: adult renal failure. Clin Nutr. 2006;25:295–310.

    Article  PubMed  CAS  Google Scholar 

  • Cano N, Aparicio M, Brunori G, et al. Parenteral nutrition in adult renal failure. Clin Nutr. 2009;28:401–14.

    Article  PubMed  CAS  Google Scholar 

  • Chima CS, Meyer L, Hummell AC, et al. Protein catabolic rate in patients with acute renal failure on continuous arteriovenous hemofiltration and total parenteral nutrition. J Am Soc Nephrol. 1993;3:1516–21.

    PubMed  CAS  Google Scholar 

  • Coca SG, Peixoto AJ, Garg AX, et al. The prognostic importance of small acute decrement in kidney function in hospitalized patients: a systematic review and meta-analysis. Am J Kidney Dis. 2007;50:712–20.

    Article  PubMed  CAS  Google Scholar 

  • Druml W, Zechner R, Magomestschnigg D, et al. Post-heparin lypolytic activity in acute renal failure. Clin Nephrol 1985;23:289–293.

    Google Scholar 

  • Druml W, Fischer M, Sertl S, Schneeweiss B, Lenz K, Widhalm K. Fat elimination in acute renal failure: long chain versus medium-chain triglyceride. Am J Clin Nutr. 1992;5:468–72.

    Google Scholar 

  • Faisy C, Guerot E, Diehl JL, Labrousse J, Fagon JY. Assessment of resting energy expenditure in mechanically ventilated patients. Am J Clin Nutr. 2003;78:241–9.

    PubMed  CAS  Google Scholar 

  • Feinstein EI, Blumenkrantz M, Healy M, et al. Clinical and metabolic responses to parenteral nutrition in acute renal failure. Medicine. 1981;60:124–37.

    Article  PubMed  CAS  Google Scholar 

  • Feinstein EI, Kopple JD, Silberman H, Massry SG. Total parenteral nutrition with high or low nitrogen intakes in patients with acute renal failure. Kidney Int Suppl. 1983;16:S319–23.

    PubMed  CAS  Google Scholar 

  • Fiaccadori E, Lombardi M, Leonardi S, Rotelli CF, Tortorella G, Borghetti A. Prevalence and clinical outcome associated with preexisting malnutrition in acute renal failure: a prospective cohort study. J Am Soc Nephrol. 1999;10:581–93.

    PubMed  CAS  Google Scholar 

  • Fiaccadori E, Maggiore U, Clima B, Melfa L, Rotelli C, Borghetti A. Incidence, risk factors, and prognosis of gastrointestinal hemorrhage complicating acute renal failure. Kidney Int. 2001;59:1510–9.

    Article  PubMed  CAS  Google Scholar 

  • Fiaccadori E, Maggiore U, Giacosa R, et al. Enteral nutrition in patients with acute renal failure. Kidney Int. 2004;65:999–1008.

    Article  PubMed  Google Scholar 

  • Fiaccadori E, Maggiore U, Rotelli C, et al. Effects of different energy intakes on nitrogen balance in patients with acute renal failure: a pilot study. Nephrol Dial Transplant. 2005;20:1976–80.

    Article  PubMed  Google Scholar 

  • Fiaccadori E, Maggiore U, Parenti E, et al. Sustained low-efficiency dialysis (SLED) with prostacyclin in critically ill patients with acute renal failure. Nephrol Dial Transplant. 2007;22:529–37.

    Article  PubMed  CAS  Google Scholar 

  • Fiaccadori E, Regolisti G, Maggiore U. Specialized nutritional support interventions in critically ill patients on renal replacement therapy. Curr Opin Clin Nutr Metab Care. 2013;16:217–24.

    Article  PubMed  CAS  Google Scholar 

  • Flugel-Link RM, Saluski IB, Jones MR, Kopple JD. Protein and amino acid metabolism in posterior hemicorpus of acutely uremic rats. Am J Physiol. 1983;244:E615–23.

    PubMed  CAS  Google Scholar 

  • Fortin MC, Amyot SL, Geadah D, Leblanc M. Serum concentrations and clearances of folic acid and pyridoxal-5-phosphate during venovenous continuous renal replacement therapy. Int Care Med. 1999;25:594–8.

    Article  CAS  Google Scholar 

  • Fouque D, Kalantar-Zadeh K, Kopple J, et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008;73:391–8.

    Article  PubMed  CAS  Google Scholar 

  • Franz M, Horl WH. Protein catabolism in acute renal failure. Miner Electrol Metab. 1997;23:189–93.

    CAS  Google Scholar 

  • Freund H, Atamian S, Fischer JE. Comparative study of parenteral nutrition in renal failure using essential and nonessential amino acid containing solutions. Surg Gynecol Obstet. 1980;151:652–6.

    PubMed  CAS  Google Scholar 

  • Gunst J, Vanhorebeek I, Casaer MP, et al. Impact of early parenteral nutrition on metabolism and kidney injury. J Am Soc Nephrol. 2013;24:995–1005.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hsu CY, McCulloch CE, Fan D, et al. Community-based incidence of acute renal failure. Kidney Int. 2007;72:208–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hui-Stickle S, Brewer ED, Goldstein SL. Pediatric ARF epidemiology at a tertiary care center from 1999 to 2001. Am J Kidney Dis. 2005;45(1):96–101.

    Article  PubMed  Google Scholar 

  • Ikizler TA, Sezer MT, Flakoll PJ, et al. Urea space and total body water measurements by stable isotopes in patients with acute renal failure. Kidney Int. 2004;65:725–32.

    Article  PubMed  Google Scholar 

  • KDIGO. Clinical practice guidelines for acute kidney injury. Kidney Int. 2012;2012 Suppl 2:1–138.

    Google Scholar 

  • Kreymann KG, Berger MM, Deutz NE, et al. ESPEN guidelines on enteral nutrition: intensive care. Clin Nutr. 2006;25:210–2.

    Article  PubMed  CAS  Google Scholar 

  • Kyle UG, Jaimon N, Coss-Bu JA. Nutrition support in critically ill children: underdelivery of energy and protein compared with current recommendations. J Acad Nutr Diet. 2012;112:1987–92.

    Article  PubMed  Google Scholar 

  • Lafrance JP, Miller DR. Acute kidney injury associates with increased long-term mortality. J Am Soc Nephrol. 2010;21:345–52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lameire N, Van Biesen W, Vanholder R. Acute renal failure. Lancet. 2005;365:417–30.

    Article  PubMed  CAS  Google Scholar 

  • Leblanc M, Garred LJ, Cardinal J, et al. Catabolism in critical illness: estimation from urea nitrogen appearance and creatinine production during continuous renal replacement therapy. Am J Kidney Dis. 1998;32:444–53.

    Article  PubMed  CAS  Google Scholar 

  • Li PKT, Burdmann EA, Mehta RL. Acute kidney injury: global health alert. Kidney Int. 2013;83:372–6.

    Article  PubMed  Google Scholar 

  • Macias WL, Alaka KJ, Murphy MH, Miller ME, Clark WR, Mueller BA. Impact of the nutritional regimen on protein catabolism and nitrogen balance in patients with acute renal failure. J Parenter Enteral Nutr. 1996;20:56–62.

    Article  CAS  Google Scholar 

  • Mammen C, Al Abbas A, Skippen P, et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis. 2012;59(4):523–30.

    Article  PubMed  Google Scholar 

  • Marik PE, Preiser JC. Toward understanding tight glycemic control in the ICU. A systematic review and metaanalysis. Chest. 2010;137:544–51.

    Article  PubMed  CAS  Google Scholar 

  • Marin A, Hardy G. Practical implications of nutritional support during continuous renal replacement therapy. Curr Opin Clin Nutr Metab. 2001;4:219–35.

    Article  CAS  Google Scholar 

  • Marshall MR, Golper TA, Shaver MJ, Alam MG, Chatoth DK. Urea kinetics during sustained low-efficiency dialysis in critically ill patients requiring renal replacement therapy. Am J Kidney Dis. 2002;39:556–70.

    Article  PubMed  CAS  Google Scholar 

  • Marshall MR, Creamer JM, Foster M, et al. Mortality rate comparison after switching from continuous to prolonged intermittent renal replacement for acute kidney injury in three intensive care units from different countries. Nephrol Dial Transpl. 2011;26:2169–75.

    Article  Google Scholar 

  • Mehta NM, Bechard L, Leavitt K, Duggan C. Cumulative energy imbalance in the pediatric intensive care unit: role of targeted indirect calorimetry. J Parenter Enteral Nutr. 2009a;33:336–44.

    Article  Google Scholar 

  • Mehta NM, Compher C, A.S.P.E.N Board of Directors. A.S.P.E.N. Clinical guidelines: nutrition support of the critically ill child. J Parenter Enteral Nutr. 2009b;33(3):260–76.

    Article  Google Scholar 

  • Mehta NM, Bechard LJ, Cahill N, et al. Nutritional practices and their relationship to clinical outcomes in critically ill children – an international multicenter cohort study. Crit Care Med. 2012;40:2204–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Metnitz GH, Fischer M, Bartens C, Steltzer H, Lang T, Druml W. Impact of acute renal failure on antioxidant status in multiple organ failure. Acta Anaesthesiol Scand. 2000;44:236–40.

    Article  PubMed  CAS  Google Scholar 

  • Mirtallo JM, Schneider PJ, Mavko K, Ruberg RL, Fabri PJ. A comparison of essential and general amino acid infusions in the nutritional support of patients with compromised renal function. J Parenter Enteral Nutr. 1982;6:109–13.

    Article  CAS  Google Scholar 

  • Nakamura AT, Btaiche IF, Pasko DA, Jain JC, Mueller BA. In vitro clearance of trace elements via continuous venovenous hemofiltration. J Ren Nutr. 2004;14:214–9.

    Article  PubMed  Google Scholar 

  • Premji SS, Fenton TR, Sauve RS. Higher versus lower protein intake in formula-fed low birth weight infants. Cochrane Database Syst Rev. 2006;1, CD003959.

    PubMed  Google Scholar 

  • Price SR, Reaich D, Marinovic AC, et al. Mechanisms contributing to muscle-wasting in acute uremia: activation of amino acid catabolism. J Am Soc Nephrol. 1998;9:439–943.

    PubMed  CAS  Google Scholar 

  • Rabbani N, Sebekova K, Sebekova Jr K, Hedland A, Thornalley PJ. Accumulation of free adduct glycation, oxidation, and nitration products follows acute loss of renal function. Kidney Int. 2007;72:1113–21.

    Article  PubMed  CAS  Google Scholar 

  • Salusky IB, Flugel-Link RM, Jones MR, Kopple JD. Effect of acute uremia on protein degradation and amino acid release in the rat hemicorpus. Kidney Int Suppl. 1983;16:S43–7.

    PubMed  CAS  Google Scholar 

  • Scheinkestel CD, Kar L, Marshall K, et al. Prospective randomized trial to assess caloric and protein needs of critically Ill, anuric, ventilated patients requiring continuous renal replacement therapy. Nutrition. 2003;19:909–16.

    Article  PubMed  CAS  Google Scholar 

  • Schetz M, Vanhorebeek I, Wouters PJ, et al. Tight blood glucose control is renoprotective in critically ill patients. J Am Soc Nephrol. 2008;19:571–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schneeweiss B, Graninger W, Stockenhuber F, et al. Energy metabolism in acute and chronic renal failure. Am J Clin Nutr. 1990;52:596–601.

    PubMed  CAS  Google Scholar 

  • Schouw SN, Grofte T, Gronbaek H, Tygstrup N, Vilstrup H. Opposite effects on regulation of urea synthesis by early and late uremia in rats. Clin Nutr. 2007;26:245–51.

    Article  Google Scholar 

  • Simmons EM, Himmelfarb J, Sezer MT, et al. Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int. 2004;65:1357–65.

    Article  PubMed  CAS  Google Scholar 

  • Singer P. High-dose amino acid infusion preserves diuresis and improves nitrogen balance in non-oliguric acute renal failure. Wien Klin Wochenschr. 2007;119:218–22.

    Article  PubMed  CAS  Google Scholar 

  • Singer P, Ronit A, Cohen J, et al. The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med. 2011;37:601–9.

    Article  PubMed  Google Scholar 

  • Story DA, Ronco C, Bellomo R. Trace element and vitamin concentration and losses in critically ill patients treated with continuous venovenous hemofiltration. Crit Care Med. 1999;27:220–3.

    Article  PubMed  CAS  Google Scholar 

  • Wernerman J. Combined enteral and parenteral nutrition. Curr Opin Clin Nutr Metab Care. 2012;15:161–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Sabatino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Sabatino, A., Fiaccadori, E. (2014). Critically Ill Patient on Renal Replacement Therapy: Nutritional Support by Enteral and Parenteral Routes. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet and Nutrition in Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8503-2_87-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8503-2_87-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8503-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics