Skip to main content

Thiamine (Vitamin B1) Deficiency in Intensive Care: Physiology, Risk Factors, Diagnosis, and Treatment

  • Living reference work entry
  • First Online:
Diet and Nutrition in Critical Care

Abstract

Thiamine plays an essential role in cellular energy metabolism; its deficiency will result in severely compromised energy generation and may culminate in cellular dysfunction and death. Body stores of thiamine are small and deficiency can develop within 2–3 weeks of inadequate intake. Systemic inflammation, increased renal or gastrointestinal losses, increased water turnover, and insufficient supply are the most common risk factors for thiamine deficiency in critically ill patients.

Thiamine deficiency affects the central and peripheral nervous system and cardiovascular system in different combinations. Considering that early diagnosis and treatment are crucial to prevent sequelae and severe deficiency may be potentially fatal, treatment should be initiated at the very earliest suspicion of vitamin depletion – laboratory confirmation is not required to initiate supplementation in high-risk patients. Treatment is cheap, easy, and safe. The dose, route, and extent of treatment will depend on the clinical condition and severity of the deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

α-KGDH:

α-ketoglutarate dehydrogenase

BCKDH:

Branched-chain keto acid dehydrogenase

CRRT:

Continuous renal replacement therapy

ETKA:

Erythrocyte transketolase activity

GABA:

Gamma-aminobutyric acid

HPLC:

High-performance liquid chromatography

PDH:

Pyruvate dehydrogenase

TD:

Thiamine deficiency

TDP:

Thiamine diphosphate

TPP:

Thiamine pyrophosphate

TTPE:

Thiamine pyrophosphate effect

WE:

Wernicke’s encephalopathy

References

  • Aasheim ET. Wernicke encephalopathy after bariatric surgery: a systematic review. Ann Surg. 2008;248:714–20.

    PubMed  Google Scholar 

  • Anderson SH, Charles TJ, Nicol AD. Thiamine deficiency at a district general hospital: report of five cases. Q J Med. 1985;55:15–32.

    CAS  PubMed  Google Scholar 

  • Ariaey-Nejad MR, Balaghi M, Baker EM, Sauberlich HE, et al. Thiamin metabolism in man. Am J Clin Nutr. 1970;23:764–78.

    CAS  PubMed  Google Scholar 

  • Ba A. Metabolic and structural role of thiamine in nervous tissues. Cell Mol Neurobiol. 2008;28:923–31.

    Article  CAS  PubMed  Google Scholar 

  • Berger MM, Shenkin A, Revelly JP, et al. Copper, selenium, zinc, and thiamine balances during continuous venovenous hemodiafiltration in critically ill patients. Am J Clin Nutr. 2004;80:410–6.

    CAS  PubMed  Google Scholar 

  • Brin M. Thiamine deficiency and erythrocyte metabolism. Am J Clin Nutr. 1963;12:107–16.

    CAS  PubMed  Google Scholar 

  • Bukhari FJ, Moradi H, Gollapudi P. Effect of chronic kidney disease on the expression of thiamin and folic acid transporters. Nephrol Dial Transplant. 2011;26:2137–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Butterworth RF. Cerebral thiamine-dependent enzyme changes in experimental Wernicke’s encephalopathy. Metab Brain Dis. 1986;1:165–75.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter KJ. The discovery of thiamin. Ann Nutr Metab. 2012;61:219–23.

    Article  CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (CDC). Lactic acidosis traced to thiamine deficiency related to nationwide shortage of multivitamins for total parenteral nutrition – United States, 1997. MMWR Morb Mortal Wkly Rep. 1997;46:523–8.

    Google Scholar 

  • Coats D, Shelton-Dodge K, Ou K, et al. Thiamine deficiency in Cambodian infants with and without beriberi. J Pediatr. 2012;161:843–7.

    Article  CAS  PubMed  Google Scholar 

  • Corcoran TB, O’Neill MP, Webb SAR, et al. Inflammation, vitamin deficiencies and organ failure in critically ill patients. Anaesth Intensive Care. 2009;37:740–7.

    CAS  PubMed  Google Scholar 

  • Costa NA, Gut AL, de Souza Dorna et al. Serum thiamine concentration and oxidative stress as predictors of mortality in patients with septic shock. J Crit Care 2014;29:249–52.

    Article  CAS  PubMed  Google Scholar 

  • Cruickshank AM, Telfer AB, Shenkin A. Thiamine deficiency in the critically ill. Intensive Care Med. 1988;14:384–7.

    Article  CAS  PubMed  Google Scholar 

  • Day E, Benthan P, Callaghan R, Kuruvilla T, George S, et al. Thiamine for Wernicke-Korsakoff syndrome in people at risk from alcohol abuse. Cochrane Database Syst Rev. 2004;1, CD004003.

    Google Scholar 

  • Depeint F, Bruce WR, Shangari N, et al. Mitochondrial function and toxicity: role of the B vitamin. Chem Biol Interact. 2006;163:94–112.

    Article  CAS  PubMed  Google Scholar 

  • Desjardins P, Butterworth RF. Role of mitochondrial dysfunction and oxidative stress in the pathogenesis of selective neuronal loss in Wernicke’s encephalopathy. Mol Neurobiol. 2005;31:17–25.

    Article  CAS  PubMed  Google Scholar 

  • Donnino MW, Vega J, Miller J, Walsh M, et al. Myths and misconceptions of Wernicke’s encephalopathy: what every emergency physician should know. Ann Emerg Med. 2007;50:715–21.

    Article  PubMed  Google Scholar 

  • Donnino MW, Carney E, Cocchi MN. Thiamine deficiency in critically ill patients with sepsis. J Crit Care. 2010a;25:576–81.

    Article  CAS  PubMed  Google Scholar 

  • Donnino MW, Cocchi MN, Smithline H, et al. Coronary artery bypass graft surgery depletes plasma thiamine levels. Nutrition. 2010b;26:133–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dunn SP, Bleske B, Dorsch M, et al. Nutrition and heart failure: impact of drug therapies and management strategies. Nutr Clin Pract. 2009;24:60–75.

    Article  PubMed  Google Scholar 

  • Falder S, Silla R, Phillips M, et al. Thiamine supplementation increases serum thiamine and reduces pyruvate and lactate levels in burn patients. Burns. 2010;36:261–9.

    Article  PubMed  Google Scholar 

  • Fattal-Valevski A, Kesler A, Sela BA, et al. Outbreak of life-threatening thiamine deficiency in infants in Israel caused by a defective soy-based formula. Pediatrics. 2005;115:e233–8.

    Article  PubMed  Google Scholar 

  • Gray A, McMillan D, Wilson C, et al. The relationship between plasma and red cell concentrations of vitamins thiamine diphosphate, flavin adenine dinucleotide and pyridoxal 5-phosphate following elective knee arthroplasty. Clin Nutr. 2004;23:1080–3.

    Article  CAS  PubMed  Google Scholar 

  • Gready R, Simpson JA, Cho T, et al. Postpartum thiamine deficiency in a Karen displaced population. Am J Clin Nutr. 2001;74:808–13.

    Google Scholar 

  • Hanninen SA, Darling PB, Sole MJ, et al. The prevalence of thiamine deficiency in hospitalized patients with congestive heart failure. J Am Coll Cardiol. 2006;47:354–61.

    Article  CAS  PubMed  Google Scholar 

  • Harper CG, Giles M, Finlay-Jones R. Clinical signs in the Wernicke-Korsakoff complex: a retrospective analysis of 131 cases diagnosed at necropsy. J Neurol Neurosurg Psychiatry. 1986;49:341–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hazell AS, Butterworth RF. Update of cell damage mechanisms in thiamine deficiency: focus on oxidative stress, excitotoxicity and inflammation. Alcohol Alcohol. 2009;44:141–7.

    Article  CAS  PubMed  Google Scholar 

  • Institute of Medicine (IOM). Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. 1998; p. 58–85. http://www.nap.edu/openbook.php?record_id=6015&page. Accessed 2 May 2013.

  • Iwata H. Possible role of thiamine in the nervous system. Trends Pharmacol Sci. 1982;4:171–3.

    Article  Google Scholar 

  • Jamieson CP, Obeid OA, Powell-Tuck J. The thiamin, riboflavin and pyridoxine status of patients on emergency admission to hospital. Clin Nutr. 1999;18:87–91.

    Article  CAS  PubMed  Google Scholar 

  • Khounnorath S, Chamberlain K, Taylor A, et al. Clinically unapparent infantile thiamin deficiency in Vientiane, Laos. PLoS. 2011;5:e969.

    Google Scholar 

  • Kitamura K, Yamaguchi T, Tanaka H, et al. TPN-induced fulminant beriberi: a report on our experience and a review of the literature. Surg Today. 1996;26:769–76.

    Article  CAS  PubMed  Google Scholar 

  • Klein M, Weksler N, Gurman GM. Fatal metabolic acidosis caused by thiamine deficiency. J Emerg Med. 2004;26:301–3.

    Article  PubMed  Google Scholar 

  • Klooster A, Larkin JR, Wiersema-Buist J, et al. Are brain and heart tissue prone to the development of thiamine deficiency? Alcohol. 2013;47:215–21.

    Article  CAS  PubMed  Google Scholar 

  • Koletzko B, Goulet O, Hunt J, Parenteral Nutrition Guidelines Working Group, European Society for Clinical Nutrition and Metabolism, European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN), European Society of Paediatric Research (ESPR), et al. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr. 2005;41 Suppl 2:S47–53.

    Google Scholar 

  • Körner RW, Vierzig A, Roth B, Müller C, et al. Determination of thiamin diphosphate in whole blood samples by high-performance liquid chromatography – a method suitable for pediatric diagnostics. J Chromatogr. 2009;877:1882–6.

    Google Scholar 

  • Körner RW, Müller C, Roth B, Vierzig A, et al. Thiamin status of premature infants assessed by measurement of thiamin diphosphate in whole blood. Br J Nutr. 2012;1:1–8.

    Google Scholar 

  • Kountchev J, Bijuklic K, Bellmann R, Joannidis M, et al. A patient with severe lactic acidosis and rapidly evolving multiple organ failure: a case of shoshin beri-beri. Intensive Care Med. 2005;31:1004.

    Article  CAS  PubMed  Google Scholar 

  • Kumar N. Neurologic presentation of nutritional deficiencies. Neurol Clin. 2010;28:107–70.

    Article  PubMed  Google Scholar 

  • Lima LF, Leite HP, Taddei JA. Low blood thiamine concentrations in children upon admission to the intensive care unit: risk factors and prognostic significance. Am J Clin Nutr. 2011;93:57–61.

    Article  PubMed  Google Scholar 

  • Lonsdale D. A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives. Evid Based Complement Alternat Med. 2006;3:49–59.

    Article  PubMed Central  PubMed  Google Scholar 

  • Manzanares W, Hardy G. Thiamine supplementation in the critically ill. Curr Opin Clin Nutr Metab Care. 2011;14:610–7.

    Article  CAS  PubMed  Google Scholar 

  • Mehanna HM, Moledina J, Travis J. Refeeding syndrome: what it is, and how to prevent and treat it. BMJ. 2008;336:1495–8.

    Article  PubMed Central  PubMed  Google Scholar 

  • Meurin P. Shoshin beriberi. A rapidly curable hemodynamic disaster. Presse Med. 1996;25:1115–8.

    CAS  PubMed  Google Scholar 

  • Mirtallo J, Canada T, Johnson D, Task Force for the Revision of Safe Practices for Parenteral Nutrition, et al. Safe practices for parenteral nutrition. J Parenter Enteral Nutr. 2004;28:S39–70.

    Article  Google Scholar 

  • Murphy C, Bangash IH, Varma A. Dry beriberi mimicking the Guillain-Barre syndrome. Pract Neurol. 2009;9:221–4.

    Article  PubMed  Google Scholar 

  • Ortega RM, Martínez RM, Andrés P, et al. Thiamin status during the third trimester of pregnancy and its influence on thiamin concentrations in transition and mature breast milk. Br J Nutr. 2004;92:129–35.

    Article  CAS  PubMed  Google Scholar 

  • Quasim T, McMillan DC, Talwar D, et al. The relationship between plasma and red cell B-vitamin concentrations in critically-ill patients. Clin Nutr. 2005;24:956–60.

    Article  CAS  PubMed  Google Scholar 

  • Saya RP, Baikunje S, Prakash PS, et al. Clinical correlates and outcome of shoshin beriberi. N Am J Med Sci. 2012;4:503–6.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sechi G, Serra A. Wernicke’s encephalopathy: new clinical settings and recent advances in diagnosis and management. Lancet Neurol. 2007;6:442–55.

    Article  CAS  PubMed  Google Scholar 

  • Seear M, Lockitch G, Jacobson B, et al. Thiamine, riboflavin, and pyridoxine deficiencies in a population of critically ill children. J Pediatr. 1992;121:533–8.

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Rebollo M, Depienne C, et al. Reversible generalized dystonia and encephalopathy from thiamine transporter 2 deficiency. Mov Disord. 2012;1(27):1295–8.

    Article  Google Scholar 

  • Shamir R, Dagan O, Abramovitch D, et al. Thiamine deficiency in children with congenital heart disease before and after corrective surgery. J Parenter Enteral Nutr. 2000;24:154–8.

    Article  CAS  Google Scholar 

  • Shenkin A, Alwood MC. Trace elements in adult intravenous nutrition. In: Rombeau JL, Rolandelli RH, editors. Clinical nutrition, Parenteral nutrition, vol. 2. 3rd ed. Philadelphia: WB Saunders; 2000.

    Google Scholar 

  • Shenkin A, Baines M, Fell GS, Lyon TD, et al. Vitamins and trace elements. In: Burtis CA, Ashwood ER, Bruns DE, editors. Tietz textbook of clinical chemistry and molecular diagnostics. 4th ed. St Louis: Elsevier Saunders; 2006. p. 1075–164.

    Google Scholar 

  • Shimon I, Almog S, Vered Z, et al. Improved left ventricular function after thiamine supplementation in patients with congestive heart failure receiving long-term furosemide therapy. Am J Med. 1995;98:485–90.

    Article  CAS  PubMed  Google Scholar 

  • Sica DA. Loop diuretic therapy, thiamine balance, and heart failure. Congest Heart Fail. 2007;13:244–7.

    Article  CAS  PubMed  Google Scholar 

  • Singer P, Berger MM, Van den Berghe G, et al. ESPEN guidelines on parenteral nutrition: intensive care. Clin Nutr. 2009;28:387–400.

    Article  PubMed  Google Scholar 

  • Smithline HA. Thiamine for the treatment of acute decompensated heart failure. Am J Emerg Med. 2007;25:124–6.

    Article  PubMed  Google Scholar 

  • Soukoulis V, Dihu JB, Sole M, et al. Micronutrient deficiencies. An unmet need in heart failure. J Am Coll Cardiol. 2009;54:1660–73.

    Article  CAS  PubMed  Google Scholar 

  • Sriram K, Manzanares W, Joseph K. Thiamine in nutrition therapy. Nutr Clin Pract. 2012;27:41–50.

    Article  PubMed  Google Scholar 

  • Stephen JM, Grant R, Yeg CS. Anaphylaxis from administration of intravenous thiamine. Am J Emerg Med. 1992;10:61–3.

    Article  CAS  PubMed  Google Scholar 

  • Talwar D, Davidson H, Cooney J, St JO’Reilly D, et al. Vitamin B1 status assessed by direct measurement of thiamin pyrophosphate in erythrocytes or whole blood by HPLC: comparison with erythrocyte transketolase activation assay. Clin Chem. 2000;46:704–10.

    CAS  PubMed  Google Scholar 

  • Talwar D, Quasim T, McMillan DC, et al. Pyridoxal phosphate decreases in plasma but not erythrocytes during systemic inflammatory response. Clin Chem. 2003;49:515–8.

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos MM, Silva KP, Vidal G, et al. Early diagnosis of pediatric WE. Prevalences and incidences of the disorder at post-mortem examination vary throughout the world. Pediatr Neurol. 1999;20:289–94.

    Article  CAS  PubMed  Google Scholar 

  • WHO/NHD/99.13. Thiamine deficiency and its prevention and control in major emergencies. Micronutrient series. Geneva: WHO; 1999. p. 277. http://whqlibdoc.who.int/hq/1999/WHO_NHD_99.13.pdf

  • Wiesen P, Van Overmeire L, Delanaye P, et al. Nutrition disorders during acute renal failure and renal replacement therapy. J Parenter Enteral Nutr. 2011;35:217–22.

    Article  Google Scholar 

  • Williams RD, Mason HL, Wilder RM, Smith BF, et al. Observations on induced thiamine (vitamin B1) deficiency in man. Arch Intern Med. 1940;66:785–99.

    Article  CAS  Google Scholar 

  • Wrenn KD, Slovis CM. Is intravenous thiamine safe? Am J Emerg Med. 1992;10:165.

    Article  CAS  PubMed  Google Scholar 

  • Wyatt DT, Nelson D, Hillman RE. Age-dependent changes in thiamin concentrations in whole blood and cerebrospinal fluid in infants and children. Am J Clin Nutr. 1991;53:530–6.

    CAS  PubMed  Google Scholar 

  • Zenuk C, Healey J, Donnelly J, et al. Thiamine deficiency in congestive heart failure patients receiving long term furosemide therapy. Can J Clin Pharmacol. 2003;10:184–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heitor Pons Leite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Leite, H.P., de Lima, L.F.P. (2014). Thiamine (Vitamin B1) Deficiency in Intensive Care: Physiology, Risk Factors, Diagnosis, and Treatment. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet and Nutrition in Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8503-2_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8503-2_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8503-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics