Skip to main content

Hot-Melt Extrusion Process Design Using Process Analytical Technology

  • Chapter
  • First Online:
Melt Extrusion

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 9))

Abstract

Emerging analytical technologies have facilitated a range of testing approaches to assess critical material attributes of pharmaceutical products. As the industry moves toward a continuous manufacturing paradigm, unit operations capable of supporting this approach to drug production will continue to gain importance. Hot-melt extrusion (HME) is one such operation, conducted in a continuous nature, which can be streamlined with the implementation of process analytical technology (PAT) to function as next generation technology. By incorporation of in-line probes and spectral detectors it is possible to determine compositional and process aspects of the production. This chapter describes the underlying principles of extrusion and associated monitoring technologies for implementation of a PAT-based development approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HME:

Hot-melt extrusion

PAT:

Process analytical technology

QbD:

Quality by design

GI tract:

Gastrointestinal tract

FDA:

(US) Food and drug administration

NIR:

Near-infrared

MFI:

Melt flow index

FT-NIR:

Fourier transformation near-infrared spectrometry

QA:

Quality assurance

DoE:

Design of experiments

CQA:

Critical quality attribute

SPC:

Statistical process control

SE:

Specific energy

SME:

Specific mechanical energy

SMEC:

Specific mechanical energy consumption

API:

Active pharmaceutical ingredient

n :

Extruder screw speed

τ :

Extruder torque

:

Extruder throughput

P :

Extruder motor power

O :

Extruder engine loading in percent

n max :

Extruder maximum adjustable screw speed

∆P:

Pressure at extruder die

SFL:

Specific (screw) feed load

VSFL:

Volume-specific (screw) feed load

ρ:

Melt density

RT:

Residence time

RTD:

Residence time distribution

\(\bar{t}\) :

Mean residence time

SLR camera:

Single-lens reflex camera

Px:

Pixel

ANOVA:

Analysis of variance

S/N:

Signal to noise ratio

RTmean = \(\bar{t}\) :

Mean residence time

Rev:

Revolution

Vfree :

Free volume of extruder (inner barrel volume minus screw volume)

Tg :

Glass transition temperature

Mw:

Molecular weight

Cp :

Specific heat capacity

DO/DI :

Outer screw diameter to inner screw diameter ratio

DSC:

Differential scanning calorimetry

QC:

Quality control

OOS:

Out of specification

R & D:

Research and development

DF:

Degree of freedom

References

  • Abu-Zahra N (2004) Real-time viscosity and density measurements of polymer melts using dielectric and ultrasound sensors fusion. Mechatronics 14(7):789–803. doi:10.1016/j.mechatronics.2003.11.001

    Article  Google Scholar 

  • Abu-Zahra NH, Karimi S (2002) On-line monitoring of PVC foam density using ultrasound waves and artificial neural networks. Int J Adv Manuf Technol 19(8):618–622. doi:10.1007/s001700200067

    Article  Google Scholar 

  • Abu-Zahra N, Fedek W, Neyfeh T, Salem A (2002) Ultrasound measurement of two-filler concentrations in polypropylene compounds. Part 2: On-line calibration. Int J Adv Manuf Technol 20(11):812–816

    Article  Google Scholar 

  • Alig I, Steinhoff B, Lellinger D (2010) Monitoring of polymer melt processing. Meas Sci Technol 21(6):062001. doi:10.1088/0957–0233/21/6/062001

    Article  Google Scholar 

  • Bakeev KA (2010) Process analytical technology spectroscopic tools and implementation strategies for the chemical and pharmaceutical industries. Wiley, UK

    Book  Google Scholar 

  • Covas JA, Carneiro OS, Costa P, Machado AV, Maia JM (2004) Online monitoring techniques for studying evolution of physical, rheological and chemical effects along the extruder. Plast Rubber Compos 33(1):55–61. doi:10.1179/146580104225018300

    Article  CAS  Google Scholar 

  • Goertz H-H, Klimesch RG (1987) Verfahren zur Herstellung von festen Pharmazeutischen Formen, Patent EP0240904

    Google Scholar 

  • Gryczke A, Heil C, Leister D (2010) Inline monitoring of a hot melt extrusion process by near infrared spectroscopy. AAPS-APV HME Expert Symposium 2010 Tarrytown USA, Conference proceedings

    Google Scholar 

  • Habel R, Kudenov M, Wimmer M (2012) Practical spectral photography. Imaging 31(2). http://www.cg.tuwien.ac.at/research/publications/2012/Habel_2012_PSP/

  • Kohlgrüber K, Wiedmann W (2008) Co-rotating twin-screw extruders fundamentals, technology and applications. Hanser Gardner, Munich

    Google Scholar 

  • Kolnaar JWH, Keller A (1997) A singularity in the melt flow of polyethylene with wider implications for polymer melt flow rheology. J Non-Newtonian Fluid Mech 69:71–98

    Article  CAS  Google Scholar 

  • Krumbholz N, Hochrein T, Vieweg N, Hasek T, Kretschmer K, Bastian M, Mikulics M et al (2009) Monitoring polymeric compounding processes inline with THz time-domain spectroscopy. Polymer Testing 28(1):30–35. doi:10.1016/j.polymertesting.2008.09.009

    Article  CAS  Google Scholar 

  • Lee Y-H, Bur AJ, Roth SC, Start PR, Harris RH (2005) Monitoring the relaxation behavior of nylon/clay nanocomposites in the melt with an online dielectric sensor. Polym Adv Technol 16(2–3):249–256. doi:10.1002/pat.576

    Article  CAS  Google Scholar 

  • Levenspiel O (1972) Chemical Reaction Engineering, 2nd edn. Wiley, New York

    Google Scholar 

  • Levine L (1997) More on extruder balance. Cereal Foods World 42:22

    Google Scholar 

  • Liang M, Huff HE, Hsieh F-H (2002) Evaluating energy consumption and efficiency of a twin-screw extruder. J Food Sci 67(5):1803–1807. doi:10.1111/j.1365–2621.2002.tb08726.x

    Article  CAS  Google Scholar 

  • Maia JM (2001) On-line theometry for twin-screw extrusion (along the extruder) and its applications. Appl Rheology 12(1):18–24

    Google Scholar 

  • Palza H, Naue I, Wilhelm M, Filipe S, Becker A, Sunder J, Gottfert A (2010) On-line detection of polymer melt flow instabilities in a capillary rheometer. KGK-Kautschuk Gummi Kunststoffe 63(10):456–461

    CAS  Google Scholar 

  • Rauwendaal C (2010) Understanding extrusion. Hanser Gardner, Cincinnati

    Google Scholar 

  • Ronniger C (2012) Software Visual-X-Sel® 11.0 Multivar, Release 11.1112. www.crgraph.de

  • Saerens L, Dierickx L, Lenain B, Vervaet C, Remon JP, De Beer T (2011) Raman spectroscopy for the in-line polymer-drug quantification and solid state characterization during a pharmaceutical hot-melt extrusion process. Eur J Pharm Biopharm: offiArbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik e.V 77(1):158-163. doi:10.1016/j.ejpb.2010.09.015

    Article  CAS  Google Scholar 

  • Tumuluri SVS, Prodduturi S, Crowley MM, Stodghill SP, McGinity JW, Repka MA, Avery BA (2004) The use of near-infrared spectroscopy for the quantitation of a drug in hot-melt extruded films. Drug Dev Ind Pharm 30(5):505–11. doi:10.1081/DDC-120037481

    Article  PubMed  CAS  Google Scholar 

  • Tumuluri VS, Kemper MS, Lewis IR, Prodduturi S, Majumdar S, Avery Ba, Repka Ma (2008) Off-line and on-line measurements of drug-loaded hot-melt extruded films using Raman spectroscopy. Int J Pharm 357(1–2):77–84. doi:10.1016/j.ijpharm.2008.01.036

    Article  PubMed  CAS  Google Scholar 

  • US FDA (2004) Guidance for industry PAT—a framework for innovative pharmaceutical development, manufacturing, and quality assurance. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070305.pdf. Accessed 22 Dec 2011

  • Villmow T, Kretzschmar B, Pötschke P (2010) Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites. Compos Sci Technol 70(14):2045–2055. doi:10.1016/j.compscitech.2010.07.021

    Article  CAS  Google Scholar 

  • Wietzke S, Jansen C, Rutz F, Mittleman D, Koch M (2007) Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy. Polymer Testing 26(5):614–618. doi:10.1016/j.polymertesting.2007.03.002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Gryczke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Gryczke, A. (2013). Hot-Melt Extrusion Process Design Using Process Analytical Technology. In: Repka, M., Langley, N., DiNunzio, J. (eds) Melt Extrusion. AAPS Advances in the Pharmaceutical Sciences Series, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8432-5_16

Download citation

Publish with us

Policies and ethics