Skip to main content

Solid Lipid Extrusion

  • Chapter
  • First Online:
Melt Extrusion

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 9))

Abstract

Solid lipid extrusion takes place some Kelvin below the melting point or melting range of the lipid. Depending on the melting point of the lipid, the extrusion can be performed at room temperature or up to approximately 70 °C. Plasticity is achieved by a thermomechanical treatment of the lipids without melting the bulk part of the lipid. The extrusion process is simple and robust and can be integrated with several downstream processes into a continuous production. Solid lipid extrusion is a solvent-free process, which is suitable for thermosensitive drugs. Solid lipid extrudates and solid dosage forms made by these extrudates can be used to modify the dissolution profile of the active pharmaceutical ingredient (API). The dissolution profiles of the cut, milled, or spheronised extrudates can be tailored in a wide range and are mechanistically understood. In particular, a prolonged release can be achieved without any further coating of the particles. The topics formulation, processing, physical stability, dissolution profiles including their modelling and pharmaceutical applications of solid lipid extrudates are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Breitkreutz J, Bornhöft M, Wöll F, Kleinebudde P (2003a) Pediatric drug formulations of sodium benzoate: I. Coated granules with a hydrophilic binder. Eur J Pharm Biopharm 56:247–253

    Article  CAS  Google Scholar 

  • Breitkreutz J, El-Saleh F, Kiera C, Kleinebudde P, Wiedey W (2003b) Pediatric drug formulations of sodium benzoate. Eur J Pharm Biopharm 56:255–260

    Article  CAS  Google Scholar 

  • Chakraborty S, Shukla D, Mishra B, Singh S (2009) Lipid—An emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm 73:1–15

    Article  PubMed  CAS  Google Scholar 

  • Choy YW, Khan N, Yuen KH (2005) Significance of lipid matrix aging on in vitro release and in vivo bioavailability. Int J Pharm 299:55–64

    Article  PubMed  CAS  Google Scholar 

  • Di Pretoro G, Zema L, Gazzaniga A, Rough SL, Wilson DI (2010) Extrusion-spheronisation of highly loaded 5-ASA multiparticulate dosage forms. Int J Pharm 402:153–164

    Article  PubMed  CAS  Google Scholar 

  • Di PG, Zema L, Gazzaniga A, Kleinebudde P (eds) (2012) Impact of needle-like crystals on wet and solid-lipid extrusion proceses. 8th World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology, Istanbul

    Google Scholar 

  • Gures S, Kleinebudde P (2011) Dissolution from solid lipid extrudates containing release modifiers. Int J Pharm 412:77–84

    Article  PubMed  Google Scholar 

  • Gures S, Siepmann F, Siepmann J, Kleinebudde P (2012) Drug release from extruded solid lipid matrices: theoretical predictions and independent experiments. Eur J Pharm Biopharm 80:122–129

    Article  PubMed  Google Scholar 

  • Haaser M, Windbergs M, McGoverin CM, Kleinebudde P, Rades T, Gordon KC et al (2011) Analysis of matrix dosage forms during dissolution testing using raman microscopy. J Pharm Sci 100:4452–4459

    Article  CAS  Google Scholar 

  • Hasa D, Perissutti B, Grassi M, Zacchigna M, Pagotto M, Lenaz D et al (2011) Melt extruded helical waxy matrices as a new sustained drug delivery system. Eur J Pharm Biopharm 79:592–600

    Article  PubMed  CAS  Google Scholar 

  • Jantratid E, Janssen N, Reppas C, Dressman JB (2008) Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res 25:1663–1676

    Article  PubMed  CAS  Google Scholar 

  • Krause J, Thommes M, Breitkreutz J (2009) Immediate release pellets with lipid binders obtained by solvent-free cold extrusion. Eur J Pharm Biopharm 71:138–144

    Article  PubMed  CAS  Google Scholar 

  • Michalk A, Kanikanti VR, Hamann HJ, Kleinebudde P (2008) Controlled release of active as a consequence of the die diameter in solid lipid extrusion. J Control Release 132:35–41

    Article  PubMed  CAS  Google Scholar 

  • Porter CJH, Charman WN (2001) In vitro assessment of oral lipid based formulations. Adv Drug Deliv Rev 50:127–147

    Article  Google Scholar 

  • Reitz C, Kleinebudde P (2007a) Solid lipid extrusion of sustained release dosage forms. Eur J Pharm Biopharm 67:440–448

    Article  CAS  Google Scholar 

  • Reitz C, Kleinebudde P (2007b) Influence of thermal and thermo-mechanical treatment Comparison of two lipids with respect to their suitability for solid lipid extrusion. J Therm Anal Calorim 89:669–673

    Article  CAS  Google Scholar 

  • Reitz C, Kleinebudde P (2009) Spheronization of solid lipid extrudates. Powder Technol 189:238–244

    Article  CAS  Google Scholar 

  • Reitz C, Strachan C, Kleinebudde P (2008) Solid lipid extrudates as sustained-release matrices: the effect of surface structure on drug release properties. Eur J Pharm Sci 35:335–343

    Article  PubMed  CAS  Google Scholar 

  • Roblegg E, Ulbing S, Zeissmann S, Zimmer A (2010) Development of lipophilic calcium stearate pellets using ibuprofen as model drug. Eur J Pharm Biopharm 75:56–62

    Article  PubMed  CAS  Google Scholar 

  • Sato K (2001) Crystallization behaviour of fats and lipids – a review. Chem Eng Sci 56:2255–2265

    Article  CAS  Google Scholar 

  • Schmidt PC, Prochazka J (1976) Über die herstellung von retardgranulaten durch granulatformung. Pharmazeutische Industrie 38:921–926

    CAS  Google Scholar 

  • Schulze S, Winter G (2009) Lipid extrudates as novel sustained release systems for pharmaceutical proteins. J Control Release 134:177–185

    Article  PubMed  CAS  Google Scholar 

  • Siepmann J, Siepmann F (2012) Modeling of diffusion controlled drug delivery. J of Control Release 161:351–362

    Article  CAS  Google Scholar 

  • Siepmann F, Muschert S, Flament MP, Leterme P, Gayot A, Siepmann J (2006) Controlled drug release from gelucire-based matrix pellets: experiment and theory. Int J Pharm 317:136–143

    Article  PubMed  CAS  Google Scholar 

  • Trevaskis NL, Charman WN, Porter CJH (2008) Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev 60:702–716

    Article  PubMed  CAS  Google Scholar 

  • Windbergs M, Strachan CJ, Kleinebudde P (2009a) Influence of structural variations on drug release from lipid/polyethylene glycol matrices. European J Pharm Sci 37:555–562

    Article  CAS  Google Scholar 

  • Windbergs M, Strachan CJ, Kleinebudde P (2009b) Tailor-made dissolution profiles by extruded matrices based on lipid polyethylene glycol mixtures. J Control Release 137:211–216

    Article  CAS  Google Scholar 

  • Windbergs M, Strachan CJ, Kleinebudde P (2009c) Investigating the principles of recrystallization from glyceride melts. AAPS PharmSciTech 10:1224–1233

    Article  CAS  Google Scholar 

  • Windbergs M, Strachan CJ, Kleinebudde P (2009d) Understanding the solid-state behaviour of triglyceride solid lipid extrudates and its influence on dissolution. Eur J Pharm Biopharm 71:80–87

    Article  CAS  Google Scholar 

  • Windbergs M, Jurna M, Offerhaus HL, Herek JL, Kleinebudde P, Strachan CJ (2009e) Chemical imaging of oral solid dosage forms and changes upon dissolution using coherent anti-Stokes Raman scattering microscopy. Anal Chem 81:2085–2091

    Article  CAS  Google Scholar 

  • Windbergs M, Gueres S, Strachan CJ, Kleinebudde P (2010a) Two-step solid lipid extrusion as a process to modify dissolution behavior. AAPS PharmSciTech 11(1):2–8

    Article  CAS  Google Scholar 

  • Windbergs M, Haaser M, McGoverin CM, Gordon KC, Kleinebudde P, Strachan CJ (2010b) Investigating the relationship between drug distribution in solid lipid matrices and dissolution behaviour using Raman spectroscopy and mapping. J Pharm Sci 99:1464–1475

    Article  CAS  Google Scholar 

  • Witzleb R, Kanikanti VR, Hamann HJ, Kleinebudde P (2011a) Solid lipid extrusion with small die diameters–electrostatic charging, taste masking and continuous production. Eur J Pharm Biopharm 77:170–177

    Article  CAS  Google Scholar 

  • Witzleb R, Kanikanti V-R, Hamann H-J, Kleinebudde P (2011b) Influence of needle-shaped drug particles on the solid lipid extrusion process. Powder Technol 207:407–413

    Article  CAS  Google Scholar 

  • Witzleb R, Mullertz A, Kanikanti VR, Hamann HJ, Kleinebudde P (2012) Dissolution of solid lipid extrudates in biorelevant media. Int J Pharm 422:116–124

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kleinebudde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Kleinebudde, P. (2013). Solid Lipid Extrusion. In: Repka, M., Langley, N., DiNunzio, J. (eds) Melt Extrusion. AAPS Advances in the Pharmaceutical Sciences Series, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8432-5_13

Download citation

Publish with us

Policies and ethics