Skip to main content

Importance of the Niche: Wnt Signaling and Stem Cell Plasticity in Intestinal Homeostasis and Disease

  • Chapter
  • First Online:
Molecular Pathogenesis of Colorectal Cancer

Abstract

Colorectal cancer (CRC) is the second most common cause of cancer deaths in the Western world. Its molecular pathology is well characterized and has taught us much about the normal physiology of the tissue that lines the gut lumen and gives rise to tumours. Central to our understanding of what drives cancer in this tissue was the discovery that mutations in the adenomatous polyposis coli gene (APC) are common to most tumours and that both familial and sporadic cancers in gut tissue are driven by mutations in APC (Su et al. 1992; Moser et al. 1992). A key function that explained the high penetrance of APC mutations in this tissue is its role in mediating signalling by Wnt (Polakis 1999). Specifically important is the ability of APC to act as a scaffold in assembling a protein complex that regulates the availability of β-catenin, which in turn regulates the activity of transcription factors that drive the expression of genes important for proliferation and differentiation (Rubinfeld et al. 1996; Polakis 2007). Signalling by Wnt has emerged not only as a key factor in driving the initiation of CRC but is also as a crucial regulator of normal tissue maintenance in the gut epithelium (Polakis 2007; Bejsovec 1999; Muncan et al. 2006). In particular, it plays an important role in specifying cell fate in this highly dynamic tissue. The APC protein is involved in many other functions that include regulation of cytoskeletal proteins to affect migration (Näthke et al. 1996; Kroboth et al. 2007), contribution to apoptosis (Steigerwald et al. 2005; Brocardo et al. 2008), nuclear import (Murawala et al. 2009), and mitotic spindles and related checkpoints (Dikovskaya et al. 2004, 2007; Draviam et al. 2006). In the background of the increased proliferation and decreased differentiation that accompanies mutations of APC, loss of the normal execution of these additional functions renders cells particularly prone to accumulate additional mutations that confer a significant survival advantage to APC mutant cells in gut epithelial tissue (McCartney and Näthke 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albuquerque C, Breukel C, van der Luijt R, Fidalgo P, Lage P, Slors FJ, Leitao CN, Fodde R, Smits R (2002) The ‘just-right’ signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Hum Mol Genet 11:1549–1560

    Article  PubMed  CAS  Google Scholar 

  • Appleton PL, Quyn AJ, Swift S, Nathke I (2009) Preparation of wholemount mouse intestine for high-resolution three-dimensional imaging using two-photon microscopy. J Microsc 234:196–204

    Article  PubMed  CAS  Google Scholar 

  • Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    Article  PubMed  CAS  Google Scholar 

  • Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, Danenberg E, Clarke AR, Sansom OJ, Clevers H (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457:608–611

    Article  PubMed  CAS  Google Scholar 

  • Bejsovec A (1999) Signal transduction: Wnt signalling shows its versatility. Curr Biol 9:R684–R687

    Article  PubMed  CAS  Google Scholar 

  • Brabletz T, Jung A, Hermann K, Gunther K, Hohenberger W, Kirchner T (1998) Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol Res Pract 194:701–704

    Article  PubMed  CAS  Google Scholar 

  • Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R, Kirchner T (2001) Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A 98:10356–10361

    Article  PubMed  CAS  Google Scholar 

  • Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T (2005) Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749

    Article  PubMed  CAS  Google Scholar 

  • Brocardo M, Lei Y, Tighe A, Taylor SS, Mok MT, Henderson BR (2008) Mitochondrial targeting of adenomatous polyposis coli protein is stimulated by truncating cancer mutations: regulation of Bcl-2 and implications for cell survival. J Biol Chem 283:5950–5959

    Article  PubMed  CAS  Google Scholar 

  • Buchert M, Athineos D, Abud HE, Burke ZD, Faux MC, Samuel MS, Jarnicki AG, Winbanks CE, Newton IP, Meniel VS, Suzuki H, Stacker SA, Nathke IS, Tosh D, Huelsken J, Clarke AR, Heath JK, Sansom OJ, Ernst M (2010) Genetic dissection of differential signaling threshold requirements for the Wnt/beta-catenin pathway in vivo. PLoS Genet 6:e1000816

    Article  PubMed  Google Scholar 

  • Cheng H, Bjerknes M (1983) Cell production in mouse intestinal epithelium measured by stathmokinetic flow cytometry and Coulter particle counting. Anat Rec 207:427–434

    Article  PubMed  CAS  Google Scholar 

  • Cheung AF, Carter AM, Kostova KK, Woodruff JF, Crowley D, Bronson RT, Haigis KM, Jacks T (2010) Complete deletion of Apc results in severe polyposis in mice. Oncogene 29:1857–1864

    Article  PubMed  CAS  Google Scholar 

  • Crosnier C, Stamataki D, Lewis J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7:349–359

    Article  PubMed  CAS  Google Scholar 

  • de Sousa EMF, Colak S, Buikhuisen J, Koster J, Cameron K, de Jong JH, Tuynman JB, Prasetyanti PR, Fessler E, van den Bergh SP, Rodermond H, Dekker E, van der Loos CM, Pals ST, van de Vijver MJ, Versteeg R, Richel DJ, Vermeulen L, Medema JP (2011) Methylation of cancer-stem-cell-associated Wnt target genes predicts poor prognosis in colorectal cancer patients. Cell Stem Cell 9:476–485

    Article  Google Scholar 

  • Dikovskaya D, Newton IP, Näthke IS (2004) The adenomatous polyposis coli protein is required for the formation of robust spindles formed in CSF Xenopus extracts. Mol Biol Cell 15:2978–2991

    Article  PubMed  CAS  Google Scholar 

  • Dikovskaya D, Schiffmann D, Newton IP, Oakley A, Kroboth K, Sansom O, Jamieson TJ, Meniel V, Clarke A, Näthke IS (2007) Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. J Cell Biol 176:183–195

    Article  PubMed  CAS  Google Scholar 

  • Draviam VM, Shapiro I, Aldridge B, Sorger PK (2006) Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1- or APC-depleted cells. EMBO J 25:2814–2827

    Article  PubMed  CAS  Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  PubMed  CAS  Google Scholar 

  • Gaspar C, Franken P, Molenaar L, Breukel C, van der Valk M, Smits R, Fodde R (2009) A targeted constitutive mutation in the APC tumor suppressor gene underlies mammary but not intestinal tumorigenesis. PLoS Genet 5:e1000547

    Article  PubMed  Google Scholar 

  • Itzkovitz S, Blat IC, Jacks T, Clevers H, van Oudenaarden A (2012) Optimality in the development of intestinal crypts. Cell 148:608–619

    Article  PubMed  CAS  Google Scholar 

  • Kaur P, Potten CS (2011) The interfollicular epidermal stem cell saga: sensationalism versus reality check. Exp Dermatol 20:697–702

    Article  PubMed  Google Scholar 

  • Kim TH, Escudero S, Shivdasani RA (2012) Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells. Proc Natl Acad Sci U S A 109(10):3932–3937

    Article  PubMed  CAS  Google Scholar 

  • Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, Clevers H (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 1998(19):379–383

    Google Scholar 

  • Kroboth K, Newton IP, Kita K, Dikovskaya D, Zumbrunn J, Waterman-Storer CM, Näthke IS (2007) Lack of adenomatous polyposis coli protein correlates with a decrease in cell migration and overall changes in microtubule stability. Mol Biol Cell 18:910–918

    Article  PubMed  CAS  Google Scholar 

  • Lewis A, Segditsas S, Deheragoda M, Pollard P, Jeffery R, Nye E, Lockstone H, Davis H, Clark S, Stamp G, Poulsom R, Wright N, Tomlinson I (2010) Severe polyposis in Apc(1322T) mice is associated with submaximal Wnt signalling and increased expression of the stem cell marker Lgr5. Gut 59:1680–1686

    Article  PubMed  CAS  Google Scholar 

  • Lewis A, Davis H, Deheragoda M, Pollard P, Nye E, Jeffery R, Segditsas S, East P, Poulsom R, Stamp G, Wright N, Tomlinson I (2012) The C-terminus of Apc does not influence intestinal adenoma development or progression. J Pathol 226:73–83

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Kroboth K, Newton IP, Nathke IS (2008) Novel self-association of the APC molecule affects APC clusters and cell migration. J Cell Sci 121:1916–1925

    Article  PubMed  CAS  Google Scholar 

  • Luongo C, Moser AR, Gledhill S, Dove WF (1994) Loss of APC in intestinal adenomas from Min mice. Cancer Res 54:5947–5952

    PubMed  CAS  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  • March HN, Rust AG, Wright NA, ten Hoeve J, de Ridder J, Eldridge M, van der Weyden L, Berns A, Gadiot J, Uren A, Kemp R, Arends MJ, Wessels LF, Winton DJ, Adams DJ (2011) Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nat Genet 43:1202–1209

    Article  PubMed  CAS  Google Scholar 

  • McCartney BM, Näthke IS (2008) Cell regulation by the Apc protein Apc as master regulator of epithelia. Curr Opin Cell Biol 20:186–193

    Article  PubMed  CAS  Google Scholar 

  • Merlos-Suarez A, Barriga FM, Jung P, Iglesias M, Cespedes MV, Rossell D, Sevillano M, Hernando-Momblona X, da Silva-Diz V, Munoz P, Clevers H, Sancho E, Mangues R, Batlle E (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8:511–524

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi Y, Nagase H, Ando H, Horii A, Ichii S, Nakatsuru S, Aoki T, Miki Y, Mori T, Nakamura Y (1992) Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet 1:229–233

    Article  PubMed  CAS  Google Scholar 

  • Moser AR, Dove WF, Roth KA, Gordon JI (1992) The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system. J Cell Biol 116:1517–1526

    Article  PubMed  CAS  Google Scholar 

  • Muncan V, Sansom OJ, Tertoolen L, Phesse TJ, Begthel H, Sancho E, Cole AM, Gregorieff A, de Alboran IM, Clevers H, Clarke AR (2006) Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc. Mol Cell Biol 26:8418–8426

    Article  PubMed  CAS  Google Scholar 

  • Murawala P, Tripathi MM, Vyas P, Salunke A, Joseph J (2009) Nup358 interacts with APC and plays a role in cell polarization. J Cell Sci 122:3113–3122

    Article  PubMed  CAS  Google Scholar 

  • Näthke IS, Adams CL, Polakis P, Sellin JH, Nelson WJ (1996) The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Biol 134:165–179

    Article  PubMed  Google Scholar 

  • Neal JV, Potten CS (1981) Description and basic cell kinetics of the murine pericryptal fibroblast sheath. Gut 22:19–24

    Article  PubMed  CAS  Google Scholar 

  • Nelson SA, Li Z, Newton IP, Fraser D, Milne RE, Martin DM, Schiffmann D, Yang X, Dormann D, Weijer CJ, Appleton PL, Nathke IS (2012) Tumorigenic fragments of APC cause dominant defects in directional cell migration in multiple model systems. Dis Model Mech 5(6):940–947

    Article  PubMed  CAS  Google Scholar 

  • O’Brien LE, Soliman SS, Li X, Bilder D (2011) Altered modes of stem cell division drive adaptive intestinal growth. Cell 147:603–614

    Article  PubMed  Google Scholar 

  • Polakis P (1999) The oncogenic activation of b-catenin. Curr Opin Genet Dev 9:15–21

    Article  PubMed  CAS  Google Scholar 

  • Polakis P (2007) The many ways of Wnt in cancer. Curr Opin Genet Dev 17:45–51

    Article  PubMed  CAS  Google Scholar 

  • Polakis P (2012) Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4(5). pii: a008052

    Google Scholar 

  • Pollard P, Deheragoda M, Segditsas S, Lewis A, Rowan A, Howarth K, Willis L, Nye E, McCart A, Mandir N, Silver A, Goodlad R, Stamp G, Cockman M, East P, Spencer-Dene B, Poulsom R, Wright N, Tomlinson I (2009) The Apc 1322T mouse develops severe polyposis associated with submaximal nuclear beta-catenin expression. Gastroenterology 136:2204–2213. e1–13

    Google Scholar 

  • Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110:1001–1020

    PubMed  CAS  Google Scholar 

  • Potten CS, Gandara R, Mahida YR, Loeffler M, Wright NA (2009) The stem cells of small intestinal crypts: where are they? Cell Prolif 42:731–750

    Article  PubMed  CAS  Google Scholar 

  • Preston SL, Wong WM, Chan AO, Poulsom R, Jeffery R, Goodlad RA, Mandir N, Elia G, Novelli M, Bodmer WF, Tomlinson IP, Wright NA (2003) Bottom-up histogenesis of colorectal adenomas: origin in the monocryptal adenoma and initial expansion by crypt fission. Cancer Res 63:3819–3825

    PubMed  CAS  Google Scholar 

  • Rothwell PM, Wilson M, Elwin CE, Norrving B, Algra A, Warlow CP, Meade TW (2010) Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 376:1741–1750

    Article  PubMed  CAS  Google Scholar 

  • Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P (1996) Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272:1023–1026

    Article  PubMed  CAS  Google Scholar 

  • Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40:915–920

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265

    Article  PubMed  CAS  Google Scholar 

  • Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H (2010) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–418

    Article  PubMed  Google Scholar 

  • Shibata H, Toyama K, Shioya H, Ito M, Hirota M, Hasegawa S, Matsumoto H, Takano H, Akiyama T, Toyoshima K, Kanamaru R, Kanegae Y, Saito I, Nakamura Y, Shiba K, Noda T (1997) Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278:120–123

    Article  PubMed  CAS  Google Scholar 

  • Shih IM, Wang TL, Traverso G, Romans K, Hamilton SR, Ben-Sasson S, Kinzler KW, Vogelstein B (2001) Top-down morphogenesis of colorectal tumors. Proc Natl Acad Sci U S A 98:2640–2645

    Article  PubMed  CAS  Google Scholar 

  • Smits R, Kielman MF, Breukel C, Zurcher C, Neufeld K, Jagmohan-Changur S, Hofland N, van Dijk J, White R, Edelmann W, Kucherlapati R, Khan PM, Fodde R (1999) Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev 13:1309–1321

    Article  PubMed  CAS  Google Scholar 

  • Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD, Clevers H (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134–144

    Article  PubMed  CAS  Google Scholar 

  • Spaderna S, Schmalhofer O, Hlubek F, Berx G, Eger A, Merkel S, Jung A, Kirchner T, Brabletz T (2006) A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 131:830–840

    Article  PubMed  CAS  Google Scholar 

  • Steigerwald K, Behbehani GK, Combs KA, Barton MC, Groden J (2005) The APC tumor suppressor promotes transcription-independent apoptosis in vitro. Mol Cancer Res 3:78–89

    Article  PubMed  CAS  Google Scholar 

  • Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser A, Luongo C, Gould KA, Dove WF (1992) Multiple intestinal neoplasia caused by mutations in the murine homolog of the APC gene. Science 256:668–670

    Article  PubMed  CAS  Google Scholar 

  • Takeda N, Jain R, LeBoeuf MR, Wang Q, Lu MM, Epstein JA (2011) Interconversion between intestinal stem cell populations in distinct niches. Science 334:1420–1424

    Article  PubMed  CAS  Google Scholar 

  • Tian G, Finley D (2012) Cell biology: destruction deconstructed. Nature 482:170–171

    Article  PubMed  CAS  Google Scholar 

  • Totafurno J, Bjerknes M, Cheng H (1987) The crypt cycle. Crypt and villus production in the adult intestinal epithelium. Biophys J 52:279–294

    Article  PubMed  CAS  Google Scholar 

  • van Es JH, Jay P, Gregorieff A, van Gijn ME, Jonkheer S, Hatzis P, Thiele A, van den Born M, Begthel H, Brabletz T, Taketo MM, Clevers H (2005) Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol 7:381–386

    Article  PubMed  Google Scholar 

  • Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman JB, Todaro M, Merz C, Rodermond H, Sprick MR, Kemper K, Richel DJ, Stassi G, Medema JP (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12:468–476

    Article  PubMed  CAS  Google Scholar 

  • Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, Brunton VG, Morton J, Sansom O, Schuler J, Stemmler MP, Herzberger C, Hopt U, Keck T, Brabletz S, Brabletz T (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11:1487–1495

    Article  PubMed  CAS  Google Scholar 

  • Wright NA, Alison M (1984) The biology of epithelial cell populations. Clarendon, Oxford

    Google Scholar 

  • Wright NA, Irwin M (1982) The kinetics of villus cell populations in the mouse small intestine. I. Normal villi: the steady state requirement. Cell Tissue Kinet 15:595–609

    PubMed  CAS  Google Scholar 

  • Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, Poppleton H, Zakharenko S, Ellison DW, Gilbertson RJ (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457:603–607

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Owen J. Sansom or Inke Näthke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sansom, O.J., Näthke, I. (2013). Importance of the Niche: Wnt Signaling and Stem Cell Plasticity in Intestinal Homeostasis and Disease. In: Haigis, Ph.D., K. (eds) Molecular Pathogenesis of Colorectal Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8412-7_4

Download citation

Publish with us

Policies and ethics