Skip to main content

Suprachoroidal Space as a Therapeutic Target

  • Chapter
  • First Online:
Surgical Innovations in Glaucoma

Abstract

The uveoscleral route of aqueous humor outflow has been less well characterized than the trabecular route. The two routes differ physiologically in many respects. Whereas trabecular outflow is dependent on intraocular pressure (IOP), uveoscleral outflow is mostly driven by the higher hydrostatic pressure difference in the anterior chamber relative to the suprachoroidal space (SCS). Outflow through the two routes is also differentially responsive to pharmacological interventions intended to manipulate IOP. For example, prostaglandin-based therapies target the uveoscleral route but have little effect on trabecular outflow. Injection of drugs into the SCS is being investigated as a means of delivery of small molecules and potentially sustained-release formulations of large biological molecules to the back of the eye. The uveoscleral pathway is also being increasingly targeted by diverse surgical approaches, with the potential to avoid some of the more serious complications associated with trabecular surgical interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allingham RR, Damji KF, Feedman S, Moroi SE, Rhee DJ, editors. Shields textbook of glaucoma. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2011.

    Google Scholar 

  2. Goel M, Picciani RG, Lee RK, Bhattacharya SK. Aqueous humor dynamics: a review. Open Ophthalmol J. 2010;4:52–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bill A, Hellsing K. Production and drainage of aqueous humor in the cynomolgus monkey (Macaca irus). Invest Ophthalmol. 1965;4(5):920–6.

    CAS  PubMed  Google Scholar 

  4. Bill A. The aqueous humor drainage mechanism in the cynomolgus monkey (Macaca irus) with evidence for unconventional routes. Invest Ophthalmol. 1965;4(5):911–9.

    CAS  PubMed  Google Scholar 

  5. Bill A. Uveoscleral drainage of aqueous humor: physiology and pharmacology. Prog Clin Biol Res. 1989;312:417–27.

    CAS  PubMed  Google Scholar 

  6. Bill A, Phillips CI. Uveoscleral drainage of aqueous humour in human eyes. Exp Eye Res. 1971;12(3):275–81.

    Article  CAS  PubMed  Google Scholar 

  7. Toris CB, Yablonski ME, Wang YL, Camras CB. Aqueous humor dynamics in the aging human eye. Am J Ophthalmol. 1999;127(4):407–12.

    Article  CAS  PubMed  Google Scholar 

  8. Alm A, Nilsson SF. Uveoscleral outflow – a review. Exp Eye Res. 2009;88(4):760–8.

    Article  CAS  PubMed  Google Scholar 

  9. Nilsson SF. The uveoscleral outflow routes. Eye (Lond). 1997;11(Pt 2):149–54.

    Article  Google Scholar 

  10. Chylack Jr LT, Bellows AR. Molecular sieving in suprachoroidal fluid formation in man. Invest Ophthalmol Vis Sci. 1978;17(5):420–7.

    CAS  PubMed  Google Scholar 

  11. Teng CC, Chi HH, Katzin HM. Histology and mechanism of filtering operations. Am J Ophthalmol. 1959;47(1 Part 1):16–33.

    CAS  PubMed  Google Scholar 

  12. Pederson JE, Gaasterland DE, MacLellan HM. Uveoscleral aqueous outflow in the rhesus monkey: importance of uveal reabsorption. Invest Ophthalmol Vis Sci. 1977;16(11):1008–17.

    CAS  PubMed  Google Scholar 

  13. Krohn J, Bertelsen T. Light microscopy of uveoscleral drainage routes after gelatine injections into the suprachoroidal space. Acta Ophthalmol Scand. 1998;76(5):521–7.

    Article  CAS  PubMed  Google Scholar 

  14. Krohn J, Bertelsen T. Corrosion casts of the suprachoroidal space and uveoscleral drainage routes in the human eye. Acta Ophthalmol Scand. 1997;75(1):32–5.

    Article  CAS  PubMed  Google Scholar 

  15. Jackson TL, Hussain A, Hodgetts A, Morley AM, Hillenkamp J, Sullivan PM, et al. Human scleral hydraulic conductivity: age-related changes, topographical variation, and potential scleral outflow facility. Invest Ophthalmol Vis Sci. 2006;47(11):4942–6.

    Article  PubMed  Google Scholar 

  16. Tamm S, Tamm E, Rohen JW. Age-related changes of the human ciliary muscle. A quantitative morphometric study. Mech Ageing Dev. 1992;62(2):209–21.

    Article  CAS  PubMed  Google Scholar 

  17. Suguro K, Toris CB, Pederson JE. Uveoscleral outflow following cyclodialysis in the monkey eye using a fluorescent tracer. Invest Ophthalmol Vis Sci. 1985;26(6):810–3.

    CAS  PubMed  Google Scholar 

  18. Johnson M, Erickson K. Mechanisms and routes of aqueous humor drainage. In: Albert DM, Jakobiec FA, editors. Principles and practice of ophthalmology. Philadelphia: WB Saunders; 2000. p. 2577–95.

    Google Scholar 

  19. Toris CB, Pederson JE. Effect of intraocular pressure on uveoscleral outflow following cyclodialysis in the monkey eye. Invest Ophthalmol Vis Sci. 1985;26(12):1745–9.

    CAS  PubMed  Google Scholar 

  20. Bill A. Conventional and uveo-scleral drainage of aqueous humour in the cynomolgus monkey (Macaca irus) at normal and high intraocular pressures. Exp Eye Res. 1966;5(1):45–54.

    Article  CAS  PubMed  Google Scholar 

  21. Emi K, Pederson JE, Toris CB. Hydrostatic pressure of the suprachoroidal space. Invest Ophthalmol Vis Sci. 1989;30(2):233–8.

    CAS  PubMed  Google Scholar 

  22. Bill A. Effects of atropine and pilocarpine on aqueous humour dynamics in cynomolgus monkeys (Macaca irus). Exp Eye Res. 1967;6(2):120–5.

    Article  CAS  PubMed  Google Scholar 

  23. Rohen JW, Lutjen E, Barany E. The relation between the ciliary muscle and the trabecular meshwork and its importance for the effect of miotics on aqueous outflow resistance. A study in two contrasting monkey species, Macaca irus and Cercopithecus aethiops. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1967;172(1):23–47.

    Article  CAS  PubMed  Google Scholar 

  24. Barany EH. The mode of action of miotics on outflow resistance. A study of pilocarpine in the vervet monkey Cercopithecus ethiops. Trans Ophthalmol Soc U K. 1966;86:539–78.

    CAS  PubMed  Google Scholar 

  25. Gabelt BT, Kaufman PL. Prostaglandin F2 alpha increases uveoscleral outflow in the cynomolgus monkey. Exp Eye Res. 1989;49(3):389–402.

    Article  CAS  PubMed  Google Scholar 

  26. Seiler GS, Salmon JH, Mantuo R, Feingold S, Dayton PA, Gilger BC. Effect and distribution of contrast medium after injection into the anterior suprachoroidal space in ex vivo eyes. Invest Ophthalmol Vis Sci. 2011;52(8):5730–6.

    Article  PubMed  Google Scholar 

  27. Bill A. Basic physiology of the drainage of aqueous humor. Exp Eye Res. 1977;25(Suppl):291–304.

    Article  PubMed  Google Scholar 

  28. Townsend DJ, Brubaker RF. Immediate effect of epinephrine on aqueous formation in the normal human eye as measured by fluorophotometry. Invest Ophthalmol Vis Sci. 1980;19(3):256–66.

    CAS  PubMed  Google Scholar 

  29. Toris CB, Camras CB, Yablonski ME. Effects of PhXA41, a new prostaglandin F(2α) analog, on aqueous humor dynamics in human eyes. Ophthalmology. 1993;100(9):1297–304.

    Article  CAS  PubMed  Google Scholar 

  30. Toris CB, Koepsell SA, Yablonski ME, Camras CB. Aqueous humor dynamics in ocular hypertensive patients. J Glaucoma. 2002;11(3):253–8.

    Article  PubMed  Google Scholar 

  31. Johnson TV, Fan S, Camras CB, Toris CB. Aqueous humor dynamics in exfoliation syndrome. Arch Ophthalmol. 2008;126(7):914–20.

    Article  PubMed  Google Scholar 

  32. Toris CB, Tafoya ME, Camras CB, Yablonski ME. Effects of apraclonidine on aqueous humor dynamics in human eyes. Ophthalmology. 1995;102(3):456–61.

    Article  CAS  PubMed  Google Scholar 

  33. Toris CB, Gleason ML, Camras CB, Yablonski ME. Effects of brimonidine on aqueous humor dynamics in human eyes. Arch Ophthalmol. 1995;113(12):1514–7.

    Article  CAS  PubMed  Google Scholar 

  34. Toris CB, Camras CB, Yablonski ME. Acute versus chronic effects of brimonidine on aqueous humor dynamics in ocular hypertensive patients. Am J Ophthalmol. 1999;128(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  35. Toris CB, Zhan G, Camras CB. Increase in outflow facility with unoprostone treatment in ocular hypertensive patients. Arch Ophthalmol. 2004;122(12):1782–7.

    Article  PubMed  Google Scholar 

  36. Einmahl S, Savoldelli M, D’Hermies F, Tabatabay C, Gurny R, Behar-Cohen F. Evaluation of a novel biomaterial in the suprachoroidal space of the rabbit eye. Invest Ophthalmol Vis Sci. 2002;43(5):1533–9.

    PubMed  Google Scholar 

  37. Patel SR, Lin AS, Edelhauser HF, Prausnitz MR. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res. 2011;28(1):166–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Patel SR, Berezovsky DE, McCarey BE, Zarnitsyn V, Edelhauser HF, Prausnitz MR. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest Ophthalmol Vis Sci. 2012;53(8):4433–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Olsen TW, Feng X, Wabner K, Csaky K, Pambuccian S, Cameron JD. Pharmacokinetics of pars plana intravitreal injections versus microcannula suprachoroidal injections of bevacizumab in a porcine model. Invest Ophthalmol Vis Sci. 2011;52(7):4749–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Olsen TW, Edelhauser HF, Lim JI, Geroski DH. Human scleral permeability. Effects of age, cryotherapy, transscleral diode laser, and surgical thinning. Invest Ophthalmol Vis Sci. 1995;36(9):1893–903.

    CAS  PubMed  Google Scholar 

  41. Olsen TW, Feng X, Wabner K, Conston SR, Sierra DH, Folden DV, et al. Cannulation of the suprachoroidal space: a novel drug delivery methodology to the posterior segment. Am J Ophthalmol. 2006;142(5):777–87.

    Article  CAS  PubMed  Google Scholar 

  42. Augustin C, Augustin A, Tetz M, Rizzo S. Suprachoroidal drug delivery – a new approach for the treatment of severe macular diseases. Eur Ophthalmic Rev. 2012;6:25–7.

    Google Scholar 

  43. Peden MC, Min J, Meyers C, Lukowski Z, Li Q, Boye SL, et al. Ab-externo AAV-mediated gene delivery to the suprachoroidal space using a 250 micron flexible microcatheter. PLoS One. 2011;6(2):e17140.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Toris CB, Camras CB. Aqueous humor dynamics II. Clinical studies. In: Civan MM, editor. The eye’s aqueous humor. Waltham, MA: Elsevier Inc; 2008. p. 231–72.

    Chapter  Google Scholar 

  45. Barrie KP, Gum GG, Samuelson DA, Gelatt KN. Quantitation of uveoscleral outflow in normotensive and glaucomatous Beagles by 3H-labeled dextran. Am J Vet Res. 1985;46(1):84–8.

    CAS  PubMed  Google Scholar 

  46. Toris CB, Zhan GL, Wang YL, Zhao J, McLaughlin MA, Camras CB, et al. Aqueous humor dynamics in monkeys with laser-induced glaucoma. J Ocul Pharmacol Ther. 2000;16(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  47. Yablonski ME, Cook DJ, Gray J. A fluorophotometric study of the effect of argon laser trabeculoplasty on aqueous humor dynamics. Am J Ophthalmol. 1985;99(5):579–82.

    CAS  PubMed  Google Scholar 

  48. Weinreb RN, Toris CB, Gabelt BT, Lindsey JD, Kaufman PL. Effects of prostaglandins on the aqueous humor outflow pathways. Surv Ophthalmol. 2002;47 Suppl 1:S53–64.

    Article  PubMed  Google Scholar 

  49. Eakins KE, Whitelocke RA, Bennett A, Martenet AC. Prostaglandin-like activity in ocular inflammation. Br Med J. 1972;3(5824):452–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Conquet P, Plazonnet B, Le Douarec JC. Arachidonic acid-induced elevation of intraocular pressure and anti-inflammatory agents. Invest Ophthalmol. 1975;14(10):772–5.

    CAS  PubMed  Google Scholar 

  51. Camras CB, Bito LZ, Eakins KE. Reduction of intraocular pressure by prostaglandins applied topically to the eyes of conscious rabbits. Invest Ophthalmol Vis Sci. 1977;16(12):1125–34.

    CAS  PubMed  Google Scholar 

  52. Lindsey JD, Kashiwagi K, Kashiwagi F, Weinreb RN. Prostaglandin action on ciliary smooth muscle extracellular matrix metabolism: implications for uveoscleral outflow. Surv Ophthalmol. 1997;41 Suppl 2:S53–9.

    Article  PubMed  Google Scholar 

  53. Schachtschabel U, Lindsey JD, Weinreb RN. The mechanism of action of prostaglandins on uveoscleral outflow. Curr Opin Ophthalmol. 2000;11(2):112–5.

    Article  CAS  PubMed  Google Scholar 

  54. Toris CB, Gabelt BT, Kaufman PL. Update on the mechanism of action of topical prostaglandins for intraocular pressure reduction. Surv Ophthalmol. 2008;53(Suppl1):S107–20.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Zhan GL, Camras CB, Opere C, Tang L, Ohia SE. Effect of prostaglandins on cyclic AMP production in cultured human ciliary muscle cells. J Ocul Pharmacol Ther. 1998;14(1):45–55.

    Article  CAS  PubMed  Google Scholar 

  56. Lindsey JD, Kashiwagi K, Boyle D, Kashiwagi F, Firestein GS, Weinreb RN. Prostaglandins increase proMMP-1 and proMMP-3 secretion by human ciliary smooth muscle cells. Curr Eye Res. 1996;15(8):869–75.

    Article  CAS  PubMed  Google Scholar 

  57. Weinreb RN, Kashiwagi K, Kashiwagi F, Tsukahara S, Lindsey JD. Prostaglandins increase matrix metalloproteinase release from human ciliary smooth muscle cells. Invest Ophthalmol Vis Sci. 1997;38(13):2772–80.

    CAS  PubMed  Google Scholar 

  58. Woessner Jr JF. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991;5(8):2145–54.

    CAS  PubMed  Google Scholar 

  59. Lindsey JD, Kashiwagi K, Kashiwagi F, Weinreb RN. Prostaglandins alter extracellular matrix adjacent to human ciliary muscle cells in vitro. Invest Ophthalmol Vis Sci. 1997;38(11):2214–23.

    CAS  PubMed  Google Scholar 

  60. Sagara T, Gaton DD, Lindsey JD, Gabelt BT, Kaufman PL, Weinreb RN. Topical prostaglandin F2alpha treatment reduces collagen types I, III, and IV in the monkey uveoscleral outflow pathway. Arch Ophthalmol. 1999;117(6):794–801.

    Article  CAS  PubMed  Google Scholar 

  61. Galis ZS, Muszynski M, Sukhova GK, Simon-Morrissey E, Unemori EN, Lark MW, et al. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res. 1994;75(1):181–9.

    Article  CAS  PubMed  Google Scholar 

  62. Kim JW, Lindsey JD, Wang N, Weinreb RN. Increased human scleral permeability with prostaglandin exposure. Invest Ophthalmol Vis Sci. 2001;42(7):1514–21.

    CAS  PubMed  Google Scholar 

  63. Weinreb RN. Enhancement of scleral macromolecular permeability with prostaglandins. Trans Am Ophthalmol Soc. 2001;99:319–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Weinreb RN, Lindsey JD, Marchenko G, Marchenko N, Angert M, Strongin A. Prostaglandin FP agonists alter metalloproteinase gene expression in sclera. Invest Ophthalmol Vis Sci. 2004;45(12):4368–77.

    Article  PubMed  Google Scholar 

  65. Boland MV, Ervin AM, Friedman D, Jampel H, Hawkins B, Volenweider D. Treatment for glaucoma: comparative effectiveness. In: (AHRQ) AfHRaQ, editor. Comparative Effectiveness Review No 60 (Prepared by the Johns Hopkins University Evidence-based Practice Center under Contract No HHSA 290-2007-10061-I). Rockville: US Dept of Health and Human Services; 2012.

    Google Scholar 

  66. Bito LZ. Prostaglandins and other eicosanoids: their ocular transport, pharmacokinetics, and therapeutic effects. Trans Ophthalmol Soc U K. 1986;105(Pt 2):162–70.

    PubMed  Google Scholar 

  67. Ooi YH, Oh DJ, Rhee DJ. Effect of bimatoprost, latanoprost, and unoprostone on matrix metalloproteinases and their inhibitors in human ciliary body smooth muscle cells. Invest Ophthalmol Vis Sci. 2009;50(11):5259–65.

    Article  PubMed  Google Scholar 

  68. Nordmann JP, Mertz B, Yannoulis NC, Schwenninger C, Kapik B, Shams N. A double-masked randomized comparison of the efficacy and safety of unoprostone with timolol and betaxolol in patients with primary open-angle glaucoma including pseudoexfoliation glaucoma or ocular hypertension. 6 month data. Am J Ophthalmol. 2002;133(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  69. Stewart WC, Stewart JA, Kapik BM. The effects of unoprostone isopropyl 0.12% and timolol maleate 0.5% on diurnal intraocular pressure. J Glaucoma. 1998;7(6):388–94.

    CAS  PubMed  Google Scholar 

  70. Lee AJ, McCluskey P. Clinical utility and differential effects of prostaglandin analogs in the management of raised intraocular pressure and ocular hypertension. Clin Ophthalmol. 2010;4:741–64.

    PubMed Central  PubMed  Google Scholar 

  71. Cheng JW, Cai JP, Li Y, Wei RL. A meta-analysis of topical prostaglandin analogs in the treatment of chronic angle-closure glaucoma. J Glaucoma. 2009;18(9):652–7.

    Article  PubMed  Google Scholar 

  72. Chen J, Runyan SA, Robinson MR. Novel ocular antihypertensive compounds in clinical trials. Clin Ophthalmol. 2011;5:667–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Coppens G, Stalmans I, Zeyen T, Casteels I. The safety and efficacy of glaucoma medication in the pediatric population. J Pediatr Ophthalmol Strabismus. 2009;46(1):12–8.

    Article  PubMed  Google Scholar 

  74. Enyedi LB, Freedman SF. Latanoprost for the treatment of pediatric glaucoma. Surv Ophthalmol. 2002;47 Suppl 1:S129–32.

    Article  PubMed  Google Scholar 

  75. Woodward DF, Krauss AH, Chen J, Liang Y, Li C, Protzman CE, et al. Pharmacological characterization of a novel antiglaucoma agent, Bimatoprost (AGN 192024). J Pharmacol Exp Ther. 2003;305(2):772–85.

    Article  CAS  PubMed  Google Scholar 

  76. Woodward DF, Liang Y, Krauss AH. Prostamides (prostaglandin-ethanolamides) and their pharmacology. Br J Pharmacol. 2008;153(3):410–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Wan Z, Woodward DF, Cornell CL, Fliri HG, Martos JL, Pettit SN, et al. Bimatoprost, prostamide activity, and conventional drainage. Invest Ophthalmol Vis Sci. 2007;48(9):4107–15.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Boke H. History of cyclodialysis. In memory of Leopold Heine 1870–1940. Klin Monbl Augenheilkd. 1990;197(4):340–8.

    Article  CAS  PubMed  Google Scholar 

  79. Jordan JF, Dietlein TS, Dinslage S, Luke C, Konen W, Krieglstein GK. Cyclodialysis ab interno as a surgical approach to intractable glaucoma. Graefes Arch Clin Exp Ophthalmol. 2007;245(8):1071–6.

    Article  PubMed  Google Scholar 

  80. Klemm M, Balazs A, Draeger J, Wiezorrek R. Experimental use of space-retaining substances with extended duration: functional and morphological results. Graefes Arch Clin Exp Ophthalmol. 1995;233(9):592–7.

    Article  CAS  PubMed  Google Scholar 

  81. Portney GL. Silicone elastomer implantation cyclodialysis. A negative report. Arch Ophthalmol. 1973;89(1):10–2.

    Article  CAS  PubMed  Google Scholar 

  82. Wirt H, Bill A, Draeger J. Neue aspekte in der operativen behandlung des glaukoms – vergleich viskoelasticher substanzen in der kammerwinkelchirurgie. Fortschr Opththalmol [Suppl]. 1991;88:234.

    Google Scholar 

  83. Ozdamar A, Aras C, Karacorlu M. Suprachoroidal seton implantation in refractory glaucoma: a novel surgical technique. J Glaucoma. 2003;12(4):354–9.

    Article  PubMed  Google Scholar 

  84. Yablonski ME. Trabeculectomy with internal tube shunt: a novel glaucoma surgery. J Glaucoma. 2005;14(2):91–7.

    Article  PubMed  Google Scholar 

  85. Unal M, Kocak Altintas AG, Koklu G, Tuna T. Early results of suprachoroidal drainage tube implantation for the surgical treatment of glaucoma. J Glaucoma. 2011;20(5):307–14.

    Article  PubMed  Google Scholar 

  86. Jordan JF, Engels BF, Dinslage S, Dietlein TS, Ayertey HD, Roters S, et al. A novel approach to suprachoroidal drainage for the surgical treatment of intractable glaucoma. J Glaucoma. 2006;15(3):200–5.

    Article  PubMed  Google Scholar 

  87. Palamar M, Ates H, Oztas Z, Yusifov E. Suprachoroidal implant surgery in intractable glaucoma. Jpn J Ophthalmol. 2011;55(4):351–5.

    Article  PubMed  Google Scholar 

  88. Melamed S, Ben Simon GJ, Goldenfeld M, Simon G. Efficacy and safety of gold micro shunt implantation to the supraciliary space in patients with glaucoma: a pilot study. Arch Ophthalmol. 2009;127(3):264–9.

    Article  PubMed  Google Scholar 

  89. Mastropasqua L, Agnifili L, Ciancaglini M, Nubile M, Carpineto P, Fasanella V, et al. In vivo analysis of conjunctiva in gold micro shunt implantation for glaucoma. Br J Ophthalmol. 2010;94(12):1592–6.

    Article  PubMed  Google Scholar 

  90. Figus M, Lazzeri S, Fogagnolo P, Iester M, Martinelli P, Nardi M. Supraciliary shunt in refractory glaucoma. Br J Ophthalmol. 2011;95(11):1537–41.

    Article  PubMed  Google Scholar 

  91. Agnifili L, Costagliola C, Figus M, Iezzi G, Piattelli A, Carpineto P, et al. Histological findings of failed gold micro shunts in primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 2012;250(1):143–9.

    Article  PubMed  Google Scholar 

  92. Sharaawy T, Bhartiya S. Surgical management of glaucoma: evolving paradigms. Indian J Ophthalmol. 2011;59(Suppl):S123–30.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Ianchulev T, Ahmed K, Hoeh HR, Rau M. Minimally invasive ab interno suprachoroidal device (CyPass) for IOP control in open-angle glaucoma. American Academy of Ophthalmology annual meeting, Chicago, 18–19 Oct 2010.

    Google Scholar 

  94. Erb C, Hoeh H, Rau M, Peters S, Nardi M, Ianchulev T. European clinical experience with the CyPass supraciliary micro-stent for IOP lowering. European Society of Cataract and Refractive Surgeons annual meeting, Vienna, 17–22 Sept 2011.

    Google Scholar 

  95. Garcia-Feijoo J, Rau M, Ahmed I, Anton A, Grabner G, Ianchulev T. Safety and efficacy of CyPass Micro-Stent as a stand-alone treatment for open-angle glaucoma: Worldwide clinical experience. 2012 Sept 10.

    Google Scholar 

  96. Grisanti S, Garcia-Feijoo J, Nardi M, Rapisarda A, Anton A, Craven E, et al. CyPass for the primary treatment of OAG medication-naive patients. European Society of Cataract and Refractive Surgeons annual meeting, Milan, 8–12 Sept 2012.

    Google Scholar 

  97. Craven ER, Khatana A, Hoeh H, Rau M, Ianchulev T. Safety of minimally invasive, ab interno suprachoroidal micro-stent for IOP reduction used in combination with phaco cataract surgery. American Academy of Ophthalmology annual meeting, Orlando, FL, 22–25 Oct 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsontcho Ianchulev MD, MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ianchulev, T. (2014). Suprachoroidal Space as a Therapeutic Target. In: Samples, J.R., Ahmed, I.I.K. (eds) Surgical Innovations in Glaucoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8348-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8348-9_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8347-2

  • Online ISBN: 978-1-4614-8348-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics