Skip to main content

Phenotyping for Groundnut (Arachis hypogaea L.) Improvement

  • Chapter
  • First Online:
Phenotyping for Plant Breeding

Abstract

Groundnut (Arachis hypogaea L.) is grown world over for oil and food uses. It is a self-pollinated crop with low genetic diversity. The origin of the crop from single hybridization event followed by chromosome doubling as well as crossing barriers of cultivated species with wild species due to ploidy differences rendered the crop with narrow genetic variability. Developing new varieties with increased yield potential and resistance to biotic and abiotic stresses that meet the needs of the growers, processors and consumers is the primary objective of groundnut breeding. In this chapter, we discuss about phenotyping tools used in groundnut improvement programs for various targeted traits. Both field and laboratory tools are described to screen for resistance to diseases caused by fungi, bacteria, virus and nematodes. Phenotyping based on Cumulative Thermal Time (CTT) is used to select for early maturity. Phenotyping for complex traits can be challenging. Either empirical approach that involves measuring the yield under imposed drought stress or salinity conditions or trait based approach using surrogates or a combination of both are used for phenotyping abiotic stresses. Phenotyping for Aspergillus contamination needs improvement to derive reliable and reproducible results. Estimation of quality and nutritional parameters generally involves use of destructive and laborious chemical or physical procedures. Near infrared reflectance spectroscopy (NIRS), a robust and non-destructive method is gaining popularity for estimation of oil, protein, carbohydrate and fatty acid contents. Methods for estimating oil, protein, sugar and micronutrient concentrations and fatty acid composition of seeds and haulm quality traits are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amin PW, Singh KN, Dwivedi SL, Rao VR (1985) Sources of resistance to the jassids (Empoasca kerri Pruthi), thrips (Frankliniella schultzei (Trybom)) and termites (Odontotermes sp.) in groundnut (Arachis hypogaea L.). Peanut Sci 12:58–60

    Google Scholar 

  • ARC (1965) The nutrient requirement of ruminant livestock. Commonwealth Agricultural Bureau, England

    Google Scholar 

  • Asif MA, Zafar Y, Iqbal J, Iqbal MM, Rashid U, Ali GM, Arif A, Nazir F (2011) Enhanced expression of AtNHX1, in transgenic groundnut (Arachis hypogaea L.) improves salt and drought tolerance. Mol Biotechnol 49:250–256

    PubMed  CAS  Google Scholar 

  • Basha MS (1992) Soluble sugar composition of peanut seed. J Agric Food Chem 40:780–783

    CAS  Google Scholar 

  • Bhatnagar Mathur P, Devi J, Reddy DS, Lavanya M, Vadez V, Serraj R, Shinozaki Y, Sharma KK (2007) Stress induced expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transcription efficiency under water - limiting conditions. Plant Cell Rep 26:2071–2082

    PubMed  CAS  Google Scholar 

  • Birthal PS, Parthasarathy Rao P, Nigam SN, Bantilan MCS, Bhagavatulu S (2010) Groundnut and soybean economies in Asia: facts, trends and outlook. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 22–26

    Google Scholar 

  • Birthal PS, Nigam SN, Narayanan AV, Kareem KA (2011) An Economic Assessment of the potential benefits of breeding for drought tolerance in crops: a case of groundnut in India. Research Bulletin no. 25. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, 44 pp., ISBN 978-92-9066-539-7

    Google Scholar 

  • Bockelee-Morvan A (1983) The different varieties of groundnut, geographical and climatic distribution, availability. Oleagineux 38:73–116

    Google Scholar 

  • Boshou LS, Holbrook CC (2007) Groundnut. In: Singh RJ (ed) Genetic resources, chromosome engineering and crop improvement. CRC, Boca Raton, pp 51–87

    Google Scholar 

  • Boshou LS, Zhou R, Lei Y, Li D (2000) Evaluation of Al toxicity tolerance in high-yielding groundnut genotypes. Chin J Oil Crop Sci 22:38–42

    Google Scholar 

  • Boshou LS, Zhuang WJ, Tang RH, Zhang XY, Shan SH, Jiang HF, Huang JQ (2009) Peanut aflatoxin and genomics research in China: progress and perspectives. Peanut Sci 36:21–28

    Google Scholar 

  • Brar GS, Cohen BA, Vick CL, Johnson GW (1994) Recovery of transgenic peanut (Arachis hypogaea L.) plants from elite cultivars utilizing ACCELL technology. Plant J 5:745–753

    Google Scholar 

  • Buiel AAM (1995) Quantitative resistance to peanut bud necrosis tospovirus in groundnut. Thesis, Wageningen. ISBN 90-5485-602-5

    Google Scholar 

  • Burrow MD, Simpson CE, Paterson AH, Starr JL (1996) Identification of peanut (Arachis hypogaea L.) RAPD markers diagnostic of root-knot nematode (Meloidogyne arneria (Neal) Chitwood) resistance. Mol Breed 2:369–379

    Google Scholar 

  • Choo KS, Siong TE (1996) Development of a HPLC method for the simultaneous determination of several B-vitamins and ascorbic acid. Mal J Nutr 2:49–65

    Google Scholar 

  • Chu Y, Wu CL, Holbrook CC, Tillman BL, Person G, Ozias-Akins P (2011) Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome 4:110–117

    CAS  Google Scholar 

  • Craufurd PQ, Prasad PVV, Summerfield RJ (2002) Dry matter production and rate of change of harvest index at high temperature in peanut. Crop Sci 42:146–151

    PubMed  Google Scholar 

  • Craufurd PQ, Prasad PVV, Kakani VG, Wheeler TR, Nigam SN (2003) Heat tolerance in groundnut. Field Crop Res 80:63–77

    Google Scholar 

  • Culbreath AK, Todd JW, Gorbet DW, Shokes FM, Pappu HR (1997) Field response of new peanut cultivar UF 91108 to tomato spotted wilt virus. Plant Dis 81:1410–1415

    Google Scholar 

  • Culbreath AK, Todd JW, Gorbet DW, Brown SL, Baldwin J, Pappu HR, Shokes FM (2000) Reaction of peanut cultivars to spotted wilt. Peanut Sci 27:35–39

    Google Scholar 

  • Culbreath AK, Todd JW, Brown SL (2003) Epidemiology and management of tomato spotted wilt in peanut. Annu Rev Phytopathol 41:53–75

    PubMed  CAS  Google Scholar 

  • Dick KM (1987) Pest management in stored groundnuts. Information Bulletin no. 22. International Crops Research Institute for the Semi-Arid Tropics, Patancheru

    Google Scholar 

  • Dodo H, Konan K, Viquez O (2005) A genetic engineering strategy to eliminate peanut allergy. Curr Allergy Asthma Rep 5:67–73

    PubMed  CAS  Google Scholar 

  • Duan N, Tan Y, Jiang H, Duanhong H (1993) Screening groundnut germplasm for resistance to bacterial wilt. Oil Crops China 1:22–25

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Dwivedi SL, Nigam SN (1995) Breeding for improved seed quality in groundnut (Arachis hypogaea L.) with special reference to export promotion: issues and opportunities. In: Workshop on status of confectionery groundnut research in india and strategies for export promotion, 28–29 April 1995, p 11

    Google Scholar 

  • Dwivedi SL, Nigam SN (2005) Confectionery groundnuts: issues and opportunities to promote export and food uses in India. J Oilseeds Res 22:1–4

    Google Scholar 

  • Dwivedi SL, Amin PW, Rasheedunisa, Nigam SN, Nagabhushanam GVS, Rao VR, Gibbons RW (1986) Genetic analysis of trichome characters associated with resistance to jassid (Empoasca kerri Pruthi) in peanut. Peanut Sci 13:15–18

    Google Scholar 

  • Dwivedi SL, Nigam SN, Reddy DVR, Reddy AS, Ranga Rao GV (1995) Progress in breeding groundnut varieties resistant to peanut bud necrosis virus and its vector. In: Buiel AAM, Parlevliet JE, Lenne JM (eds) Recent studies on peanut bud necrosis disease: proceedings of a meeting, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Asia Center, Patancheru, and Deot Plant Breed Agr Univ of Wageningen, Wageningen, 20 March 1995, pp 35–40

    Google Scholar 

  • Dwivedi SL, Crouch JH, Nigam SN, Ferguson ME, Paterson AH (2003) Molecular breeding of groundnut for enhanced productivity and food security in the semi-arid tropics: opportunities and challenges. Adv Agron 80:153–222

    CAS  Google Scholar 

  • Dwivedi SL, Upadhyaya HD, Blair MW, Bertioli DJ, Nielen S, Ortiz RO (2008) Enhancing crop genepools with beneficial traits using wild species. Plant Breed Rev 30:179–230

    CAS  Google Scholar 

  • Ehlers JD, Hall AE (1998) Heat tolerance of contrasting cowpea lines in short and long days. Field Crops Res 55:11–21

    Google Scholar 

  • Ekvised S, Jogloy S, Akkasaeng C, Keerati-kasikorn M, Kesmala T, Buddhasimma I, Patanothai A (2006) Field evaluation of screening procedures for thrips resistance in peanut. Asian J Plant Sci 5:838–846

    Google Scholar 

  • Entoori K, Sreevathsa R, Arthikala MK, Ananda Kumar P, Kumar ARV, Madhusudhan B, Udayakumar M (2008) A chimeric cry1X gene imparts resistance to Spodoptera litura and Helicoverpa armigera in the transgenic groundnut. EurAsia J BioSci 2:53–65

    Google Scholar 

  • FAOSTAT (2012) http://faostat.fao.org

  • Fletcher MM (1987) Evaluation of peanut flavor quality. In: Ahmed EA, Pattee HE (eds) Peanut quality: its assurance and maintenance from the farm to end product. Agricultural Experimental Station, Institute of Food and Agriculture, University of Florida, Gainesville, pp 60–72

    Google Scholar 

  • Fonceka D, Hodo-Abalo T, Rivallan R, Faye I, Sall MB, Ndoye O, Favero AP, Berioli DJ, Glaszmann JC, Courtois B, Rami JF (2009) Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic base of a recent autotetraploid. BMC Plant Biol 9:1–13

    Google Scholar 

  • Foster DJ, Wynne JC, Beute MK (1980) Evaluation of detached leaf culture for screening peanuts for leaf spot resistance. Peanut Sci 7:98–100

    Google Scholar 

  • Fox G, Cruickshank A (2005) Near infrared reflectance as a rapid and inexpensive surrogate measure for fatty acid composition and oil content of peanuts (Arachis hypogaea L.). J Infrared Spectosc 13:287–291

    CAS  Google Scholar 

  • Garcia GM, Stalker HT, Shroeder E, Kochert G (1996) Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome 39:836–845

    PubMed  CAS  Google Scholar 

  • German TL, Ullman DE, Moyer JW (1992) Tospovirus: diagnosis, molecular biology, phylogeny, and vector relationships. Annu Rev Phytopathol 30:315–384

    PubMed  CAS  Google Scholar 

  • Gorbet DW, Knauft DA (1997) Registration of ‘SunOleic 95R’ peanut. Crop Sci 37:1392

    Google Scholar 

  • Gorbet DW, Kucharek TA, Shokes FM, Brenneman TB (2004) Field evaluations of peanut germplasm for resistance to stem rot caused by Sclerotium rolfsii. Peanut Sci 31:91–95

    Google Scholar 

  • Gregory WC, Krapovickas A, Gregory MP (1980) Structures, variation, evolution, and classification in Arachis. In: Summerfield RJ, Bunting AH (eds) Advances in legume science. Royal Botanic Gardens, Kew, London, pp 469–481

    Google Scholar 

  • Hassan HN, Beute MK (1977) Evaluation of resistance to Cercospora leafspot in peanut germplasm potentially useful in breeding program. Peanut Sci 4:78–83

    Google Scholar 

  • Herdina A, Silsbury JH (1990) Estimating nitrogenase activity of faba bean (Vicia faba) by acetylene reduction (Ar) assay. Aust J Plant Physiol 17(5):489–502

    Google Scholar 

  • Herselman L, Thwaites R, Kimmins FM, Courtois B, Van Der Merwe PJA, Seal SE (2004) Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor Appl Genet 109:1426–1433

    PubMed  CAS  Google Scholar 

  • Holbrook CC (2001) Status of United States germplasm collection of peanut. Peanut Sci 28:84–89

    Google Scholar 

  • Holbrook CC, Stalker HT (2002) Peanut breeding and genetic resources. Plant Breed Rev 22:297–356

    Google Scholar 

  • Holbrook CC, Knauft DA, Dickson DW (1983) A technique for screening peanut for resistance to Meloidogyne arenaria. Plant Dis 67:957–958

    Google Scholar 

  • Holbrook CC, Matheron ME, Wilson DW, Anderson WF, Will ME, Norden AJ (1994) Development of a large-scale field screening system for resistance to pre-harvest aflatoxin contamination. Peanut Sci 21:20–22

    Google Scholar 

  • Holbrook CC, Guo BZ, Wilson DM, Timper P (2009) The U.S. breeding program to develop peanut with drought tolerance and reduced aflatoxin contamination. Peanut Sci 36:50–53

    Google Scholar 

  • Hong Y, Chen X, Liang X, Liu H, Zhou G, Li S, Wen S, Holbrook CC, Guo B (2010) A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol 10:17

    PubMed  Google Scholar 

  • Huabin J, Qing Y (1999) Biological identification of tolerance to Al in groundnut genotypes. Chin J Oil Crop Sci 4:51–56

    Google Scholar 

  • Hussey RS, Barker KR (1973) A comparison of methods of collecting inocula for Meloidogyne spp., including a new technique. Plant Dis Rep 57:1025–1028

    Google Scholar 

  • IBPGR and ICRISAT (1992) International Bureau of Plant Genetic Resource, Rome; International Crops Research Institute for the Semi-Arid Tropics, Patancheru

    Google Scholar 

  • Isleib TG, Wynne JC, Nigam SN (1994) Groundnut breeding. In: Smartt J (ed) the groundnut crop: a scientific basis for improvement. Chapman and Hall, London, pp 552–623

    Google Scholar 

  • Jambunathan R (1991) Groundnut quality characteristics. In: Uses of tropical grain legumes: proceedings of a consultants meeting, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Center, Patancheru, 27–30 March 1989, pp 267–275

    Google Scholar 

  • Jambunathan R, Raju MS, Barde SP (1985) Analysis of oil content of groundnuts by nuclear magnetic resonance spectrometry. J Sci Food Agric 36:162–166

    Google Scholar 

  • Janila P, Venuprasad R, Rathore A, Rupakula A, Reddy RK, Waliyar F, Nigam SN (2012) Genetic analysis of resistance to late leaf spot in interspecific groundnuts. Euphytica (under revision)

    Google Scholar 

  • Johansen C, Nageswara Rao RC (1996) Maximizing groundnut yields. In: Renard C, Gowda CLL, Nigam SN, and Johansen C (eds) Achieving high groundnut yields: proceedings of international workshop, Laixi City, 25–29 August 1995. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Patancheru, pp 117–127

    Google Scholar 

  • Johansen C, Nigam SN (1996) Importance of drought stress and its alleviation in legumes. In: Wright GC, Nageswara Rao RC (eds) Selection for water-use efficiency in grain legumes. Report of a workshop held at ICRISAT Center, Andhra Pradesh, 5–7 May 1993. ACIAR Technical Report No. 27. The Australian Centre for International Agricultural Research, pp 17–19

    Google Scholar 

  • Kale DM, Badigannavar AM, Murty GSS (1999) Groundnut variety TAG 24 with potential for wider adaptability. Int Arachis Newslett 19:12–13

    Google Scholar 

  • Kale DM, Badigannavar AM, Murty GSS (2000) Development of new large pod Trombay groundnut (Arachis hypogaea L.) selections. Indian J Agric Sci 70:365–369

    Google Scholar 

  • Kalyani G, Reddy AS, Kumar PL, Rao RDVJP, Aruna R, Waliyar F, Nigam SN (2007) Sources of resistance to Tobacco streak virus in wild Arachis (Fabaceae: Papilionoidae) germplasm. Plant Dis 91:1585–1590

    Google Scholar 

  • Kelman A (1953) The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693–695

    Google Scholar 

  • Khedikar YP, Gowda MVC, Sarvamangala C, Patgar KV, Upadhyaya HD, Varshney RK (2010) A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet 121:971–984

    PubMed  CAS  Google Scholar 

  • Knauft DA, Wynne JC (1995) Peanut breeding and genetics. Adv Agron 55:393–445

    Google Scholar 

  • Kochert G, Stalker HT, Gimenes M, Galgaro L, Lopes CR, Moore K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291

    CAS  Google Scholar 

  • Krapovickas A, Gregory WC (1994) TaxonomIa del genero Arachis (Leguminosae). Bonplandia 8:1–186

    Google Scholar 

  • Kunrong C, Zongyi Z, Zeyong X, Dietzgen RG, Reddy DVR (1999) Effects of some Chinese strains peanut stripe virus (PStV) on groundnut cultivars and other plants. Int Arachis Newslett 19:30–31

    Google Scholar 

  • Lamb MC, Sternitzke DA (2001) Cost of aflatoxin contamination to the farmer, buying point, and sheller segments of the southeast United States peanut industry. Peanut Sci 28:59–63

    Google Scholar 

  • Li WR, Tan YJ (1984) Inoculation techniques for groundnut bacterial wilt. Oil Crops China 2:77–81

    Google Scholar 

  • Lynch RE (1990) Resistance in peanut to major orthopod pests. Fla Entomol 73:422–445

    Google Scholar 

  • Mallikarjuna N, Senthilvel S, Hoisington D (2010) Development of new sources of tetraploid Arachis to broaden the genetic base of cultivated groundnut. Genet Resour Crop Evol 58:889–907

    Google Scholar 

  • Mandal B, Pappu HR, Culbreath AK (2001) Factors affecting mechanical transmission of tomato spotted wilt virus to peanut (Arachis hypogaea). Plant Dis 85:1259–1263

    Google Scholar 

  • Mayee CD, Munde PN (1979) A modified detached leaf technique for laboratory development of groundnut rust. Indian Phytopathol 32:467

    Google Scholar 

  • Mayeux AH, Waliyar F, Ntare BR (2003) Groundnut varieties recommended by Groundnut Germplasm Project (GGP) for West and Central Africa. (In En., Fr.). Intl. Crops Res. Inst. Semi-Arid Tropics (ICRISAT), Patancheru

    Google Scholar 

  • Mehan VK (1989) Screening groundnuts for resistance to seed invasion by Aspergillus flavus and to aflatoxin production. In: McDonald M, Mehan VK, Hall SD (eds) Proceeding of international work-shop on aftatoxin contamination of groundnut, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 323–334

    Google Scholar 

  • Mehan VK, McDonald M (1980) Screening for resistance to Aspergillus flavus invasion and aflatoxin production in groundnuts. ICRISAT, Groundnut improvement program occasional paper no. 2. ICRISAT, Patancheru, p 15 (limited distribution)

    Google Scholar 

  • Mehan VK, Reddy DDR, McDonald D (1993) Resistance in groundnut genotypes to Kalahasti malady caused by the stunt nematode, Tylenchorhynchus brevilineatus. Int J Pest Manage 39:201–203

    Google Scholar 

  • Mehan VK, Boshou LS, Tan YJ, Robinson-Smith A, McDonald D, Hayward AC (1994) Bacterial wilt of groundnut. Information bulletin no. 35. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, p 1

    Google Scholar 

  • Mehan VK, Mayee CD, McDonald D, Ramakrishna N, Jayanthi S (1995) Resistance in groundnut to Sclerotium rolfsii-caused stem and pot rot. Int J Pest Manage 41:79–83

    Google Scholar 

  • Menke KH, Steingass H (1988) Estimation of the energy feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Dev 28:7–55

    Google Scholar 

  • Middleton KJ, Saleh N, Horn N, Reddy DVR (1988) Production of peanut stripe virus-free seed and screening for resistance to peanut stripe virus. In: Summary proceedings of the first meeting to coordinate research on peanut stripe virus disease of groundnut, Malang Res. Inst. Food Crops, Malang, 9–12 June 1987. Intl. Crops Res. Inst. for the Semi-Arid Tropics, Patancheru, pp 21–22

    Google Scholar 

  • Misra JB, Mathur RS, Bhatt DM (2000) Near-infrared transmittance spectroscopy: a potential tool for nondestructive determination of oil content in groundnuts. J Sci Food Agric 80:237–240

    CAS  Google Scholar 

  • Monteverde-Penso E, Wynne JC, Isleib TG, Mozingo RW (1987) A comprehensive breeding procedure utilizing recurrent selection for peanuts. Peanut Sci 14:1–3

    Google Scholar 

  • Naidu RA, Kimmins FM (2007) The effect of Groundnut rosette assistor virus on the agronomic performance of four groundnut (Arachis hypogaea L.) genotypes. J Phytopathol 155:350–356

    Google Scholar 

  • Nambiar PTC, Dart PJ, Nigam SN, Gibbons RW (1982) Genetic manipulation of nodulation in groundnut. In: Graham PH, Harris SC (eds) Biological nitrogen fixation technology for tropical agriculture. Centro Internacional de Agricultura Tropicale, Cali, pp 49–56

    Google Scholar 

  • Narasimham NV, Von Oppen M, Rao PP (1985) Consumer preferences for groundnut quality. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, p 18

    Google Scholar 

  • National Peanut Council of America (NPCA) (1988) USA peanuts. NPCA, Virginia

    Google Scholar 

  • Nautiyal PC, Rajgopal K, Zala PV, Pujari DS, Basu M, Dhadhal BA, Nandre BM (2008) Evaluation of wild Arachis species for abiotic stress tolerance: thermal stress and leaf water relations. Euphytica 159:43–57

    Google Scholar 

  • Newell JA, Mason ME, Matlock RS (1967) Precursor of typical and atypical roasted peanut flavor. J Agric Food Chem 15:767–772

    CAS  Google Scholar 

  • Nigam SN, Blummel M (2010) Cultivar-dependent variation in food-feed-traits in groundnut (Arachis hypogaea L.). Anim Nutr Feed Technol 10S:39–48

    Google Scholar 

  • Nigam SN, Bock KR (1990) Inheritance of resistance to groundnut rosette virus in groundnut (Arachis hypogaea L.). Ann Appl Biol 117:558–560

    Google Scholar 

  • Nigam SN, Rao VR, Gibbons RW (1983) Utilization of natural hybrids in the improvement of groundnuts (Arachis hypogaea). Exp Agric 19:355–359

    Google Scholar 

  • Nigam SN, Dwivedi SL, Nambiar PTC, Gibbons RW, Dart PJ (1985) Combining ability analysis of N2-fixation and related traits in peanut. Peanut Sci 12:55–57

    Google Scholar 

  • Nigam SN, Dwivedi SL, Gibbons RW (1991) Groundnut breeding: constraints, achievements and future possibilities. Plant Breed Abstr 61:1127–1136

    Google Scholar 

  • Nigam SN, Prasada Rao RDVJ, Bhatnagar-Mathur P, Sharma KK (2012) Genetic management of virus diseases in peanut. Plant Breeding Abstracts (communicated)

    Google Scholar 

  • Niu C, Kennedy YA, Faustinelli P, Joshi M, Rajasekaran K, Yang H, Chu Y, Cary J, Ozias-Akins P (2009) Antifungal activity in transgenic peanut (Arachis hypogaea L.) conferred by a nonheme chloroperoxidase gene. Peanut Sci 36:126–132

    Google Scholar 

  • Ntare BR, Olorunju PE, Hildebrand GL (2002) Progress in breeding early maturing peanut cultivars with resistance to groundnut rosette disease in West Africa. Peanut Sci 29:17–23

    Google Scholar 

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567

    Google Scholar 

  • Olorunju PE, Kuhn CW, Demski JW, Misari SM, Ansa OA (1991) Disease reaction and yield performance of peanut genotypes grown under groundnut rosette and rosette-free field environments. Plant Dis 75:1269–1273

    Google Scholar 

  • Olorunju PE, Kuhn CW, Demski JW, Misari SM, Ansa OA (1992) Inheritance of resistance in peanut to mixed infections of groundnut rosette virus (GRV) and groundnut rosette assistor virus and a single infection of GRV. Plant Dis 76:95–100

    Google Scholar 

  • Olorunju PE, Kuhn CW, Ansa OA, Misari SM, Demski JW (1995) Mechanical inoculation procedure to screen for resistance to groundnut rosette virus in peanut. Peanut Sci 22:56–58

    Google Scholar 

  • Ong CK (1986) Agroclimatological factors affecting phenolotyof peanut. In: Agrometeorology of groundnut. Proceedings of an international symposium, ICRISAT Shelian Center, Niamey, 21–26 August 1985. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 115–125

    Google Scholar 

  • Padagham DE, Kimmins FM, Rao GVR (1990) Resistance in groundnut (Arachis hypogaea L.) to Aphis craccivora (Koch.). Ann Appl Biol 117:285–294

    Google Scholar 

  • Pal KK, Dey R, Singh JP, Joshi BH (2000) Biological control of groundnut Bruchid: a serious storage pest of groundnut. SARC Newslett 10:4–8

    Google Scholar 

  • Pande S, Narayana Rao J, Reddy MV, McDonald D (1994) Development of a greenhouse screening technique for stem rot resistance in groundnut. Int Arachis Newslett 14:23–24

    Google Scholar 

  • Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimarães P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B, Cook DR, Bertioli DJ, Michelmore R, Varshney RK (2012) Biotechnol Adv 30(3):639–651

    PubMed  CAS  Google Scholar 

  • Patil GD, Desale SC, Patil PS, Patil SS (1980) ‘Phule-Pragati’ a high yielding early bunch groundnut for Maharashtra. J MAU 5:47–52

    Google Scholar 

  • Pensuk V, Daengpluang N, Wongkaew S, Jogloy S, Patanothai A (2002) Evaluation of screening procedures to identify peanut resistance to peanut bud necrosis virus (PBNV). Peanut Sci 29:47–51

    Google Scholar 

  • Peters D (2003) Tospovirus. In: Loebenstein G, Thottappilly G (eds) Virus and virus-like diseases of major crops in developing countries. Kluwer, Dorderecht, pp 719–742

    Google Scholar 

  • Phillips RJ, Singleton B (1981) The determination of specific free fatty acids in peanut oil by gas chromatography. J Am Oil Chem Soc 55(2):225–227

    Google Scholar 

  • Pratap S, Ramarao G, Reddy KB (2002) Response of groundnut genotypes to Aluminum toxicity in solution culture. Indian J Plant Physiol 7:396–400

    Google Scholar 

  • Ramanathan T (2004) Groundnut. In: Ramanathan T (ed) Applied genetics of oilseed crops. Daya Book, New Delhi, pp 15–73

    Google Scholar 

  • Ramanathan T (2004) Groundnut. In: Applied genetics of oilseed crops. Daya Publishing House, New Delhi, pp 15–73

    Google Scholar 

  • Ranga Rao GV, Wightman JA (1996) Techniques for screening groundnut genotypes for resistance to insect pests. In: Wightman JA, Ranga Rao GV (eds) Spodoptera litura in India: proceedings of the national scientist forum on Spodoptera litura, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Asia Centre, Patancheru, and Overseas Development Admistration, London, 2–4 April 1996, pp 67–75

    Google Scholar 

  • Rao RCN, Nigam SN (2003) Genetic options for drought management in groundnut. In: Management of agricultural drought - agronomic and genetic options. Science Publishers, Hyderabad, pp 123–141

    Google Scholar 

  • Rao NRC, Talwar HS, Wright GC (2001) Rapid assessment of specific leaf area and leaf N in peanut (Arachis hypogaea L.) using chlorophyll meter. J Agron Crop Sci 189:175–182

    Google Scholar 

  • Rao NK, Reddy LJ, Bramel PJ (2003) Potential of wild species for genetic enhancement of some semi-arid food crops. Genet Res Crop Evol 50:707–721

    Google Scholar 

  • Ratnakumar P, Vadez V, Nigam SN, Krishnamurthy L (2009) Assessment of transpiration efficiency in peanut (Arachis hypogaea L.) under drought using a lysimeter system. Plant Biol 11:124–130

    PubMed  CAS  Google Scholar 

  • Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Varshney RK (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122(6):1119–1132

    PubMed  CAS  Google Scholar 

  • Reddy PS, Basu MS (1989) Groundnut varieties of India. Technical bulletin. National Research Center for Groundnut, ICAR, Junagadh, p 15

    Google Scholar 

  • Reddy AS, Prasada Rao RDVJ, Thirumala-Devi K, Reddy SV, Mayo MA, Roberts I, Satyanarayana T, Subramaniam K, Reddy DVRR (2002) Occurrence of tobacco streak virus on peanut (Arachis hypogaea L.). India Plant Dis 86:173–178

    CAS  Google Scholar 

  • Reddy AS, Kumar PL, Waliyar F (2005) Rate of transmission of Indian peanut clump virus to groundnut by mechanical inoculation. Int Arachis Newslett 25:37–39

    Google Scholar 

  • Rohini VK, Rao KS (2000) Transformation of peanut (Arachis hypogaea L.): a non-tissue culture based approach for generating transgenic plants. Plant Sci 15:41–49

    Google Scholar 

  • Rohini VK, Rao KS (2001) Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: Variable response of transformats to leaf spot disease. Plant Sci 160:883–892

    Google Scholar 

  • Sahrawat KL, Ravi Kumar G, Rao JK (2002) Evaluation of triacid and dry ashing procedures for determining potassium, calcium, magnesium, iron, zinc, manganese, and copper in plant materials. Commun Soil Sci Plant Anal 33:95–102

    CAS  Google Scholar 

  • Sarvamangala C, Gowda MVC, Varshney RK (2011) Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crop Res 122:49–59

    Google Scholar 

  • Selvaraj MG, Narayana M, Schubert AM, Ayers JL, Baring MR, Burow MD (2009) Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Electron J Biotechnol 12. doi:10.2225/vol12

  • Serraj R, Krishnamurthy L, Jyostna Devi M, Reddy MJV, Nigam SN (2004) Variation in transpiration efficiency and related traits in groundnut mapping population. Int Arachis Newslett 24:42–45

    Google Scholar 

  • Sharma SB, McDonald D (1990) Global status of nematode problems of groundnut, Pigeonpea, chickpea, sorghum and pearl millet, and suggestions for future work. Crop Prot 9:453–458

    Google Scholar 

  • Sharma D, Soekarno B (1992) Identification of additional groundnut sources resistant to bacterial wilt under field constitution in East Java, Indonesia. Int Arachis Newslett 11:23–25

    Google Scholar 

  • Sharma HC, Pampapathy G, Dwivedi SL, Reddy LJ (2003) Mechanisms and diversity of resistance to insect pests in wild relatives of groundnut. J Econ Entomol 96:1886–1897

    PubMed  CAS  Google Scholar 

  • Sheshashayee MS, Bindhumadhava H, Shankar AG, Prasad TG, Udayakumar M (2003) Breeding strategies to exploit water use efficiency for crop improvement. J Plant Biol 30:253–268

    Google Scholar 

  • Shew BB, Wynne JC, Beute MK (1987) Field, microplot, and greenhouse evaluations of resistance to Sclerotium rolfsii in peanut. Plant Dis 71:188–191

    Google Scholar 

  • Shokes FM, Rozalski K, Gorbet W, Brenneman TB, Berger DA (1996) Techniques for inoculation of peanut with Sclerotium rolfsii in the greenhouse and field. Peanut Sci 23:124–128

    Google Scholar 

  • Shokes FM, Weber Z, Gorbet DW, Pudelko HA, Taczanowski M (1998) Evaluation of peanut genotypes for resistance to southern stem rot using an agar disc technique. Peanut Sci 25:12–17

    Google Scholar 

  • Simpson CE, Starr JL, Church GT, Burrow MD, Paterson AH (2003) Registration of NemaTAM peanut. Crop Sci 43:1561

    Google Scholar 

  • Singh F, Diwakar B (1993) Nutritive values and uses of pigeon pea and groundnut. Skill development series: 14, Human resources development program, International Crops Research Institute for the Semi-Arid Tropics, Patancheru

    Google Scholar 

  • Singh U, Jambunathan R (1980) Evaluation of rapid method for estimation of protein in chickpea (Cicer arietinum L.). J Sci Food Agric 31:247–254

    CAS  Google Scholar 

  • Singh AK, Simpson CE (1994) Biosystematics and genetic resources. In: Smartt I (ed) The groundnut crop: a scientific basis for improvement. Chapman and Hall, London, pp 96–137

    Google Scholar 

  • Singh M, Rao RCN, Williams JH (1991) statistical assessment of genotypic sensitivity of groundnut (Arachis hypogae L.) to drought in line source sprinkler experiments. Euphytica 57:19–25

    Google Scholar 

  • Singh U, Sridhar R, Dwivedi SL, Nigam SN, Jambunathan R (1996) Evaluation of blanching quality in groundnut (Arachis hypogaea L.). J Food Sci Technol 33:211–214

    Google Scholar 

  • Singh AK, Dwivedi SL, Pandey S, Moss JP, Nigam SN, Sastry DC (2003) Registration of rust and late leaf spot resistant peanut germplasm lines. Crop Sci 43:440–441

    Google Scholar 

  • Singh AL, Hariprassana K, Solanki RM (2008) Screening and selection of groundnut genotypes for tolerance of soil salinity. Aust J Crop Sci 1:69–77

    CAS  Google Scholar 

  • Singsit MC, Adang RE, Lynch WZ, Anderson A, Wang G, Gardineau P, Ozias-Akins P (1997) Expression of a Bacillus thuringiensis cry1A gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Res 6:169–176

    PubMed  CAS  Google Scholar 

  • Sobolev VS, Cole RJ (1999) Ttrans-resveratrol content in commercial peanuts and peanut products. J Agric Food Chem 47:1435–1439

    PubMed  CAS  Google Scholar 

  • Southey JF (1970) Laboratory methods for work with plant and soil nematodes. Technical Bulletin 2. Ministry of Agriculture, Fisheries and Food, London

    Google Scholar 

  • Subrahmanyam P, Moss JP, Rao VR (1983) Resistance to peanut rust in wild Arachis species. Plant Dis 67:209–212

    Google Scholar 

  • Subrahmanyam P, McDonald D, Waliyar F, Reddy LJ, Nigam SN, Gibbons RW, Rao VR, Singh AK, Pande S, Reddy PM, Subba Rao PV (1995) Screening methods and sources of resistance to rust and late leaf spot of groundnut. Information Bulletin no. 47. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, p 24

    Google Scholar 

  • Subrahmanyam P, Hildebran GL, Naidu RA, Reddy LJ, Singh AK (1998) Sources of resistance to groundnut rosette disease in global groundnut germplasm. Ann Appl Biol 132:473–485

    Google Scholar 

  • Sundaram J, Kandala CV, Holser RA, Butts CL, Widham WR (2010) Determination of in-shell peanut oil and fatty acid composition using near-infrared reflectance spectroscopy. J Am Oil Chem Soc 87:1103–1114

    CAS  Google Scholar 

  • Tallury SP, Isleib TG, Stalker HT (2009) Comparison of virginia-type peanut cultivars and interspecific hybrid derived breeding lines for leaf spot resistance, yield, and grade. Peanut Sci 36:144–149

    Google Scholar 

  • Talwar HS, Chandra SA, Rao RCN (2002) Genotypic variability in membrane thermostability in groundnut. Indian J Plant Physiol 7:97–102

    Google Scholar 

  • Upadhyaya HD, Ferguson ME, Bramel PJ (2001) Status of Arachis germplasm collection at ICRISAT. Peanut Sci 39:115–118

    Google Scholar 

  • Utomo SD, Anderson WF, Wynne JC, Beute MK, Hagler WM Jr, Payne GA (1990) Estimates of heritability and correlation among three mechanisms of resistance to Aspergillus parasiticus in peanut. Proc Am Peanut Res Educ Soc 22:26

    Google Scholar 

  • Vadez V, Srivastava N, Krishnamurthy L, Aruna R, Nigam SN (2005) Standardization of a protocol to screen for salinity tolerance in groundnut. Int Arachis Newslett 25:42–47

    Google Scholar 

  • Vara Prasad PV, Craufurd PQ, Summerfield RJ (1999) Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress. Ann Bot 84:381–386

    Google Scholar 

  • Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishnamurthy L, Aruna R, Nigam SN, Moss BJ, Seetha K, Ravi K (2009a) The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet 118:729–739

    PubMed  CAS  Google Scholar 

  • Varshney RK, Mahendar T, Aruna R, Nigam SN, Neelima K, Vadez V, Hoisington DA (2009b) High level of natural variation in a groundnut (Arachis hypogaea L.) germplasm collection assayed by selected informative SSR markers. Plant Breed 128:486–494

    CAS  Google Scholar 

  • Vasudeva Rao NJ, Nigam SN, Huda AKS (1992) The thermal time concept as a selection criterion for earliness in peanut. Peanut Sci 19:7–10

    Google Scholar 

  • Venkatachalam P, Geetha N, Khandewal A, Shaila MS, Sita GL (2000) Agrobacterium mediated genetic transformation and regeneration of transgenic plants for cotyledon explants of groundnut (Arachis hypogaea L.) via somatic embryogenesis. Curr Sci 78:1130–1136

    CAS  Google Scholar 

  • Wakman W, Ansar HA (1989) Screening for peanut stripe virus resistance of ICRISAT peanut collection at Maros, Indonesia. In: Summary proceedings of the second coordinators’ meeting on peanut stripe virus, India. Intl. Crops Res. Inst. Semi-Arid Tropics (ICRISAT) Center, 1–4 August 1989, p 10

    Google Scholar 

  • Waliyar F, Kumar PL, Ntare BR, Monyo E, Nigam SN, Reddy AS, Osiru M, Diallo AT (2007) A century of research on groundnut rosette disease and its management. Information Bul. 75. Intl. Crops Res. Inst. for the Semi-Arid Tropics

    Google Scholar 

  • Wang ML, Gillaspie AG, Morris JB, Pittman RN, Davis J, Pederson GA (2008) Flavonoid content in different legume germplasm seeds quantified by HPLC. Plant Gen Res 6:62–69

    CAS  Google Scholar 

  • Whitley ML, Isleib TG, Hendrix KW, Sanders TH, Dean LO (2011) Environmental and varietal effects on niacin content of raw and roasted peanuts. Peanut Sci 38:20–25

    Google Scholar 

  • Wightman JA, Amin PW (1988) Groundnut pests and their control in the semi-arid tropics. Trop Pest Manage 34:218–226

    Google Scholar 

  • Wongkaew S, Dollet M (1990) Comparison of peanut stripe virus isolates using symptomatology on particular hosts and serology. Oléagineux 45:267–278

    Google Scholar 

  • Wright FS, Mozingo RW (1975) Laboratory device for peanut skin removal. Peanut Sci 2:11–15

    Google Scholar 

  • Wynne JC (1976) Evaluation of early generation testing in peanuts. Peanut Sci 3:62–66

    Google Scholar 

  • Wynne JC, Gregory WC (1981) Peanut breeding. Adv Agron 34:39–72

    Google Scholar 

  • Wynne JC, Elkan GH, Schneeweis TJ (1980) Increasing nitrogen fixation of groundnut by strain and host selection. In: Proceedings of the international workshop on groundnuts, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 13–17 October 1980, pp 95–109

    Google Scholar 

  • Wynne JC, Elkan GH, Isleib TG, Schneeweis TJ (1983) Effect of host plant, Rhizobium strain and host x strain interaction on symbiotic variability in peanut. Peanut Sci 10:110–114

    Google Scholar 

  • Xue HQ, Isleib TG, Payne GA, Wilson RF, Novitzky WP, O’Brian G (2003) Comparison of aflatoxin production in normal- and high-oleic backcross-derived peanut lines. Plant Dis 87:1360–1365

    CAS  Google Scholar 

  • Yang Q, Jing HB (2000) The effect of aluminum on N, P and Ca uptake in peanut varieties. Chin J Oil Crop Sci 22:68–73

    CAS  Google Scholar 

  • Yang H, Singsit C, Wang A, Gon Salves D, Ozias-Akins P (1998) Transgenic peanut plants containing a nucleocapsid protein gene of tomato spotted wilt virus show divergent levels of gene expression. Plant Cell Rep 17:693–699

    CAS  Google Scholar 

  • Zeyong X, Wightman JA, Reddy DVR, Zongyi Z, Kunrong C, Jinxing C, Jiapeng H (1995) Evaluation of an aphid-resistant groundnut genotype (EC 36892) in China. Int Arachis Newslett 15:49–51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janila Pasupuleti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pasupuleti, J., Nigam, S.N. (2013). Phenotyping for Groundnut (Arachis hypogaea L.) Improvement. In: Panguluri, S., Kumar, A. (eds) Phenotyping for Plant Breeding. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8320-5_5

Download citation

Publish with us

Policies and ethics