Skip to main content

Integrating Partial Least Squares Correlation and Correspondence Analysis for Nominal Data

  • Conference paper
  • First Online:
New Perspectives in Partial Least Squares and Related Methods

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 56))

Abstract

We present an extension of pls—called partial least squares correspondence analysis (plsca)—tailored for the analysis of nominal data. As the name indicates, plsca combines features of pls (analyzing the information common to two tables) and correspondence analysis (ca, analyzing nominal data). We also present inferential techniques for plsca such as bootstrap, permutation, and \({\chi }^{2}\) omnibus tests. We illustrate plsca with two nominal data tables that store (respectively) behavioral and genetics information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. de Leon, J. C. Correa, G. Ruaño, A. Windemuth, M. J. Arranz, and F. J. Diaz, “Exploring genetic variations that may be associated with the direct effects of some antipsychotics on lipid levels,” Schizophrenia Research 98, pp. 1–3, 2008.

    Google Scholar 

  2. C. Cruchaga, J. Kauwe, K. Mayo, N. Spiegel, S. Bertelsen, P. Nowotny, A. Shah, R. Abraham, P. Hollingworth, D. Harold, et al., “snps associated with cerebrospinal fluid phospho-tau levels influence rate of decline in Alzheimer’s disease,” PLoS Genetics 6, 2010.

    Google Scholar 

  3. D. Y. Lin, Y. Hu, and B. E. Huang, ‘ ‘Simple and efficient analysis of disease association with missing genotype data,” American Journal of Human Genetics 82, pp. 444–452, 2008.

    Article  Google Scholar 

  4. C. Lippert, J. Listgarten, Y. Liu, C. M. Kadie, R. I. Davidson, and D. Heckerman, “FaST linear mixed models for genome-wide association studies,” Nature Methods 8, pp. 833–835, 2011.

    Article  Google Scholar 

  5. C. J. Hoggart, J. C. Whittaker, M. De Iorio, and D. J. Balding, “Simultaneous analysis of all SNPs in Genome-Wide and Re-Sequencing association studies,” PLoS Genetics 4, p. e1000130, 2008.

    Article  Google Scholar 

  6. J. Liu, G. Pearlson, A. Windemuth, G. Ruano, N. I. Perrone-Bizzozero, and V. Calhoun, “Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA,” Human Brain Mapping 30, pp. 241–255, 2009.

    Article  Google Scholar 

  7. M. Vounou, T. E. Nichols, and G. Montana, “Discovering genetic associations with high-dimensional neuroimaging phenotypes: A sparse reduced-rank regression approach,” NeuroImage 53, pp. 1147–1159, 2010.

    Article  Google Scholar 

  8. M. A. Zapala and N. J. Schork, “Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables,” Proceedings of the National Academy of Sciences 103, pp. 19430–19435, 2006.

    Article  Google Scholar 

  9. C. S. Bloss, K. M. Schiabor, and N. J. Schork, “Human behavioral informatics in genetic studies of neuropsychiatric disease: Multivariate profile-based analysis,” Brain Research Bulletin 83, pp. 177–188, 2010.

    Article  Google Scholar 

  10. G. Moser, B. Tier, R. E. Crump, M. S. Khatkar, and H. W. Raadsma, “A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers,” Genetics Selection Evolution 41, p. 56, 2009.

    Article  Google Scholar 

  11. J. Poline, C. Lalanne, A. Tenenhaus, E. Duchesnay, B. Thirion, and V. Frouin, “Imaging genetics: bio-informatics and bio-statistics challenges,” in 19th International Conference on Computational Statistics, Y. Lechevallier and G. Saporta, (eds.), (Paris, France), 2010.

    Google Scholar 

  12. A. Krishnan, L. J. Williams, A. R. McIntosh, and H. Abdi, “Partial least squares (PLS) methods for neuroimaging: A tutorial and review,” NeuroImage 56, pp. 455–475, 2011.

    Article  Google Scholar 

  13. A. McIntosh, F. Bookstein, J. Haxby, and C. Grady, “Spatial pattern analysis of functional brain images using partial least squares,” NeuroImage 3, pp. 143–157, 1996.

    Article  Google Scholar 

  14. A. Krishnan, N. Kriegeskorte, and H. Abdi, “Distance-based partial least squares analysis,” in New perspectives in Partial Least Squares and Related Methods, H. Abdi, W. Chin, V. Esposito Vinzi, G. Russolilo, and L. Trinchera, (eds.), New York, Springeer Verlag, pp. 131–145.

    Google Scholar 

  15. L.R., Tucker, “An inter-battery method of factor analysis.” Psychometrika 23, pp. 111–136, 1958.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Abdi and L.J. Williams, “Partial least squares methods: Partial least squares correlation and partial least square regression,” in: Methods in Molecular Biology: Computational Toxicology, B. Reisfeld and A. Mayeno (eds.), pp. 549–579. New York: Springer Verlag. 2013.

    Google Scholar 

  17. F.L. Bookstein, P.L. Sampson, A.P. Streissguth, and H.M. Barr, “Exploiting redundant measurements of dose and developmental outcome: New methods from the behavioral teratology of alcohol,” Developmental Psychology 32, pp. 404–415, 1996.

    Article  Google Scholar 

  18. P.D. Sampson, A.P. Streissguth, H.M. Barr, and F.S. Bookstein, “Neurobehavioral effect of prenatal alcohol: Part II, partial least square analysis,” Neurotoxicology and Teratology 11, pp. 477–491, 1989

    Article  Google Scholar 

  19. A. Tishler, D. Dvir, A. Shenhar, and S. Lipovetsky, “Identifying critical success factors in defense development projects: A multivariate analysis,” Technological Forecasting and Social Change 51, pp. 151–171, 1996.

    Article  Google Scholar 

  20. A. Tishler, and S. Lipovetsky, “Modeling and forecasting with robust canonical analysis: method and application,” Computers and Operations Research 27, pp. 217–232, 2000.

    Article  MATH  Google Scholar 

  21. S. Dolédec, and D. Chessel, “Co-inertia analysis: an alernative method for studying species-environment relationships.” Freshwater Biology 31, pp. 277–294, 1994.

    Article  Google Scholar 

  22. H. Abdi, “Singular value decomposition (svd) and generalized singular value decomposition (gsvd),” in Encyclopedia of Measurement and Statistics, N. Salkind, ed., pp. 907–912, Thousand Oaks (CA): Sage, 2007.

    Google Scholar 

  23. M. Greenacre, Theory and Applications of Correspondence Analysis, London, Academic Press, 1984.

    MATH  Google Scholar 

  24. H. Yanai, K. Takeuchi, and Y. Takane, Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition, New York, Springer, 2011.

    Book  MATH  Google Scholar 

  25. F. Bookstein, “Partial least squares: a dose–response model for measurement in the behavioral and brain sciences,” Psycoloquy 5, 1994.

    Google Scholar 

  26. H. Abdi and L. J. Williams, “Correspondence analysis,” in Encyclopedia of Research Design, pp. 267–278, Thousand Oaks, (CA), Sage, 2010.

    Google Scholar 

  27. H. Abdi and D. Valentin, “Multiple correspondence analysis,” in Encyclopedia of Measurement and Statistics, pp. 651–657, Thousand Oaks, (CA),Sage, 2007.

    Google Scholar 

  28. A. Leclerc, “L’analyse des correspondances sur juxtaposition de tableaux de contingence,” Revue de Statistique Appliquée 23, pp. 5–16

    Google Scholar 

  29. L. Lebart, M. Piron, and A. Morineau, Statistiques Exploratoire Multidimensionnelle: Visualisations et Inférences en Fouille de Données, Paris, Dunod, 2006.

    Google Scholar 

  30. F. M. Filbey, J. P. Schacht, U. S. Myers, R. S. Chavez, and K. E. Hutchison, “Individual and additive effects of the cnr1 and faah genes on brain response to marijuana cues,” Neuropsychopharmacology 35, pp. 967–975, 2009.

    Article  Google Scholar 

  31. T. Hesterberg, “Bootstrap,” Wiley Interdisciplinary Reviews: Computational Statistics 3, pp. 497–526, 2011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Beaton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Beaton, D., Filbey, F., Abdi, H. (2013). Integrating Partial Least Squares Correlation and Correspondence Analysis for Nominal Data. In: Abdi, H., Chin, W., Esposito Vinzi, V., Russolillo, G., Trinchera, L. (eds) New Perspectives in Partial Least Squares and Related Methods. Springer Proceedings in Mathematics & Statistics, vol 56. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8283-3_4

Download citation

Publish with us

Policies and ethics