Skip to main content

Supercooling-Facilitating Hydrolyzable Tannins Isolated from Xylem Tissues of Cercidiphyllum japonicum

  • Conference paper
  • First Online:
Plant and Microbe Adaptations to Cold in a Changing World

Abstract

Parenchyma cells in xylem of boreal woody plants respond to subzero temperatures by deep supercooling, which is distinct from extracellular freezing observed in bark cells and herbaceous plant cells. It is known that the cell wall is essential for the deep supercooling capability of xylem parenchyma cells (XPCs). Additionally, we have shown the contribution of intracellular substances to deep supercooling capability and have detected supercooling-facilitating activities in xylem extracts of several woody plants in the presence of ice-nucleating bacteria, Erwinia ananas. Further studies revealed the presence of four kinds of flavonol glycosides as novel supercooling-facilitating substances in xylem extracts of Cercidiphyllum japonicum. Recently, four kinds of hydrolyzable tannins were additionally identified as novel supercooling-facilitating substances in the xylem extracts. These findings suggest that supercooling-facilitating substances contribute to the deep supercooling capability of XPCs in connection with the roles of cell wall structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashworth EN, Abeles FB (1984) Freezing behavior of water in small pores and the possible role in the freezing of plant tissues. Plant Physiol 76:201–204

    Article  PubMed  CAS  Google Scholar 

  • Daniell JW, Crosby FL (1968) Occlusion of xylem elements in peach trees resulting from cold injury. Proc Am Soc Hortic Sci 93:128–134

    Google Scholar 

  • Fletcher NH (1970) The chemical physics of ice. Cambridge University Press, London, pp 73–103

    Book  Google Scholar 

  • Fujikawa S, Kuroda K (2000) Cryo-scanning electron microscopic study on freezing behavior of xylem ray parenchyma cells in hardwood species. Micron 31:669–686

    Article  PubMed  Google Scholar 

  • Fujikawa S, Kasuga J, Takata N, Arakawa K (2009) Factors related to change of deep supercooling capability in xylem parenchyma cells of trees. In: Gusta LV, Wisniewski ME, Tanino KK (eds) Plant Cold Hardiness: From the Laboratory to the Field. CAB International, London, pp 29–42

    Chapter  Google Scholar 

  • George MF, Burke MJ (1977) Cold hardiness and deep supercooling in xylem of shagbark hickory. Plant Physiol 59:319–325

    Article  PubMed  CAS  Google Scholar 

  • Griffith M, Yaish MWF (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399–405

    Article  PubMed  CAS  Google Scholar 

  • Kasuga J, Mizuno K, Miyaji N, Arakawa K, Fujikawa S (2006) Role of intracellular contents to facilitate supercooling capability in beech (Fagus crenata) xylem parenchyma cells. Cryo- Letters 27:305–310

    Google Scholar 

  • Kasuga J, Arakawa K, Fujikawa S (2007a) High accumulation of soluble sugars in deep supercooling Japanese white birch xylem parenchyma cells. New Phytol 174:569–579

    Article  CAS  Google Scholar 

  • Kasuga J, Mizuno K, Arakawa K, Fujikawa S (2007b) Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells. Cryobiology 55:305–314

    Article  Google Scholar 

  • Kasuga J, Hashidoko Y, Nishioka A, Yoshiba M, Arakawa K, Fujikawa S (2008) Deep supercooling xylem parenchyma cells of katsura tree (Cercidiphyllum japonicum) contain flavonol glycosides exhibiting high anti-ice nucleation activity. Plant Cell Environ 31:1335–1348

    Article  PubMed  CAS  Google Scholar 

  • Kuroda K, Kasuga J, Arakawa K, Fujikawa S (2003) Xylem ray parenchyma cells in boreal hardwood species respond to subfreezing temperatures by deep supercooling that is accompanied by incomplete desiccation. Plant Physiol 131:736–744

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara C, Kasuga J, Wang D, Fukushi Y, Arakawa K, Koyama T, Inada T, Fujikawa S (2011) Change of supercooling capability in solutions containing different kinds of ice nucleators by flavonol glycosides from deep supercooling xylem parenchyma cells in trees. Cryobiology 63:157–163

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara C, Wang D, Kasuga J, Fukushi Y, Arakawa K, Koyama T, Inada T, Fujikawa S (2012) Freezing activities of flavonoids in solutions containing different ice nucleators. Cryobiology 64:279–285

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie AP (1977) Non-equilibrium freezing behavior of aqueous systems. Philos Trans R Soc Lond B 278:167–189

    CAS  Google Scholar 

  • Quamme HA, Stushnoff C, Weiser CJ (1972) The relationship of exotherms to cold injury in apple stem tissues. J Am Soc Hortic Sci 97:608–613

    Google Scholar 

  • Quamme HA, Chen PM, Gusta LV (1982) Relationship of deep supercooling and dehydration resistance to freezing injury in dormant stem tissues of ‘Starkrimson Delicious’ apple and ‘Siberian C’ peach. J Am Soc Hortic Sci 107:299–304

    Google Scholar 

  • Ruzin ST (1999) Plant Microtechnique and Microscopy. Oxford University Press, New York

    Google Scholar 

  • Sarnighausen E, Karlson D, Ashworth E (2002) Seasonal regulation of a 24-kDa protein from red-osier dogwood (Cornus sericea) xylem. Tree Physiol 22:423–430

    Article  PubMed  CAS  Google Scholar 

  • Sakai A, Larcher W (1987) Frost Survival of Plants: Responses and Adaptation to Freezing Stress. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Sauter JJ, Wellenkamp S (1998) Seasonal changes in content of starch, protein and sugars in the twig wood of Salix caprea L. Holzforschung 52:255–262

    Article  CAS  Google Scholar 

  • Sauter JJ, Wisniewski M, Witt W (1996) Interrelationships between ultrastructure, sugar levels, and frost hardiness of ray parenchyma cells during frost acclimation and deacclimation in poplar (Populus   × canadensis Moench“ robusta”) wood. J Plant Physiol 149:451–461

    Article  CAS  Google Scholar 

  • Takata N, Kasuga J, Takezawa D, Arakawa K, Fujikawa S (2007) Gene expression associated with increased supercooling capability in xylem parenchyma cells of larch (Larix kaempferi). J Exp Bot 58:3731–3742

    Article  PubMed  CAS  Google Scholar 

  • Vali G (1971) Quantitative evaluation of experimental results on the heterogeneous freezing nucleation of supercooled liquids. J Atmos Sci 28:402–409

    Article  Google Scholar 

  • Wang D, Kasuga J, Kuwabara C, Fukushi Y, Fujikawa S, Arakawa K (2011) Characterization of supercooling-facilitating (anti-ice nucleation) hydrolyzable gallotannins in supercooling xylem parenchyma cells in katsura tree (Cercidiphyllum japonicum). Cryobiol Cryotechnol 57:147–151

    Google Scholar 

  • Wang D, Kasuga J, Kuwabara C, Fukushi Y, Fujikawa S, Arakawa K (2012) Presence of supercooling-facilitating (anti-ice nucleation) hydrolyzable tannins in deep supercooling xylem parenchyma cells in Cercidiphyllum japonicum. Planta 235:747–759

    Article  PubMed  CAS  Google Scholar 

  • Wilson PW, Heneghan AF, Haymet ADJ (2003) Ice nucleation in nature: supercooling point (SCP) measurements and the role of heterogeneous nucleation. Cryobiology 46:88–98

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski M (1995) Deep supercooling and the role of cell wall structure. In: Lee RL Jr, Warren GJ, Gusta LV (eds) Biological Ice Nucleation and its Applications. APS Press, St Paul, pp. 163–182

    Google Scholar 

  • Wisniewski M, Davis G, Arora R (1991a) Effect of macerase, oxalic acid, and EGTA on deep supercooling and pit membrane structure of xylem parenchyma of peach. Plant Physiol 96:1354–1359

    Article  CAS  Google Scholar 

  • Wisniewski M, Davis G, Scaffer K (1991b) Mediation of deep supercooling of peach and dogwood by enzymatic modifications in cell-wall structure. Planta 184:254–260

    Article  CAS  Google Scholar 

  • Wisniewski M, Webb R, Balsamo R, Close TJ, Yu X-M, Griffith M (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica). Physiol Plant 105:600–608

    Article  CAS  Google Scholar 

  • Zachariassen KE, Kristiansen E (2000) Ice nucleation and antinucleation in nature. Cryobiology 41:257–279

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr E. Fukushi and Mr. K. Watanabe (GC-MS and NMR Laboratory, Graduate School of Agriculture, Hokkaido University) for MS and NMR measurements. This work was partly supported by JSPS KAKENHI Grant Numbers 20380099 (to S.F.) and 2058036 (to K.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keita Arakawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Wang, D., Kuwabara, C., Endoh, K., Fukushi, Y., Fujikawa, S., Arakawa, K. (2013). Supercooling-Facilitating Hydrolyzable Tannins Isolated from Xylem Tissues of Cercidiphyllum japonicum . In: Imai, R., Yoshida, M., Matsumoto, N. (eds) Plant and Microbe Adaptations to Cold in a Changing World. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8253-6_15

Download citation

Publish with us

Policies and ethics