Skip to main content

Negative Regulation for Neural Patterning in the Drosophila eye

  • Chapter
  • First Online:
Molecular Genetics of Axial Patterning, Growth and Disease in the Drosophila Eye
  • 774 Accesses

Abstract

The Drosophila compound eye is a complex sensory system derived from retinal primordium called the eye imaginal disc. Differentiation of the retinal primordium into different cell types is a key to the visual function of the eye. The fly eye has a simple structure with only a few cell types and a precise organization with a repetitive pattern, thus serving as a favorable model for studying the genetic basis of retinal patterning. An important early event in retinal differentiation is the generation and assembly of neural precursor cells. A number of genes and multiple signaling pathways participate in this process. Many of these genes are involved in promoting the neural differentiation. However, retinal neurogenesis also requires a number of negative factors. Thus, early patterning in the eye is established by interactions between these yin–yang gene activities. This chapter will describe the function of these genetic factors, focusing more on negative regulators that help develop the precise pattern of the adult eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akimaru H, Saigo K (1991) DNA binding activity of the BarH1 homeodomain of Drosophila. Nucleic Acids Symp Ser (25):29–30

    Google Scholar 

  • Annaert W, De Strooper B (1999) Presenilins: molecular switches between proteolysis and signal transduction. Trends Neurosci 22:439–443

    Article  PubMed  CAS  Google Scholar 

  • Baker NE, Firth LC (2011) Retinal determination genes function along with cell–cell signals to regulate Drosophila eye development: examples of multi-layered regulation by master regulators. Bioessays 33:538–546

    Article  PubMed  CAS  Google Scholar 

  • Baker NE, Mlodzik M, Rubin GM (1990) Spacing differentiation in the developing Drosophila eye: a fibrinogen-related lateral inhibitor encoded by scabrous. Science 250:1370–1377

    Article  PubMed  CAS  Google Scholar 

  • Baker NE, Rubin GM (1989) Effect on eye development of dominant mutations in Drosophila homologue of the EGF receptor. Nature 340:150–153

    Article  PubMed  CAS  Google Scholar 

  • Baker NE, Yu SY (1997) Proneural function of neurogenic genes in the developing Drosophila eye. Curr Biol 7:122–132

    Article  PubMed  CAS  Google Scholar 

  • Baonza A, Casci T, Freeman M (2001) A primary role for the epidermal growth factor receptor in ommatidial spacing in the Drosophila eye. Curr Biol 11:396–404

    Article  PubMed  CAS  Google Scholar 

  • Baonza A, Freeman M (2001) Notch signalling and the initiation of neural development in the Drosophila eye. Development 128:3889–3898

    PubMed  CAS  Google Scholar 

  • Beatus P, Lendahl U (1998) Notch and neurogenesis. J Neurosci Res 54:125–136

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya A, Baker NE (2011) A network of broadly expressed HLH genes regulates tissue-specific cell fates. Cell 147:881–892

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya A, Baker NE (2012) The Role of the bHLH Protein Hairy in Morphogenetic Furrow Progression in the Developing Drosophila Eye. PLoS One 7:e47503

    Article  PubMed  CAS  Google Scholar 

  • Blair SS (1992) Engrailed expression in the anterior lineage compartment of the developing wing blade of Drosophila. Development 115:21–33

    PubMed  CAS  Google Scholar 

  • Borod ER, Heberlein U (1998) Mutual regulation of decapentaplegic and hedgehog during the initiation of differentiation in the Drosophila retina. Dev Biol 197:187–197

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Kerr M, Freeman M (2007) The EGFR ligands Spitz and Keren act cooperatively in the Drosophila eye. Dev Biol 307:105–113

    Article  PubMed  CAS  Google Scholar 

  • Brown NL, Kanekar S, Vetter ML, Tucker PK, Gemza DL, Glaser T (1998) Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Development 125:4821–4833

    PubMed  CAS  Google Scholar 

  • Brown NL, Paddock SW, Sattler CA, Cronmiller C, Thomas BJ, Carroll SB (1996) daughterless is required for Drosophila photoreceptor cell determination, eye morphogenesis, and cell cycle progression. Dev Biol 179:65–78

    Article  PubMed  CAS  Google Scholar 

  • Brown NL, Sattler CA, Paddock SW, Carroll SB (1995) Hairy and emc negatively regulate morphogenetic furrow progression in the Drosophila eye. Cell 80:879–887

    Article  PubMed  CAS  Google Scholar 

  • Cabrera CV (1990) Lateral inhibition and cell fate during neurogenesis in Drosophila: the interactions between scute, Notch and Delta. Development 110:733–742

    PubMed  CAS  Google Scholar 

  • Cagan RL, Ready DF (1989) Notch is required for successive cell decisions in the developing Drosophila retina. Genes Dev 3:1099–1112

    Article  PubMed  CAS  Google Scholar 

  • Carrera I, Janody F, Leeds N, Duveau F, Treisman JE (2008) Pygopus activates Wingless target gene transcription through the mediator complex subunits Med12 and Med13. Proc Natl Acad Sci U S A 105:6644–6649

    Article  PubMed  CAS  Google Scholar 

  • Caudy M, Grell EH, Dambly-Chaudiere C, Ghysen A, Jan LY, Jan YN (1988a) The maternal sex determination gene daughterless has zygotic activity necessary for the formation of peripheral neurons in Drosophila. Genes Dev 2:843–852

    Article  CAS  Google Scholar 

  • Caudy M, Vassin H, Brand M, Tuma R, Jan LY, Jan YN (1988b) daughterless, a Drosophila gene essential for both neurogenesis and sex determination, has sequence similarities to myc and the achaete-scute complex. Cell 55:1061–1067

    Article  CAS  Google Scholar 

  • Chanut F, Heberlein U (1997) Role of decapentaplegic in initiation and progression of the morphogenetic furrow in the developing Drosophila retina. Development 124:559–567

    PubMed  CAS  Google Scholar 

  • Cho B, Fischer JA (2011) Ral GTPase promotes asymmetric Notch activation in the Drosophila eye in response to Frizzled/PCP signaling by repressing ligand-independent receptor activation. Development 138:1349–1359

    Article  PubMed  CAS  Google Scholar 

  • Cho B, Fischer JA (2012) Ral inhibits ligand-independent Notch signaling in Drosophila. Small GTPases 3:186–191

    Article  PubMed  Google Scholar 

  • Choi KW, Mozer B, Benzer S (1996) Independent determination of symmetry and polarity in the Drosophila eye. Proc Natl Acad Sci U S A 93:5737–5741

    Article  PubMed  CAS  Google Scholar 

  • Cooper MT, Bray SJ (1999) Frizzled regulation of Notch signalling polarizes cell fate in the Drosophila eye. Nature 397:526–530

    Article  PubMed  CAS  Google Scholar 

  • Cronmiller C, Schedl P, Cline TW (1988) Molecular characterization of daughterless, a Drosophila sex determination gene with multiple roles in development. Genes Dev 2:1666–1676

    Article  PubMed  CAS  Google Scholar 

  • Cubas P, Celis JF de, Campuzano S, Modolell J (1991) Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes Dev 5:996–1008

    Article  PubMed  CAS  Google Scholar 

  • Curtiss J, Mlodzik M (2000) Morphogenetic furrow initiation and progression during eye development in Drosophila: the roles of decapentaplegic, hedgehog and eyes absent. Development 127:1325–1336

    PubMed  CAS  Google Scholar 

  • del Alamo D, Mlodzik M (2006) Frizzled/PCP-dependent asymmetric neuralized expression determines R3/R4 fates in the Drosophila eye. Dev Cell 11:887–894

    Article  PubMed  CAS  Google Scholar 

  • Dokucu ME, Zipursky SL, Cagan RL (1996) Atonal, rough and the resolution of proneural clusters in the developing Drosophila retina. Development 122:139–4147

    Google Scholar 

  • Dominguez M, Hafen E (1997) Hedgehog directly controls initiation and propagation of retinal differentiation in the Drosophila eye. Genes Dev 11:3254–3264

    Article  PubMed  CAS  Google Scholar 

  • Dominguez M, Wasserman JD, Freeman M (1998) Multiple functions of the EGF receptor in Drosophila eye development. Curr Biol 8:1039–1048

    Article  PubMed  CAS  Google Scholar 

  • Ellis MC, Weber U, Wiersdorff V, Mlodzik M (1994) Confrontation of scabrous expressing and non-expressing cells is essential for normal ommatidial spacing in the Drosophila eye. Development 120:1959–1969

    PubMed  CAS  Google Scholar 

  • Fanto M, Mlodzik M (1999) Asymmetric Notch activation specifies photoreceptors R3 and R4 and planar polarity in the Drosophila eye. Nature 397:523–526

    Article  PubMed  CAS  Google Scholar 

  • Fetchko M, Huang W, Li Y, Lai ZC (2002) Drosophila Gp150 is required for early ommatidial development through modulation of Notch signaling. EMBO J 21:1074–1083

    Article  PubMed  CAS  Google Scholar 

  • Frankfort BJ, Mardon G (2002) R8 development in the Drosophila eye: a paradigm for neural selection and differentiation. Development 129:1295–1306

    PubMed  CAS  Google Scholar 

  • Freeman M (1994) The spitz gene is required for photoreceptor determination in the Drosophila eye where it interacts with the EGF receptor. Mech Dev 48:25–33

    Article  PubMed  CAS  Google Scholar 

  • Fu W, Baker NE (2003) Deciphering synergistic and redundant roles of Hedgehog, Decapentaplegic and Delta that drive the wave of differentiation in Drosophila eye development. Development 130:5229–5239

    Article  PubMed  CAS  Google Scholar 

  • Ghysen A, Dambly-Chaudiere C (1989) Genesis of the Drosophila peripheral nervous system. Trends Genet 5:251–255

    Article  PubMed  CAS  Google Scholar 

  • Goulding SE, zur Lage P, Jarman AP (2000) amos, a proneural gene for Drosophila olfactory sense organs that is regulated by lozenge. Neuron 25:69–78

    Article  PubMed  CAS  Google Scholar 

  • Greenwood S, Struhl G (1999) Progression of the morphogenetic furrow in the Drosophila eye: the roles of Hedgehog, Decapentaplegic and the Raf pathway. Development 126:5795–5808

    PubMed  CAS  Google Scholar 

  • Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267:1788–1792

    Article  PubMed  CAS  Google Scholar 

  • Heberlein U, Moses K (1995) Mechanisms of Drosophila retinal morphogenesis: the virtues of being progressive. Cell 81:987–990

    Article  PubMed  CAS  Google Scholar 

  • Heberlein U, Wolff T, Rubin GM (1993) The TGF beta homolog dpp and the segment polarity gene hedgehog are required for propagation of a morphogenetic wave in the Drosophila retina. Cell 75:913–926

    Article  PubMed  CAS  Google Scholar 

  • Heitzler P, Simpson P (1991) The choice of cell fate in the epidermis of Drosophila. Cell 64:1083–1092

    Article  PubMed  CAS  Google Scholar 

  • Higashijima S, Kojima T, Michiue T, Ishimaru S, Emori Y, Saigo K (1992) Dual Bar homeo box genes of Drosophila required in two photoreceptor cells, R1 and R6, and primary pigment cells for normal eye development. Genes Dev 6:50–60

    Article  PubMed  CAS  Google Scholar 

  • Hsiung F, Moses K (2002) Retinal development in Drosophila: specifying the first neuron. Hum Mol Genet 11:1207–1214

    Article  PubMed  CAS  Google Scholar 

  • Huang ML, Hsu CH, Chien CT (2000) The proneural gene amos promotes multiple dendritic neuron formation in the Drosophila peripheral nervous system. Neuron 25:57–67

    Article  PubMed  Google Scholar 

  • Ito M, Roeder RG (2001) The TRAP/SMCC/Mediator complex and thyroid hormone receptor function. Trends Endocrinol Metab 12:127–134

    Article  PubMed  CAS  Google Scholar 

  • Janody F, Treisman JE (2011) Requirements for mediator complex subunits distinguish three classes of notch target genes at the Drosophila wing margin Dev Dyn 240:2051–2059

    Article  PubMed  CAS  Google Scholar 

  • Jarman AP, Grell EH, Ackerman L, Jan LY, Jan YN (1994) Atonal is the proneural gene for Drosophila photoreceptors. Nature 369:398–400

    Article  PubMed  CAS  Google Scholar 

  • Kametaka S, Kametaka A, Yonekura S, Haruta M, Takenoshita S, Goto S, Waguri S (2012) AP-1 clathrin adaptor and CG8538/Aftiphilin are involved in Notch signaling during eye development in Drosophila melanogaster. J Cell Sci 125:634–648

    Article  PubMed  CAS  Google Scholar 

  • Kimmel BE, Heberlein U, Rubin GM (1990) The homeo domain protein rough is expressed in a subset of cells in the developing Drosophila eye where it can specify photoreceptor cell subtype. Genes Dev 4:712–727

    Article  PubMed  CAS  Google Scholar 

  • Kopan R, Goate A (2002) Aph-2/Nicastrin: an essential component of gamma-secretase and regulator of Notch signaling and Presenilin localization. Neuron 33:321–324

    Article  PubMed  CAS  Google Scholar 

  • Kornberg T (1981) Engrailed: a gene controlling compartment and segment formation in Drosophila. Proc Natl Acad Sci U S A 78:1095–1099

    Google Scholar 

  • Kumar JP, Moses K (2001) EGF receptor and Notch signaling act upstream of Eyeless/Pax6 to control eye specification. Cell 104:687–697

    Article  PubMed  CAS  Google Scholar 

  • Kumar JP, Tio M, Hsiung F, Akopyan S, Gabay L, Seger R, Shilo BZ, Moses K (1998) Dissecting the roles of the Drosophila EGF receptor in eye development and MAP kinase activation. Development 125:3875–3885

    PubMed  CAS  Google Scholar 

  • Lai EC, Deblandre GA, Kintner C, Rubin GM (2001) Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta. Dev Cell 1:783–794

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Fetchko M, Lai ZC, Baker NE (2003) Scabrous and Gp150 are endosomal proteins that regulate Notch activity. Development 130:2819–2827

    Article  PubMed  CAS  Google Scholar 

  • Lim J, Choi KW (2003) Bar homeodomain proteins are anti-proneural in the Drosophila eye: transcriptional repression of atonal by Bar prevents ectopic retinal neurogenesis. Development 130:5965–5974

    Article  PubMed  CAS  Google Scholar 

  • Lim J, Choi KW (2004) Induction and autoregulation of the anti-proneural gene Bar during retinal neurogenesis in Drosophila. Development 131:5573–5580

    Article  PubMed  CAS  Google Scholar 

  • Lim J, Jafar-Nejad H, Hsu YC, Choi KW (2008) Novel function of the class I bHLH protein Daughterless in the negative regulation of proneural gene expression in the Drosophila eye. EMBO Rep 9:1128–1133

    Article  PubMed  CAS  Google Scholar 

  • Lim J, Lee OK, Hsu YC, Singh A, Choi KW (2007) Drosophila TRAP230/240 are essential coactivators for Atonal in retinal neurogenesis. Dev Biol 308:322–330

    Article  PubMed  CAS  Google Scholar 

  • Malik S, Roeder RG (2000) Transcriptional regulation through Mediator-like coactivators in yeast and metazoan cells. Trends Biochem Sci 25:277–283

    Article  PubMed  CAS  Google Scholar 

  • Melicharek D, Shah A, DiStefano G, Gangemi AJ, Orapallo A, Vrailas-Mortimer AD, Marenda DR (2008) Identification of novel regulators of atonal expression in the developing Drosophila retina. Genetics 180:2095–2110

    Article  PubMed  CAS  Google Scholar 

  • Morata G, Lawrence PA (1975) Control of compartment development by the engrailed gene in Drosophila. Nature 255:614–617

    Article  PubMed  CAS  Google Scholar 

  • Niwa N, Hiromi Y, Okabe M (2004) A conserved developmental program for sensory organ formation in Drosophila melanogaster. Nat Genet 36:293–297

    Article  PubMed  CAS  Google Scholar 

  • Pavlopoulos E, Pitsouli C, Klueg KM, Muskavitch MA, Moschonas NK, Delidakis C (2001) Neuralized Encodes a peripheral membrane protein involved in delta signaling and endocytosis. Dev Cell 1:807–816

    Article  PubMed  CAS  Google Scholar 

  • Pepple KL, Atkins M, Venken K, Wellnitz K, Harding M, Frankfort B, Mardon G (2008) Two-step selection of a single R8 photoreceptor: a bistable loop between senseless and rough locks in R8 fate. Development 135:4071–4079

    Article  PubMed  CAS  Google Scholar 

  • Powell PA, Wesley C, Spencer S, Cagan RL (2001) Scabrous complexes with Notch to mediate boundary formation. Nature 409:626–630

    Article  PubMed  CAS  Google Scholar 

  • Raftery LA, Sanicola M, Blackman RK, Gelbart WM (1991) The relationship of decapentaplegic and engrailed expression in Drosophila imaginal disks: do these genes mark the anterior–posterior compartment boundary?. Development 113:27–33

    PubMed  CAS  Google Scholar 

  • Ready DF, Hanson TE, Benzer S (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53:217–240

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues AB, Werner E, Moses K (2005) Genetic and biochemical analysis of the role of EGFR in the morphogenetic furrow of the developing Drosophila eye. Development 132:4697–4707

    Article  PubMed  CAS  Google Scholar 

  • Roignant JY, Treisman JE (2009) Pattern formation in the Drosophila eye disc. Int J Dev Biol 53:795–804

    Article  PubMed  CAS  Google Scholar 

  • Romani S, Campuzano S, Macagno ER, Modolell J (1989) Expression of achaete and scute genes in Drosophila imaginal discs and their function in sensory organ development. Genes Dev 3:997–1007

    Article  PubMed  CAS  Google Scholar 

  • Rooke JE, Xu T (1998) Positive and negative signals between interacting cells for establishing neural fate. Bioessays 20:209–214

    Article  PubMed  CAS  Google Scholar 

  • Rutledge BJ, Zhang K, Bier E, Jan YN, Perrimon N (1992) The Drosophila spitz gene encodes a putative EGF-like growth factor involved in dorsal–ventral axis formation and neurogenesis. Genes Dev 6:1503–1517

    Article  PubMed  CAS  Google Scholar 

  • Sanicola M, Sekelsky J, Elson S, Gelbart WM (1995) Drawing a stripe in Drosophila imaginal disks: negative regulation of decapentaplegic and patched expression by engrailed. Genetics 139:745–756

    PubMed  CAS  Google Scholar 

  • Schweitzer R, Howes R, Smith R, Shilo BZ, Freeman M (1995) Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature 376:699–702

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Tare M, Puli OR, Kango-Singh M (2012) A glimpse into dorso-ventral patterning of the Drosophila eye. Dev Dyn 241:69–84

    Article  PubMed  Google Scholar 

  • Singh J, Mlodzik M (2012) Hibris, a Drosophila nephrin homolog, is required for presenilin-mediated Notch and APP-like cleavages. Dev Cell 23:82–96

    Article  PubMed  CAS  Google Scholar 

  • Skeath JB, Carroll SB (1991) Regulation of achaete-scute gene expression and sensory organ pattern formation in the Drosophila wing. Genes Dev 5:984–995

    Article  PubMed  CAS  Google Scholar 

  • Steinberg AG, Abramowitz M (1938) The Bar “Locus” and the v reaction in Drosophila melanogaster. Proc Natl Acad Sci U S A 24:107–111

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Jan LY, Jan YN (1998) Transcriptional regulation of atonal during development of the Drosophila peripheral nervous system. Development 125:3731–3740

    PubMed  CAS  Google Scholar 

  • Tanaka-Matakatsu M, Du W (2008) Direct control of the proneural gene atonal by retinal determination factors during Drosophila eye development. Dev Biol 313:787–801

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson A, Ready DF (1987) Neuronal differentiation in Drosophila ommatidium. Dev Biol 120:366–376

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson A, Struhl G (1999) Decoding vectorial information from a gradient: sequential roles of the receptors Frizzled and Notch in establishing planar polarity in the Drosophila eye. Development 126:5725–5738

    PubMed  CAS  Google Scholar 

  • Treisman J (2001) Drosophila homologues of the transcriptional coactivation complex subunits TRAP240 and TRAP230 are required for identical processes in eye-antennal disc development. Development 128:603–615

    PubMed  CAS  Google Scholar 

  • Treisman JE (2004) Coming to our senses. Bioessays 26:825–828

    Article  PubMed  CAS  Google Scholar 

  • Weinmaster G, Fischer JA (2011) Notch ligand ubiquitylation: what is it good for?. Dev Cell 21:134–144

    Article  PubMed  CAS  Google Scholar 

  • Wolff T, Ready DF (1991) The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Development 113:841–850

    PubMed  CAS  Google Scholar 

  • Yang L, Baker NE (2001) Role of the EGFR/Ras/Raf pathway in specification of photoreceptor cells in the Drosophila retina. Development 128:1183–1191

    PubMed  CAS  Google Scholar 

  • Ye Y, Lukinova N, Fortini ME (1999) Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature 398:525–529

    Article  PubMed  CAS  Google Scholar 

  • Yeh E, Dermer M, Commisso C, Zhou L, McGlade CJ, Boulianne GL (2001) Neuralized functions as an E3 ubiquitin ligase during Drosophila development. Curr Biol 11:1675–1679

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Ranade S, Cai CQ, Clouser C, Pignoni F (2006) Direct control of neurogenesis by selector factors in the fly eye: regulation of atonal by Ey and So. Development 133:4881–4889

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Wook Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Choi, KW. (2013). Negative Regulation for Neural Patterning in the Drosophila eye. In: Singh, A., Kango-Singh, M. (eds) Molecular Genetics of Axial Patterning, Growth and Disease in the Drosophila Eye. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8232-1_6

Download citation

Publish with us

Policies and ethics