Skip to main content

Analysis of Renal Transporters

  • Chapter
  • First Online:
Transporters in Drug Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 7))

  • 2123 Accesses

Abstract

The rapid technological advances in the drug transporter field have also greatly enhanced our knowledge on the expression, localization, function, and genetic variation of renal transporters. It is now widely acknowledged that carrier-mediated transport processes in the kidney proximal tubule are an important determinant of drug disposition and the extent to which drugs are accumulated in renal tissue. The study of renal transport has traditionally benefited a lot from physiological studies in isolated membrane vesicles, tubules, tissue slices, perfused kidneys, and intact animals. Together with molecular cloning and over-expression systems we now have a fairly good picture of the individual characteristics of the most important renal transporters. The next challenge will be to reconstruct the complexity of the interplay between the various uptake and efflux transporters of the proximal tubule in experimental and in silico models, in order to accurately predict renal drug clearance, drug–drug interactions, and the risk of nephrotoxicity in different populations. This chapter will give a critical review of current methods available for the exploration of renal drug transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

BBM:

Brush border membrane

BLM:

Basolateral membrane

CHO:

Chinese hamster ovary cell line

ciPTEC:

Human conditionally immortalized proximal tubule epithelial cell line

COS-7:

African green monkey cells

HEK293:

Human embryonic kidney cells

HK-2:

Human immortalized proximal tubule epithelial cell line

LLC_PK1:

Pig kidney epithelial cells

MDCK:

Madin-Darby canine kidney cells

PAH:

para-Amino hippuric acid

pMEG:

9-(2-phosphonylmethoxyethyl)guanine

Sf9:

Spodeptera frugiperda (moth)

SLC:

Solute carrier

References

  • Asthana A, Kisaalita WS (2012) Microtissue size and hypoxia in HTS with 3D cultures. Drug Discov Today 17:810–817

    PubMed  Google Scholar 

  • Astorga B, Wunz TM, Morales M, Wright SH, Pelis RM (2011) Differences in the substrate binding regions of renal organic anion transporters 1 (OAT1) and 3 (OAT3). Am J Physiol Renal Physiol 301:F378–F386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borst P, de Wolf C, van de Wetering K (2007) Multidrug resistance-associated proteins 3, 4, and 5. Pflugers Arch 453:661–673

    CAS  PubMed  Google Scholar 

  • Brandsch M, Knutter I, Bosse-Doenecke E (2008) Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol 60:543–585

    CAS  PubMed  Google Scholar 

  • Brooks C, Wang J, Yang T, Dong Z (2007) Characterization of cell clones isolated from hypoxia-selected renal proximal tubular cells. Am J Physiol Renal Physiol 292:F243–F252

    CAS  PubMed  Google Scholar 

  • Brown CD, Sayer R, Windass AS, Haslam IS, De Broe ME, D’Haese PC, Verhulst A (2008) Characterisation of human tubular cell monolayers as a model of proximal tubular xenobiotic handling. Toxicol Appl Pharmacol 233:428–438

    CAS  PubMed  Google Scholar 

  • Burckhardt G (2012) Drug transport by organic anion transporters (OATs). Pharmacol Ther 136:106–130

    CAS  PubMed  Google Scholar 

  • Burckhardt G, Burckhardt BC (2011) In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handb Exp Pharmacol 201:29–104

    CAS  PubMed  Google Scholar 

  • Cascorbi I (2011) P-glycoprotein: tissue distribution, substrates, and functional consequences of genetic variations. Handb Exp Pharmacol 201:261–283

    CAS  PubMed  Google Scholar 

  • Cheng Y, Vapurcuyan A, Shahidullah M, Aleksunes LM, Pelis RM (2012) Expression of organic anion transporter 2 in the human kidney and its potential role in the tubular secretion of guanine-containing antiviral drugs. Drug Metab Dispos 40:617–624

    CAS  PubMed  Google Scholar 

  • Ciarimboli G (2008) Organic cation transporters. Xenobiotica 38:936–971

    CAS  PubMed  Google Scholar 

  • Cihlar T, Ho ES (2000) Fluorescence-based assay for the interaction of small molecules with the human renal organic anion transporter 1. Anal Biochem 283:49–55

    CAS  PubMed  Google Scholar 

  • Cusatis G, Sparreboom A (2008) Pharmacogenomic importance of ABCG2. Pharmacogenomics 9:1005–1009

    CAS  PubMed  Google Scholar 

  • De Kanter R, Monshouwer M, Meijer DK, Groothuis GM (2002) Precision-cut organ slices as a tool to study toxicity and metabolism of xenobiotics with special reference to non-hepatic tissues. Curr Drug Metab 3:39–59

    PubMed  Google Scholar 

  • Degorter MK, Xia CQ, Yang JJ, Kim RB (2012) Drug transporters in drug efficacy and toxicity. Annu Rev Pharmacol Toxicol 52:249–273

    CAS  PubMed  Google Scholar 

  • Dietrich CG, Geier A, Oude Elferink RP (2003) ABC of oral bioavailability: transporters as gatekeepers in the gut. Gut 52:1788–1795

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dobson PD, Kell DB (2008) Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule? Nat Rev Drug Discov 7:205–220

    CAS  PubMed  Google Scholar 

  • El-Sheikh AA, van den Heuvel JJ, Koenderink JB, Russel FG (2007) Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein (MRP) 2/ABCC2- and MRP4/ABCC4-mediated methotrexate transport. J Pharmacol Exp Ther 320:229–235

    CAS  PubMed  Google Scholar 

  • El-Sheikh AA, Masereeuw R, Russel FG (2008a) Mechanisms of renal anionic drug transport. Eur J Pharmacol 585:245–255

    CAS  PubMed  Google Scholar 

  • El-Sheikh AA, van den Heuvel JJ, Koenderink JB, Russel FG (2008b) Effect of hypouricaemic and hyperuricaemic drugs on the renal urate efflux transporter, multidrug resistance protein 4. Br J Pharmacol 155:1066–1075

    CAS  PubMed Central  PubMed  Google Scholar 

  • El-Sheikh AA, van den Heuvel JJ, Krieger E, Russel FG, Koenderink JB (2008c) Functional role of arginine 375 in transmembrane helix 6 of multidrug resistance protein 4 (MRP4/ABCC4). Mol Pharmacol 74:964–971

    CAS  PubMed  Google Scholar 

  • Grundemann D, Gorboulev V, Gambaryan S, Veyhl M, Koepsell H (1994) Drug excretion mediated by a new prototype of polyspecific transporter. Nature 372:549–552

    CAS  PubMed  Google Scholar 

  • Hagenbuch B, Gui C (2008) Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica 38:778–801

    CAS  PubMed  Google Scholar 

  • Hagmann W, Nies AT, Konig J, Frey M, Zentgraf H, Keppler D (1999) Purification of the human apical conjugate export pump MRP2 reconstitution and functional characterization as substrate-stimulated ATPase. Eur J Biochem 265:281–289

    CAS  PubMed  Google Scholar 

  • Han YH, Busler D, Hong Y, Tian Y, Chen C, Rodrigues AD (2010) Transporter studies with the 3-O-sulfate conjugate of 17alpha-ethinylestradiol: assessment of human kidney drug transporters. Drug Metab Dispos 38:1064–1071

    CAS  PubMed  Google Scholar 

  • Heemskerk S, van Koppen A, van den Broek L, Poelen GJ, Wouterse AC, Dijkman HB, Russel FG, Masereeuw R (2007) Nitric oxide differentially regulates renal ATP-binding cassette transporters during endotoxemia. Pflugers Arch 454:321–334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heemskerk S, Wouterse AC, Russel FG, Masereeuw R (2008) Nitric oxide down-regulates the expression of organic cation transporters (OCT) 1 and 2 in rat kidney during endotoxemia. Eur J Pharmacol 584:390–397

    CAS  PubMed  Google Scholar 

  • Ho RH, Kim RB (2005) Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther 78:260–277

    CAS  PubMed  Google Scholar 

  • Hori R, Tanigawara Y, Saito Y, Hayashi Y, Aiba T, Okumura K, Kamiya A (1988) Moment analysis of drug disposition in kidney: transcellular transport kinetics of p-aminohippurate in the isolated perfused rat kidney. J Pharm Sci 77:471–476

    CAS  PubMed  Google Scholar 

  • Hu S, Franke RM, Filipski KK, Hu C, Orwick SJ, de Bruijn EA, Burger H, Baker SD, Sparreboom A (2008) Interaction of imatinib with human organic ion carriers. Clin Cancer Res 14:3141–3148

    CAS  PubMed  Google Scholar 

  • Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE (2012) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12:2156–2164

    CAS  PubMed  Google Scholar 

  • Huls M, van den Heuvel JJ, Dijkman HB, Russel FG, Masereeuw R (2006) ABC transporter expression profiling after ischemic reperfusion injury in mouse kidney. Kidney Int 69:2186–2193

    CAS  PubMed  Google Scholar 

  • Huls M, Brown CD, Windass AS, Sayer R, van den Heuvel JJ, Heemskerk S, Russel FG, Masereeuw R (2008) The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int 73:220–225

    CAS  PubMed  Google Scholar 

  • Ishikawa T, Hirano H, Onishi Y, Sakurai A, Tarui S (2004) Functional evaluation of ABCB1 (P-glycoprotein) polymorphisms: high-speed screening and structure-activity relationship analyses. Drug Metab Pharmacokinet 19:1–14

    CAS  PubMed  Google Scholar 

  • Ito S, Kusuhara H, Yokochi M, Toyoshima J, Inoue K, Yuasa H, Sugiyama Y (2012) Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug-drug interactions caused by cimetidine in the kidney. J Pharmacol Exp Ther 340:393–403

    CAS  PubMed  Google Scholar 

  • Jenkinson SE, Chung GW, van Loon E, Bakar NS, Dalzell AM, Brown CD (2012) The limitations of renal epithelial cell line HK-2 as a model of drug transporter expression and function in the proximal tubule. Pflugers Arch 464:601–611

    CAS  PubMed  Google Scholar 

  • Johnson TN, Boussery K, Rowland-Yeo K, Tucker GT, Rostami-Hodjegan A (2010) A semi-mechanistic model to predict the effects of liver cirrhosis on drug clearance. Clin Pharmacokinet 49:189–206

    CAS  PubMed  Google Scholar 

  • Jonker JW, Buitelaar M, Wagenaar E, van der Valk MA, Scheffer GL, Scheper RJ, Plosch T, Kuipers F, Elferink RP, Rosing H, Beijnen JH, Schinkel AH (2002) The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci USA 99:15649–15654

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jung KJ, Hamilton GA, McPartlin L, Bahinsky A, Kim HN, Suh KY, Ingber DE (2011) Human kidney proximal tubule-on-a-chip for drug transporter studies and nephrotoxicity assessment. In: 15th International conference on miniaturized systems for chemistry and life sciences, 2–6 Oct 2011, Seattle, Washington, USA, 1502–1504.

    Google Scholar 

  • Kajiwara M, Terada T, Ogasawara K, Iwano J, Katsura T, Fukatsu A, Doi T, Inui K (2009) Identification of multidrug and toxin extrusion (MATE1 and MATE2-K) variants with complete loss of transport activity. J Hum Genet 54:40–46

    CAS  PubMed  Google Scholar 

  • Kamal MA, Keep RF, Smith DE (2008) Role and relevance of PEPT2 in drug disposition, dynamics, and toxicity. Drug Metab Pharmacokinet 23:236–242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koepsell H, Lips K, Volk C (2007) Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24:1227–1251

    CAS  PubMed  Google Scholar 

  • Konig J, Zolk O, Singer K, Hoffmann C, Fromm MF (2011) Double-transfected MDCK cells expressing human OCT1/MATE1 or OCT2/MATE1: determinants of uptake and transcellular translocation of organic cations. Br J Pharmacol 163:546–555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kusuhara H, Sugiyama Y (2009) In vitro-in vivo extrapolation of transporter-mediated clearance in the liver and kidney. Drug Metab Pharmacokinet 24:37–52

    CAS  PubMed  Google Scholar 

  • Kuze K, Graves P, Leahy A, Wilson P, Stuhlmann H, You G (1999) Heterologous expression and functional characterization of a mouse renal organic anion transporter in mammalian cells. J Biol Chem 274:1519–1524

    CAS  PubMed  Google Scholar 

  • Lee W, Glaeser H, Smith LH, Roberts RL, Moeckel GW, Gervasini G, Leake BF, Kim RB (2005) Polymorphisms in human organic anion-transporting polypeptide 1A2 (OATP1A2): implications for altered drug disposition and central nervous system drug entry. J Biol Chem 280:9610–9617

    CAS  PubMed  Google Scholar 

  • Lepist EI, Ray AS (2012) Renal drug-drug interactions: what we have learned and where we are going. Expert Opin Drug Metab Toxicol 8:433–448

    CAS  PubMed  Google Scholar 

  • Lohmann C, Gelius B, Danielsson J, Skoging-Nyberg U, Hollnack E, Dudley A, Wahlberg J, Hoogstraate J, Gustavsson L (2007) Scintillation proximity assay for measuring uptake by the human drug transporters hOCT1, hOAT3, and hOATP1B1. Anal Biochem 366:117–125

    CAS  PubMed  Google Scholar 

  • Long Y, Li Q, Zhong S, Wang Y, Cui Z (2011) Molecular characterization and functions of zebrafish ABCC2 in cellular efflux of heavy metals. Comp Biochem Physiol C Toxicol Pharmacol 153:381–391

    PubMed  Google Scholar 

  • Maack T (1980) Physiological evaluation of the isolated perfused rat kidney. Am J Physiol 238:F71–F78

    CAS  PubMed  Google Scholar 

  • Marshall EK Jr, Vickers JL (1923) The mechanism of the elimination of phenolsulphonphtalein by the kidney-A proof of secretion by the convoluted tubules. Bull Johns Hopkins Hosp 34:1–6

    Google Scholar 

  • Masereeuw R, Russel FG (2001) Mechanisms and clinical implications of renal drug excretion. Drug Metab Rev 33:299–351

    CAS  PubMed  Google Scholar 

  • Masereeuw R, Russel FG (2010) Therapeutic implications of renal anionic drug transporters. Pharmacol Ther 126:200–216

    CAS  PubMed  Google Scholar 

  • Masereeuw R, Russel FG (2012) Regulatory pathways for ATP-binding cassette transport proteins in kidney proximal tubules. AAPS J 14:883–894

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masereeuw R, Notenboom S, Smeets PH, Wouterse AC, Russel FG (2003) Impaired renal secretion of substrates for the multidrug resistance protein 2 in mutant transport-deficient (TR-) rats. J Am Soc Nephrol 14:2741–2749

    CAS  PubMed  Google Scholar 

  • Matsushima S, Maeda K, Inoue K, Ohta KY, Yuasa H, Kondo T, Nakayama H, Horita S, Kusuhara H, Sugiyama Y (2009) The inhibition of human multidrug and toxin extrusion 1 is involved in the drug-drug interaction caused by cimetidine. Drug Metab Dispos 37:555–559

    CAS  PubMed  Google Scholar 

  • Miller JH (1992) Sodium-sensitive, probenecid-insensitive p-aminohippuric acid uptake in cultured renal proximal tubule cells of the rabbit. Proc Soc Exp Biol Med 199:298–304

    CAS  PubMed  Google Scholar 

  • Miller DS (2002) Xenobiotic export pumps, endothelin signaling, and tubular nephrotoxicants–a case of molecular hijacking. J Biochem Mol Toxicol 16:121–127

    CAS  PubMed  Google Scholar 

  • Moriyama Y, Hiasa M, Matsumoto T, Omote H (2008) Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica 38:1107–1118

    CAS  PubMed  Google Scholar 

  • Murakami T, Takano M (2008) Intestinal efflux transporters and drug absorption. Expert Opin Drug Metab Toxicol 4:923–939

    CAS  PubMed  Google Scholar 

  • Mutsaers HA, van den Heuvel LP, Ringens LH, Dankers AC, Russel FG, Wetzels JF, Hoenderop JG, Masereeuw R (2011a) Uremic toxins inhibit transport by breast cancer resistance protein and multidrug resistance protein 4 at clinically relevant concentrations. PLoS One 6:e18438

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mutsaers HA, Wilmer MJ, van den Heuvel LP, Hoenderop JG, Masereeuw R (2011b) Basolateral transport of the uraemic toxin p-cresyl sulfate: role for organic anion transporters? Nephrol Dial Transplant 26:4149

    CAS  PubMed  Google Scholar 

  • Nies AT, Keppler D (2007) The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch 453:643–659

    CAS  PubMed  Google Scholar 

  • Nies AT, Koepsell H, Damme K, Schwab M (2011) Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb Exp Pharmacol 201:105–167

    CAS  PubMed  Google Scholar 

  • Obaidat A, Roth M, Hagenbuch B (2012) The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu Rev Pharmacol Toxicol 52:135–151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohtsuki S, Uchida Y, Kubo Y, Terasaki T (2011) Quantitative targeted absolute proteomics-based ADME research as a new path to drug discovery and development: methodology, advantages, strategy, and prospects. J Pharm Sci 100:3547–3559

    CAS  PubMed  Google Scholar 

  • Oo ZY, Deng R, Hu M, Ni M, Kandasamy K, bin Ibrahim MS, Ying JY, Zink D (2011) The performance of primary human renal cells in hollow fiber bioreactors for bioartificial kidneys. Biomaterials 32:8806–8815

    CAS  PubMed  Google Scholar 

  • Oostendorp RL, Beijnen JH, Schellens JH (2009) The biological and clinical role of drug transporters at the intestinal barrier. Cancer Treat Rev 35:137–147

    CAS  PubMed  Google Scholar 

  • Radanovic T, Murer H, Biber J (2003) Expression of the Na/P(i)-cotransporter type IIb in Sf9 cells: functional characterization and purification. J Membr Biol 194:91–96

    CAS  PubMed  Google Scholar 

  • Rizwan AN, Burckhardt G (2007) Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res 24:450–470

    CAS  PubMed  Google Scholar 

  • Robey RW, To KK, Polgar O, Dohse M, Fetsch P, Dean M, Bates SE (2009) ABCG2: a perspective. Adv Drug Deliv Rev 61:3–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robey RW, Lin B, Qiu J, Chan LL, Bates SE (2011) Rapid detection of ABC transporter interaction: potential utility in pharmacology. J Pharmacol Toxicol Methods 63:217–222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rowland YK, Aarabi M, Jamei M, Rostami-Hodjegan A (2011) Modeling and predicting drug pharmacokinetics in patients with renal impairment. Expert Rev Clin Pharmacol 4:261–274

    Google Scholar 

  • Rubio-Aliaga I, Daniel H (2008) Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica 38:1022–1042

    CAS  PubMed  Google Scholar 

  • Russel FG, Wouterse AC, van Ginneken CAM (1987) Physiologically based kidney model for the renal clearance of salicyluric acid and the interaction with phenolsulfonphthalein in the dog. Drug Metab Dispos 15:695–701

    CAS  PubMed  Google Scholar 

  • Russel FG, Masereeuw R, van Aubel RA (2002) Molecular aspects of renal anionic drug transport. Annu Rev Physiol 64:563–594

    CAS  PubMed  Google Scholar 

  • Russel FG, Koenderink JB, Masereeuw R (2008) Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci 29:200–207

    CAS  PubMed  Google Scholar 

  • Ryan MJ, Johnson G, Kirk J, Fuerstenberg SM, Zager RA, Torok-Storb B (1994) HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int 45:48–57

    CAS  PubMed  Google Scholar 

  • Sarkadi B, Homolya L, Szakacs G, Varadi A (2006) Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 86:1179–1236

    CAS  PubMed  Google Scholar 

  • Sato T, Masuda S, Yonezawa A, Tanihara Y, Katsura T, Inui K (2008) Transcellular transport of organic cations in double-transfected MDCK cells expressing human organic cation transporters hOCT1/hMATE1 and hOCT2/hMATE1. Biochem Pharmacol 76:894–903

    CAS  PubMed  Google Scholar 

  • Sekine T, Miyazaki H, Endou H (2006) Molecular physiology of renal organic anion transporters. Am J Physiol Renal Physiol 290:F251–F261

    CAS  PubMed  Google Scholar 

  • Shukla S, Schwartz C, Kapoor K, Kouanda A, Ambudkar SV (2012) Use of baculovirus BacMam vectors for expression of ABC drug transporters in mammalian cells. Drug Metab Dispos 40:304–312

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smeets PH, van Aubel RA, Wouterse AC, van den Heuvel JJ, Russel FG (2004) Contribution of multidrug resistance protein 2 (MRP2/ABCC2) to the renal excretion of p-aminohippurate (PAH) and identification of MRP4 (ABCC4) as a novel PAH transporter. J Am Soc Nephrol 15:2828–2835

    CAS  PubMed  Google Scholar 

  • Song IS, Shin HJ, Shim EJ, Jung IS, Kim WY, Shon JH, Shin JG (2008) Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin Pharmacol Ther 84:559–562

    CAS  PubMed  Google Scholar 

  • Song IS, Lee DY, Shin MH, Kim H, Ahn YG, Park I, Kim KH, Kind T, Shin JG, Fiehn O, Liu KH (2012) Pharmacogenetics meets metabolomics: discovery of tryptophan as a new endogenous OCT2 substrate related to metformin disposition. PLoS One 7:e36637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soreq H, Seidman S (1992) Xenopus oocyte microinjection: from gene to protein. Methods Enzymol 207:225–265

    CAS  PubMed  Google Scholar 

  • Tamai I (2013) Pharmacological and pathophysiological roles of carnitine/organic cation transporters (OCTNs: SLC22A4, SLC22A5 and Slc22a21). Biopharm Drug Dispos 34(1):29–44

    CAS  PubMed  Google Scholar 

  • Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui K (2007) Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem Pharmacol 74:359–371

    CAS  PubMed  Google Scholar 

  • Terada T, Inui K (2008) Physiological and pharmacokinetic roles of H+/organic cation antiporters (MATE/SLC47A). Biochem Pharmacol 75:1689–1696

    CAS  PubMed  Google Scholar 

  • Terlouw SA, Masereeuw R, van Den Broek PHH, Notenboom S, Russel FGM (2001) Role of multidrug resistance protein 2 (MRP2) in glutathione-bimane efflux from Caco-2 and rat renal proximal tubule cells. Br J Pharmacol 134:931–938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuruoka S, Sugimoto KI, Fujimura A, Imai M, Asano Y, Muto S (2001) P-glycoprotein-mediated drug secretion in mouse proximal tubule perfused in vitro. J Am Soc Nephrol 12:177–181

    CAS  PubMed  Google Scholar 

  • Ullrich KJ, Fasold H, Rumrich G, Kloss S (1984) Secretion and contraluminal uptake of dicarboxylic acids in the proximal convolution of rat kidney. Pflugers Arch 400:241–249

    CAS  PubMed  Google Scholar 

  • Urban TJ, Brown C, Castro RA, Shah N, Mercer R, Huang Y, Brett CM, Burchard EG, Giacomini KM (2008) Effects of genetic variation in the novel organic cation transporter, OCTN1, on the renal clearance of gabapentin. Clin Pharmacol Ther 83:416–421

    CAS  PubMed  Google Scholar 

  • van de Water FM, Masereeuw R, Russel FG (2005) Function and regulation of multidrug resistance proteins (MRPs) in the renal elimination of organic anions. Drug Metab Rev 37:443–471

    PubMed  Google Scholar 

  • van Herwaarden AE, Schinkel AH (2006) The function of breast cancer resistance protein in epithelial barriers, stem cells and milk secretion of drugs and xenotoxins. Trends Pharmacol Sci 27:10–16

    PubMed  Google Scholar 

  • Wang ZJ, Yin OQ, Tomlinson B, Chow MS (2008) OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet Genomics 18:637–645

    CAS  PubMed  Google Scholar 

  • Wever KE, Masereeuw R, Miller DS, Hang XM, Flik G (2007) Endothelin and calciotropic hormones share regulatory pathways in multidrug resistance protein 2-mediated transport. Am J Physiol Renal Physiol 292:F38–F46

    CAS  PubMed  Google Scholar 

  • Wilmer MJ, Saleem M, Masereeuw R, Ni L, van der velden TH, Russel FG, Mathieson P, Monnens LA, Heuvel LP, van den Heuvel LP, Levtchenko EN (2010) A novel conditionally immortalized human proximal tubule cell line expressing functional influx and efflux transporters. Cell Tissue Res 339:449–457

    PubMed Central  PubMed  Google Scholar 

  • Windass AS, Lowes S, Wang Y, Brown CD (2007) The contribution of organic anion transporters OAT1 and OAT3 to the renal uptake of rosuvastatin. J Pharmacol Exp Ther 322:1221–1227

    CAS  PubMed  Google Scholar 

  • Wittgen HG, Greupink R, van den Heuvel JJ, van den Broek PH, Dinter-Heidorn H, Koenderink JB, Russel FG (2012a) Exploiting transport activity of p-glycoprotein at the blood-brain barrier for the development of peripheral cannabinoid type 1 receptor antagonists. Mol Pharm 9:1351–1360

    CAS  PubMed  Google Scholar 

  • Wittgen HG, van den Heuvel JJ, Krieger E, Schaftenaar G, Russel FG, Koenderink JB (2012b) Phenylalanine 368 of multidrug resistance-associated protein 4 (MRP4/ABCC4) plays a crucial role in substrate-specific transport activity. Biochem Pharmacol 84:366–373

    CAS  PubMed  Google Scholar 

  • Wright SH, Dantzler WH (2004) Molecular and cellular physiology of renal organic cation and anion transport. Physiol Rev 84:987–1049

    CAS  PubMed  Google Scholar 

  • Zhao P, Zhang L, Grillo JA, Liu Q, Bullock JM, Moon YJ, Song P, Brar SS, Madabushi R, Wu TC, Booth BP, Rahman NA, Reynolds KS, Gil BE, Lesko LJ, Huang SM (2011) Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther 89:259–267

    CAS  PubMed  Google Scholar 

  • Zhou SF (2008) Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 38:802–832

    CAS  PubMed  Google Scholar 

  • Zhou SF, Wang LL, Di YM, Xue CC, Duan W, Li CG, Li Y (2008) Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 15:1981–2039

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frans G. M. Russel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Russel, F.G.M., Masereeuw, R. (2013). Analysis of Renal Transporters. In: Sugiyama, Y., Steffansen, B. (eds) Transporters in Drug Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8229-1_10

Download citation

Publish with us

Policies and ethics