Skip to main content

Archetypes and Outliers in the Neuromorphological Space

  • Chapter
  • First Online:
The Computing Dendrite

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 11))

Abstract

Neuromorphology has a long history of meticulous analysis and fundamental studies about the intricacies of neuronal shape. These studies converged to a plethora of information describing in detail many neuronal characteristics, as well as comprehensive data about cell localization, animal type, age, among others. Much of this information has notably been compiled through efforts of the Computational Neuroanatomy Group at the Krasnow Institute for Advanced Study, George Mason University, thus originating the NeuroMorpho.org repository, a resource that incorporates a large set of data and related tools. In the current work we present a methodology that can be used to search for novel relationships in cell morphology contained in databases such as the NeuroMorpho.org. More specifically, we try to understand which morphological characteristics can be considered universal for a given cell type, or to what extent we can represent an entire cell class through an archetypal shape. This analysis is done by taking a large number of characteristics from cells into account, and then applying multivariate techniques to analyze the data. The neurons are then classified as archetypes or outliers according to how close they are to the typical shape of the class. We find that granule and medium spiny neurons can be associated with a typical shape, and that different animals and brain regions show distinct distributions of shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we use the lab names that appear on NeuroMorpho.org.

References

  • Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (2006) The hippocampus book, 1st edn. Oxford University Press, New York

    Book  Google Scholar 

  • Arisi GM, Garcia-Cairasco N (2007) Doublecortin-positive newly born granule cells of hippocampus have abnormal apical dendritic morphology in the pilocarpine model of temporal lobe epilepsy. Brain Res 1165:126–134

    Google Scholar 

  • Ascoli GA (2002) Computational neuroanatomy: principles and methods. Humana Press, Totowa

    Book  Google Scholar 

  • Ascoli GA, Donohue DE, Halavi M (2007) Neuromorpho.org: a central resource for neuronal morphologies. J Neurosci 27(35):9247

    Google Scholar 

  • Bausch SB, He S, Petrova Y, Wang XM, McNamara JO (2006) Plasticity of both excitatory and inhibitory synapses is associated with seizures induced by removal of chronic blockade of activity in cultured hippocampus. J Neurophysiol 96(4):2151–2167

    Article  PubMed  CAS  Google Scholar 

  • Bishop GA, Chang HT, Kitai ST (1982) Morphological and physiological properties of neostriatal neurons: an intracellular horseradish peroxidase study in the rat. Neuroscience 7(1):179–191

    Article  PubMed  CAS  Google Scholar 

  • Cannon RC, Turner DA, Pyapali GK, Wheal HV (1998) An on-line archive of reconstructed hippocampal neurons. J Neurosci Meth 84(1–2):49–54

    Article  CAS  Google Scholar 

  • Cannon RC, Wheal HV, Turner DA (1999) Dendrites of classes of hippocampal neurons differ in structural complexity and branching patterns. J Comp Neurol 413(4):619–633

    Article  PubMed  CAS  Google Scholar 

  • Carim-Todd L, Bath KG, Fulgenzi G, Yanpallewar S, Jing D, Barrick CA, Becker J, Buckley H, Dorsey SG, Lee FS, Tessarollo L (2009) Endogenous truncated TrkB.T1 receptor regulates neuronal complexity and TrkB kinase receptor function in vivo. J Neurosci 29(3):678–685

    Article  PubMed  CAS  Google Scholar 

  • Carnevale NT, Tsai KY, Claiborne BJ, Brown TH (1997) Comparative electrotonic analysis of three classes of rat hippocampal neurons. J Neurophysiol 78(2):703–720

    PubMed  CAS  Google Scholar 

  • Cazorla M, Shegda M, Ramesh B, Harrison NL, Kellendonk C (2012) Striatal d2 receptors regulate dendritic morphology of medium spiny neurons via kir2 channels. J Neurosci 32(7):2398–2409

    Google Scholar 

  • Chklovskii DB (2004) Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron 43(5):609–617

    PubMed  CAS  Google Scholar 

  • Costa LdF, Manoel ETM, Faucereau F, Chelly J, van Pelt J, Ramakers G (2002) A shape analysis framework for neuromorphometry. Network (Bristol, England) 13(3):283–310

    Google Scholar 

  • Costa LDF, Zawadzki K, Miazaki M, Viana MP, Taraskin SN (2010) Unveiling the neuromorphological space. Front Comput Neurosci 4:150

    Article  Google Scholar 

  • Duda RO, Hart PE, Stork DG (2000) Pattern classification, 2nd edn. Wiley, New York

    Google Scholar 

  • Gupta A, Elgammal FS, Proddutur A, Shah S, Santhakumar V (2012) Decrease in tonic inhibition contributes to increase in dentate semilunar granule cell excitability after brain injury. J Neurosci 32(7):2523–2537

    Article  PubMed  CAS  Google Scholar 

  • Halavi M, Polavaram S, Donohue DE, Hamilton G, Hoyt J, Smith KP (2008) Neuromorpho.org implementation of digital neuroscience: dense coverage and integration with the nif. J Neuroinform 6(3):241–252

    Article  Google Scholar 

  • Hardle WK, Simar L (2012) Applied multivariate statistical analysis, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Krichmar JL, Nasuto SJ, Scorcioni R, Washington SD, Ascoli GA (2002) Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Res 941(1–2): 11–28

    Article  PubMed  CAS  Google Scholar 

  • McDonald CG, Dailey VK, Bergstrom HC, Wheeler TL, Eppolito AK, Smith LN, Smith RF (2005) Periadolescent nicotine administration produces enduring changes in dendritic morphology of medium spiny neurons from nucleus accumbens. Neurosci Lett 385(2):163–167

    Google Scholar 

  • Milosević NT, Ristanović D (2007) The sholl analysis of neuronal cell images: semi-log or log–log method? J Theor Biol 245(1):130–140

    Article  PubMed  Google Scholar 

  • Montague PR, Friedlander MJ (1991) Morphogenesis and territorial coverage by isolated mammalian retinal ganglion cells. J Neurosci 11(5):1440–1457

    Google Scholar 

  • Murphy BL, Pun RYK, Yin H, Faulkner CR, Loepke AW, Danzer SC (2011) Heterogeneous integration of adult-generated granule cells into the epileptic brain. J Neurosci 31(1):105–117

    Google Scholar 

  • Pierce JP, McCloskey DP, Scharfman HE (2011) Morphometry of hilar ectopic granule cells in the rat. J Comp Neurol 519(6):1196–1218

    Article  PubMed  Google Scholar 

  • Poirazi P, Brannon T, Mel BW (2003) Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron 37(6):977–987

    Article  PubMed  CAS  Google Scholar 

  • Poznanski RR (1992) Modelling the electrotonic structure of starburst amacrine cells in the rabbit retina: a functional interpretation of dendritic morphology. Bull Math Biol 54(6):905–928

    Google Scholar 

  • Preston R, Bishop G, Kitai S (1980) Medium spiny neuron projection from the rat striatum: an intracellular horseradish peroxidase study. Brain Res 183(2):253–263

    Google Scholar 

  • Rihn LL, Claiborne BJ (1990) Dendritic growth and regression in rat dentate granule cells during late postnatal development. Brain Res Dev Brain Res 54(1):115–124

    Article  PubMed  CAS  Google Scholar 

  • Ristanović D, Milosević NT, Stulić V (2006) Application of modified sholl analysis to neuronal dendritic arborization of the cat spinal cord. J Neurosci Methods 158(2):212–218

    Article  PubMed  Google Scholar 

  • Rodrigues EP, Barbosa MS, Costa LdF (2005) Self-referred approach to lacunarity. Phys Rev E Stat Nonlin Soft Matter Phys 72(1 Pt 2):016707

    Google Scholar 

  • Scorcioni R, Lazarewicz MT, Ascoli GA (2004) Quantitative morphometry of hippocampal pyramidal cells: differences between anatomical classes and reconstructing laboratories. J Comp Neurol 473(2):177–193

    Article  PubMed  Google Scholar 

  • Scorcioni R, Polavaram S, Ascoli GA (2008a) L-measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat Protoc 3(5):866–876

    Google Scholar 

  • Scorcioni R, Polavaram S, Ascoli GA (2008b) L-measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat Protoc 3:866–876

    Article  PubMed  CAS  Google Scholar 

  • Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406

    Google Scholar 

  • Tejada J, Arisi GM, Garcia-Cairasco N, Roque AC (2012) Morphological alterations in newly born dentate gyrus granule cells that emerge after status epilepticus contribute to make them less excitable. PLoS One 7(7):e40726

    Google Scholar 

  • Toris CB, Eiesland JL, Miller RF (1995) Morphology of ganglion cells in the neotenous tiger salamander retina. J Comp Neurol 352(4):535–559

    Google Scholar 

  • van Elburg RA, van Ooyen A (2010) Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PLoS Comput Biol 6:e1000,781

    Google Scholar 

  • Vuksic M, Del Turco D, Bas Orth C, Burbach GJ, Feng G, Müller CM, Schwarzacher SW, Deller T (2008) 3D-reconstruction and functional properties of GFP-positive and GFP-negative granule cells in the fascia dentata of the thy1-GFP mouse. Hippocampus 18(4):364–375

    Article  PubMed  CAS  Google Scholar 

  • Zhou D, Li S, Zhang Xh, Cai D (2013) Phenomenological incorporation of nonlinear dendritic integration using integrate-and-fire neuronal frameworks. PloS One 8(1):e53508

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

 CHC is grateful to FAPESP (2011/22639-8 and 2011/50761-2) for sponsorship. JT is grateful to CNPq (560353/2010-3) and FAPESP (2012/17057-2) for a postdoctoral scholarship. MPV thanks to FAPESP for financial support (2010/16310-0). ACR is grateful to CNPq (306040/2010-7) for financial support. LdFC is grateful to FAPESP (05/00587- 5 and 2011/50761-2) and CNPq (301303/06-1 and 573583/2008-0) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano da F. Costa .

Editor information

Editors and Affiliations

Appendix:

Appendix:

1.1 Tables with the Names of the Archetypes and Outliers Found

Table 3.4 Names of the archetypes identified in each cell class
Table 3.5 Names of the outliers identified in each cell class

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Comin, C.H., Tejada, J., Viana, M.P., Roque, A.C., Costa, L.d.F. (2014). Archetypes and Outliers in the Neuromorphological Space. In: Cuntz, H., Remme, M., Torben-Nielsen, B. (eds) The Computing Dendrite. Springer Series in Computational Neuroscience, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8094-5_3

Download citation

Publish with us

Policies and ethics