Skip to main content

Introduction to Dendritic Computation

  • Chapter
  • First Online:
The Computing Dendrite

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 11))

  • 2189 Accesses

Abstract

Dendrites receive the far majority of synaptic inputs to a neuron. The spatial distribution of inputs across the dendrites can be exploited by neurons to increase their computational repertoire. The role of dendrites in neural computation is the theme of the second part of this book to which this chapter forms the introduction. We review the various mechanisms that dendritic neurons can implement to introduce selectivity to spatiotemporal input patterns or to alter firing patterns, and briefly introduce the theoretical methods that are used to study this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agmon-Snir H, Carr CE, Rinzel J (1998) The role of dendrites in auditory coincidence detection. Nature 393:268–272

    Article  PubMed  CAS  Google Scholar 

  • Akemann W, Mutoh H, Perron A et al (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat Methods 7:643–649

    Article  PubMed  CAS  Google Scholar 

  • Alonso AA, Llinas RR (1989) Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342:175–177

    Article  PubMed  CAS  Google Scholar 

  • Bower JM, Beeman D (1998) The book of GENESIS: exploring realistic neural models with the GEneral NEural SImulation System. Springer, New York, NY

    Google Scholar 

  • Branco T, Häusser M (2010) The single dendritic branch as a fundamental functional unit in the nervous system. Curr Opin Neurobiol 20:494–502

    Article  PubMed  CAS  Google Scholar 

  • Burgess N, Barry C, O’Keefe J (2007) An oscillatory interference model of grid cell firing. Hippocampus 17:801–812

    Article  PubMed  Google Scholar 

  • Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412

    Article  PubMed  CAS  Google Scholar 

  • Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73:862–885

    Article  PubMed  CAS  Google Scholar 

  • Gulledge AT, Kampa BM, Stuart GJ (2005) Synaptic integration in dendritic trees. J Neurobiol 64:75–90

    Article  PubMed  CAS  Google Scholar 

  • Häusser M (2001) Synaptic function: dendritic democracy. Curr Biol 11:R10–R12

    Article  PubMed  Google Scholar 

  • Häusser M, Mel B (2003) Dendrites: bug or feature? Curr Opin Neurobiol 13:372–383

    Article  PubMed  Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179–1209

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL, Rushton WA (1946) The electrical constants of a crustacean nerve fibre. Proc R Soc Med 134:444–479

    PubMed  CAS  Google Scholar 

  • Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23:216–222

    Article  PubMed  CAS  Google Scholar 

  • Jack JJB, Noble D, Tsien RW (1975) Electric current flow in excitable cells. Oxford University Press, Oxford

    Google Scholar 

  • Johnston D, Narayanan R (2008) Active dendrites: colorful wings of the mysterious butterflies. Trends Neurosci 31:309–316

    Article  PubMed  CAS  Google Scholar 

  • Koch C, Poggio T, Torre V (1983) Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc Natl Acad Sci 80:2799–2802

    Article  PubMed  CAS  Google Scholar 

  • Koch C (1984) Cable theory in neurons with active, linearized membranes. Biol Cybern 50:15–33

    Article  PubMed  CAS  Google Scholar 

  • Koch C, Douglas R, Wehmeier U (1990) Visibility of synaptically induced conductance changes: theory and simulations of anatomically characterized cortical pyramidal cells. J Neurosci 10:1728–1744

    PubMed  CAS  Google Scholar 

  • Larkum ME, Nevian T (2008) Synaptic clustering by dendritic signalling mechanisms. Curr Opin Neurobiol 18:321–331

    Article  PubMed  CAS  Google Scholar 

  • London M, Häusser M (2005) Dendritic computation. Annu Rev Neurosci 28:503–532

    Article  PubMed  CAS  Google Scholar 

  • Magee JC (2000) Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 1:181–190

    Article  PubMed  CAS  Google Scholar 

  • Magee JC (2008) Dendritic voltage-gated ion channels. In: Stuart GJ, Spruston N, Häusser M (eds) Dendrites, 2nd edn. Oxford University Press, Oxford, pp 225–250

    Google Scholar 

  • Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366

    Article  PubMed  CAS  Google Scholar 

  • Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153–160

    Article  PubMed  CAS  Google Scholar 

  • Mathews PJ, Jercog PE, Rinzel J et al (2010) Control of submillisecond synaptic timing in binaural coincidence detectors by Kv1 channels. Nat Neurosci 13:601–609

    Article  PubMed  CAS  Google Scholar 

  • Nusser Z (2009) Variability in the subcellular distribution of ion channels increases neuronal diversity. Trends Neurosci 32:267–274

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330

    Article  PubMed  Google Scholar 

  • Pinsky PF, Rinzel J (1994) Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J Comput Neurosci 1:39–60

    Article  PubMed  CAS  Google Scholar 

  • Poirazi P, Brannon T, Mel BW (2003) Pyramidal neuron as two-layer neural network. Neuron 37:989–999

    Article  PubMed  CAS  Google Scholar 

  • Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621–627

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1957) Membrane time constant of motoneurons. Science 126:454

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 1:491–527

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1960) Membrane potential transients and membrane time constant of motoneurons. Exp Neurol 2:503–532

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1964) Theoretical significance of dendritic trees for neuronal input-output relations. In: Reis R (ed) Neural theory and modeling. Stanford University Press, Stanford, CA, pp 73–97

    Google Scholar 

  • Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol 30:1138–1168

    PubMed  CAS  Google Scholar 

  • Remme MWH, Rinzel J (2011) Role of active dendritic conductances in subthreshold input integration. J Comput Neurosci 31:13–30

    Article  PubMed  Google Scholar 

  • Remme MWH (2013) Quasi-active approximation of nonlinear dendritic cables. In: Jaeger D, Jung R (eds) Encyclopedia of computational neuroscience: SpringerReference. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Schwindt PC, Crill WE (1995) Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. J Neurophysiol 74:2220–2224

    PubMed  CAS  Google Scholar 

  • Segev I, London M (2000) Untangling dendrites with quantitative models. Science 290:744–750

    Article  PubMed  CAS  Google Scholar 

  • Segev I, Rinzel J, Shepherd GM (1995) The theoretical foundation of dendritic function: selected papers of Wilfrid Rall with commentaries. MIT Press, Cambridge, MA

    Google Scholar 

  • Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221

    Article  PubMed  CAS  Google Scholar 

  • Stuart GJ, Spruston N, Häusser M (2008) Dendrites, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Tuckwell HC (1988) Introduction to theoretical neurobiology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Williams SR, Stuart GJ (2003) Role of dendritic synapse location in the control of action potential output. Trends Neurosci 26:147–154

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiel W. H. Remme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Remme, M.W.H., Torben-Nielsen, B. (2014). Introduction to Dendritic Computation. In: Cuntz, H., Remme, M., Torben-Nielsen, B. (eds) The Computing Dendrite. Springer Series in Computational Neuroscience, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8094-5_10

Download citation

Publish with us

Policies and ethics