Skip to main content

ROUNDABOUT Receptors

  • Chapter
  • First Online:
Cell Adhesion Molecules

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 8))

Abstract

Roundabout receptors (Robo) and their Slit ligands were discovered in the 1990s and found to be key players in axon guidance. Slit was initially described as an extracellular matrix protein that was expressed by midline glia in Drosophila. A few years later, it was shown that, in vertebrates and invertebrates, Slits acted as chemorepellents for axons crossing the midline. Robo proteins were originally discovered in Drosophila in a mutant screen for genes involved in the regulation of midline crossing. This ligand–receptor pair has since been implicated in a variety of other neuronal and non-neuronal processes ranging from cell migration to angiogenesis, tumourigenesis and even organogenesis of tissues such as kidneys, lungs and breasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Amero KK, Al Dhalaan H, Al Zayed Z, Hellani A, Bosley TM (2009) Five new consanguineous families with horizontal gaze palsy and progressive scoliosis and novel ROBO3 mutations. J Neurol Sci 276:22–26

    CAS  PubMed  Google Scholar 

  • Abu-Amero KK, Faletra F, Gasparini P, Parentin F, Pensiero S, Alorainy IA, Hellani AM, Catalano D, Bosley TM (2011) Horizontal gaze palsy and progressive scoliosis without ROBO3 mutations. Ophthalmic Genet 32:212–216

    CAS  PubMed  Google Scholar 

  • Alajez NM, Lenarduzzi M, Ito E, Hui ABY, Shi W, Bruce J, Yue S, Huang SH, Xu W, Waldron J et al (2011) MiR-218 suppresses nasopharyngeal cancer progression through downregulation of survivin and the SLIT2-ROBO1 pathway. Cancer Res 71:2381–2391

    CAS  PubMed  Google Scholar 

  • Amouri R, Nehdi H, Bouhlal Y, Kefi M, Larnaout A, Hentati F (2009) Allelic ROBO3 heterogeneity in Tunisian patients with horizontal gaze palsy with progressive scoliosis. J Mol Neurosci 39:337–341

    CAS  PubMed  Google Scholar 

  • Anand AR, Nagaraja T, Ganju RK (2011) A novel role for Slit2/Robo1 axis in modulating HIV-1 replication in T cells. AIDS 25:2105–2111

    CAS  PubMed  Google Scholar 

  • Anand AR, Zhao H, Nagaraja T, Robinson LA, Ganju RK (2013) N-terminal Slit2 inhibits HIV-1 replication by regulating the actin cytoskeleton. Retrovirology 10:2

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andrews W, Liapi A, Plachez C, Camurri L, Zhang J, Mori S, Murakami F, Parnavelas JG, Sundaresan V, Richards LJ (2006) Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development 133:2243–2252

    CAS  PubMed  Google Scholar 

  • Andrews W, Barber M, Hernadez-Miranda LR, Xian J, Rakic S, Sundaresan V, Rabbitts TH, Pannell R, Rabbitts P, Thompson H et al (2008) The role of Slit-Robo signaling in the generation, migration and morphological differentiation of cortical interneurons. Dev Biol 313:648–658

    CAS  PubMed  Google Scholar 

  • Anitha A, Nakamura K, Yamada K, Suda S, Thanseem I, Tsujii M, Iwayama Y, Hattori E, Toyota T, Miyachi T et al (2008) Genetic analyses of Roundabout(ROBO) axon guidance receptors in autism. Am J Med Genet 147B:1019–1027

    CAS  PubMed  Google Scholar 

  • Atkinson-Leadbeater K, Bertolesi GE, Hehr CL, Webber CA, Cechmanek PB, McFarlane S (2010) Dynamic expression of axon guidance cues required for optic tract development is controlled by fibroblast growth factor signaling. J Neurosci 30:685–693

    CAS  PubMed  Google Scholar 

  • Bacon C, Endris V, Rappold G (2009) Dynamic expression of the Slit-Robo GTPase activating protein genes during development of the murine nervous system. J Comp Neurol 513:224–236

    CAS  PubMed  Google Scholar 

  • Bacon C, Endris V, Andermatt I, Niederkofler V, Waltereit R, Bartsch D, Stoeckli ET, Rappold G (2011) Evidence for a role of srGAP3 in the positioning of commissural axons within the ventrolateral funiculus of the mouse spinal cord. PLoS ONE 6:e19887

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bagri A, Marín O, Plump AS, Mak J, Pleasure SJ, Rubenstein JLR, Tessier-Lavigne M (2002) Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 33:233–248

    CAS  PubMed  Google Scholar 

  • Bai G, Chivatakarn O, Bonanomi D, Lettieri K, Franco L, Xia C, Stein E, Ma L, Lewcock JW, Pfaff SL (2011) Presenilin-dependent receptor processing is required for axon guidance. Cell 144:106–118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ballard MS, Hinck L (2012) A roundabout way to cancer. Adv Cancer Res 114:187–235

    CAS  PubMed  Google Scholar 

  • Balordi F, Fishell G (2007) Hedgehog signaling in the subventricular zone is required for both the maintenance of stem cells and the migration of newborn neurons. J Neurosci 27:5936–5947

    CAS  PubMed  Google Scholar 

  • Barber AJ (2003) A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry 27:283–290

    CAS  PubMed  Google Scholar 

  • Barresi MJF, Hutson LD, Chien C-B, Karlstrom RO (2005) Hedgehog regulated Slit expression determines commissure and glial cell position in the zebrafish forebrain. Development 132: 3643–3656

    CAS  PubMed  Google Scholar 

  • Bashaw GJ, Kidd T, Murray D, Pawson T, Goodman CS (2000) Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the roundabout receptor. Cell 101:703–715

    CAS  PubMed  Google Scholar 

  • Bates TC, Luciano M, Medland SE, Montgomery GW, Wright MJ, Martin NG (2010) Genetic variance in a component of the language acquisition device: robo1 polymorphisms associated with phonological buffer deficits. Behav Genet 41:50–57

    PubMed  Google Scholar 

  • Battye R, Stevens A, Perry RL, Jacobs JR (2001) Repellent signaling by Slit requires the leucine-rich repeats. J Neurosci 21:4290–4298

    CAS  PubMed  Google Scholar 

  • Bauer K, Dowejko A, Bosserhoff A-K, Reichert TE, Bauer R (2011) Slit-2 facilitates interaction of P-cadherin with Robo-3 and inhibits cell migration in an oral squamous cell carcinoma cell line. Carcinogenesis 32:935–943

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bedell VM, Yeo S-Y, Park KW, Chung J, Seth P, Shivalingappa V, Zhao J, Obara T, Sukhatme VP, Drummond IA et al (2005) Roundabout4 is essential for angiogenesis in vivo. Proc Natl Acad Sci USA 102:6373–6378

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beggs AD, Jones A, El-Bahwary M, Abulafi M, Hodgson SV, Tomlinson IP (2013) Whole-genome methylation analysis of benign and malignant colorectal tumours. J Pathol 229:697–704

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biankin AV, Waddell N, Kassahn KS, Gingras M-C, Muthuswamy LB, Johns AL, Miller DK, Wilson PJ, Patch A-M, Wu J et al (2012) Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491:399–405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borrell V, Cárdenas A, Ciceri G, Galcerán J, Flames N, Pla R, Nóbrega-Pereira S, García-Frigola C, Peregrín S, Zhao Z et al (2012) Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron 76:338–352

    CAS  PubMed  Google Scholar 

  • Bowerman B (2008) Cell signaling. Wnt moves beyond the canon. Science 320:327–328

    CAS  PubMed  Google Scholar 

  • Bravo-Ambrosio A, Mastick G, Kaprielian Z (2012) Motor axon exit from the mammalian spinal cord is controlled by the homeodomain protein Nkx2.9 via Robo-Slit signaling. Development 139:1435–1446

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D et al (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473:221–225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Briançon-Marjollet A, Ghogha A, Nawabi H, Triki I, Auziol C, Fromont S, Piché C, Enslen H, Chebli K, Cloutier J-F et al (2008) Trio mediates netrin-1-induced Rac1 activation in axon outgrowth and guidance. Mol Cell Biol 28:2314–2323

    PubMed Central  PubMed  Google Scholar 

  • Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, Tessier-Lavigne M, Kidd T (1999) Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96:795–806

    CAS  PubMed  Google Scholar 

  • Bustelo XR, Sauzeau V, Berenjeno IM (2007) GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays 29:356–370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calmont A, Ivins S, Van Bueren KL, Papangeli I, Kyriakopoulou V, Andrews WD, Martin JF, Moon AM, Illingworth EA, Basson MA et al (2009) Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating Gbx2 expression in the pharyngeal ectoderm. Development 136:3173–3183

    CAS  PubMed Central  PubMed  Google Scholar 

  • Camurri L, Mambetisaeva E, Davies D, Parnavelas J, Sundaresan V, Andrews W (2005) Evidence for the existence of two Robo3 isoforms with divergent biochemical properties. Mol Cell Neurosci 30:485–493

    CAS  PubMed  Google Scholar 

  • Carleton A, Petreanu LT, Lansford R, Alvarez-Buylla A, Lledo P-M (2003) Becoming a new neuron in the adult olfactory bulb. Nat Neurosci 6:507–518

    CAS  PubMed  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    CAS  PubMed  Google Scholar 

  • Carthew RW (2006) Gene regulation by microRNAs. Curr Opin Genet Dev 16:203–208

    CAS  PubMed  Google Scholar 

  • Chalasani SH, Sabelko KA, Sunshine MJ, Littman DR, Raper JA (2003) A chemokine, SDF-1, reduces the effectiveness of multiple axonal repellents and is required for normal axon pathfinding. J Neurosci 23:1360–1371

    CAS  PubMed  Google Scholar 

  • Chalasani SH, Sabol A, Xu H, Gyda MA, Rasband K, Granato M, Chien C-B, Raper JA (2007) Stromal cell-derived factor-1 antagonizes slit/robo signaling in vivo. J Neurosci 27:973–980

    CAS  PubMed  Google Scholar 

  • Charrier C, Joshi K, Coutinho-Budd J, Kim J-E, Lambert N, de Marchena J, Jin W-L, Vanderhaeghen P, Ghosh A, Sassa T et al (2012) Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149:923–935

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chedotal A (2007) Slits and their receptors. Adv Exp Med Biol 621:65–80

    PubMed  Google Scholar 

  • Chedotal A (2011) Further tales of the midline. Curr Opin Neurobiol 21:68–75

    CAS  PubMed  Google Scholar 

  • Chen JH, Wen L, Dupuis S, Wu JY, RAO Y (2001) The N-terminal leucine-rich regions in Slit are sufficient to repel olfactory bulb axons and subventricular zone neurons. J Neurosci 21:1548–1556

    CAS  PubMed  Google Scholar 

  • Chen Z, Gore BB, Long H, Ma L, Tessier-Lavigne M (2008) Alternative splicing of the Robo3 axon guidance receptor governs the midline switch from attraction to repulsion. Neuron 58: 325–332

    CAS  PubMed  Google Scholar 

  • Conway CD, Howe KM, Nettleton NK, Price DJ, Mason JO, Pratt T (2011) Heparan sulfate sugar modifications mediate the functions of slits and other factors needed for mouse forebrain commissure development. J Neurosci 31:1955–1970

    CAS  PubMed  Google Scholar 

  • Coutinho-Budd J, Ghukasyan V, Zylka MJ, Polleux F (2012) The F-BAR domains from srGAP1, srGAP2, and srGAP3 differentially regulate membrane deformation. J Cell Sci 125: 3390–3401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Denk AE, Braig S, Schubert T, Bosserhoff AK (2011) Slit3 inhibits activator protein 1-mediated migration of malignant melanoma cells. Int J Mol Med 28:721–726

    CAS  PubMed  Google Scholar 

  • Devine CA, Key B (2008) Robo-Slit interactions regulate longitudinal axon pathfinding in the embryonic vertebrate brain. Dev Biol 313:371–383

    CAS  PubMed  Google Scholar 

  • Di Bonito M, Narita Y, Avallone B, Sequino L, Mancuso M, Andolfi G, Franzè AM, Puelles L, Rijli FM, Studer M (2013) Assembly of the auditory circuitry by a hox genetic network in the mouse brainstem. PLoS Genet 9:e1003249

    PubMed Central  PubMed  Google Scholar 

  • Di Meglio T, Nguyen-Ba-Charvet KT, Tessier-Lavigne M, Sotelo C, Chedotal A (2008) Molecular mechanisms controlling midline crossing by precerebellar neurons. J Neurosci 28:6285–6294

    PubMed  Google Scholar 

  • Dickinson RE, Duncan WC (2010) The SLIT-ROBO pathway: a regulator of cell function with implications for the reproductive system. Reproduction 139:697–704

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dickson BJ, Gilestro GF (2006) Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol 22:651–675

    CAS  PubMed  Google Scholar 

  • Doetsch F, García-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061

    CAS  PubMed  Google Scholar 

  • Doetsch F, Petreanu L, Caillé I, Garcia-Verdugo JM, Alvarez-Buylla A (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36:1021–1034

    CAS  PubMed  Google Scholar 

  • Evans TA, Bashaw GJ (2010) Functional diversity of Robo receptor immunoglobulin domains promotes distinct axon guidance decisions. Curr Biol 20:567–572

    CAS  PubMed  Google Scholar 

  • Evans TA, Bashaw GJ (2012) Slit/Robo-mediated axon guidance in Tribolium and Drosophila: divergent genetic programs build insect nervous systems. Dev Biol 363:266–278

    CAS  PubMed  Google Scholar 

  • Fan X, Labrador J-P, Hing H, Bashaw GJ (2003) Slit stimulation recruits Dock and Pak to the roundabout receptor and increases Rac activity to regulate axon repulsion at the CNS midline. Neuron 40:113–127

    CAS  PubMed  Google Scholar 

  • Fish JE, Wythe JD, Xiao T, Bruneau BG, Stainier DYR, Srivastava D, Woo S (2011) A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish. Development 138:1409–1419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fothergill T, Donahoo A-LS, Douglass A, Zalucki O, Yuan J, Shu T, Goodhill GJ, Richards LJ (2013) Netrin-DCC signaling regulates corpus callosum formation through attraction of pioneering axons and by modulating Slit2-mediated repulsion. Cereb Cortex. Epub ahead of print

    Google Scholar 

  • Fouquet C, Di Meglio T, Ma L, Kawasaki T, Long H, Hirata T, Tessier-Lavigne M, Chedotal A, Nguyen-Ba-Charvet KT (2007) Robo1 and robo2 control the development of the lateral olfactory tract. J Neurosci 27:3037–3045

    CAS  PubMed  Google Scholar 

  • Fukuhara N, Howitt JA, Hussain S-A, Hohenester E (2008) Structural and functional analysis of slit and heparin binding to immunoglobulin-like domains 1 and 2 of Drosophila Robo. J Biol Chem 283:16226–16234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garbe DS, Bashaw GJ (2004) Axon guidance at the midline: from mutants to mechanisms. Crit Rev Biochem Mol Biol 39:319–341

    CAS  PubMed  Google Scholar 

  • Geisen MJ, Di Meglio T, Pasqualetti M, Ducret S, Brunet J-F, Chedotal A, Rijli FM (2008) Hox paralog group 2 genes control the migration of mouse pontine neurons through slit-robo signaling. PLoS Biol 6:e142

    PubMed Central  PubMed  Google Scholar 

  • Gonda Y, Andrews WD, Tabata H, Namba T, Parnavelas JG, Nakajima K, Kohsaka S, Hanashima C, Uchino S (2012) Robo1 regulates the migration and laminar distribution of upper-layer pyramidal neurons of the cerebral cortex. Cereb Cortex 23:1495–1508

    PubMed  Google Scholar 

  • Gonzalo JA, Lloyd CM, Peled A, Delaney T, Coyle AJ, Gutierrez-Ramos JC (2000) Critical involvement of the chemotactic axis CXCR4/stromal cell-derived factor-1 alpha in the inflammatory component of allergic airway disease. J Immunol 165:499–508

    CAS  PubMed  Google Scholar 

  • Grant A, Fathalli F, Rouleau G, Joober R, Flores C (2012) Association between schizophrenia and genetic variation in DCC: a case–control study. Schizophr Res 137:26–31

    PubMed  Google Scholar 

  • Guan C-B, Xu H-T, Jin M, Yuan X-B, Poo M-M (2007) Long-range Ca2+ signaling from growth cone to soma mediates reversal of neuronal migration induced by slit-2. Cell 129:385–395

    CAS  PubMed  Google Scholar 

  • Guo S, Bao S (2010) srGAP2 arginine methylation regulates cell migration and cell spreading through promoting dimerization. J Biol Chem 285:35133–35141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hannula-Jouppi K, Kaminen-Ahola N, Taipale M, Eklund R, Nopola-Hemmi J, Kääriäinen H, Kere J (2005) The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLoS Genet 1:e50

    PubMed Central  PubMed  Google Scholar 

  • Hao JC, Yu TW, Fujisawa K, Culotti JG, Gengyo-Ando K, Mitani S, Moulder G, Barstead R, Tessier-Lavigne M, Bargmann CI (2001) C. elegans slit acts in midline, dorsal-ventral, and anterior-posterior guidance via the SAX-3/Robo receptor. Neuron 32:25–38

    CAS  PubMed  Google Scholar 

  • Hagino S, Iseki K, Mori T, Zhang Y, Hikake T, Yokoya S, Takeuchi M, Hasimoto H, Kikuchi S, Wanaka A (2003) Slit and glypican-1 mRNAs are coexpressed in the reactive astrocytes of the injured adult brain. Glia 42:130–138

    Google Scholar 

  • He Z, Tessier-Lavigne M (1997) Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90:739–751

    CAS  PubMed  Google Scholar 

  • Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9:690–701

    CAS  PubMed  Google Scholar 

  • Hernández-Miranda LR, Parnavelas JG, Chiara F (2010) Molecules and mechanisms involved in the generation and migration of cortical interneurons. ASN Neuro 2:e00031

    PubMed Central  PubMed  Google Scholar 

  • Higginbotham H, Tanaka T, Brinkman BC, Gleeson JG (2006) GSK3beta and PKCzeta function in centrosome localization and process stabilization during Slit-mediated neuronal repolarization. Mol Cell Neurosci 32:118–132

    CAS  PubMed  Google Scholar 

  • Hivert B, Liu Z, Chuang C-Y, Doherty P, Sundaresan V (2002) Robo1 and Robo2 are homophilic binding molecules that promote axonal growth. Mol Cell Neurosci 21:534–545

    CAS  PubMed  Google Scholar 

  • Holmes GP, Negus K, Burridge L, Raman S, Algar E, Yamada T, Little MH (1998) Distinct but overlapping expression patterns of two vertebrate slit homologs implies functional roles in CNS development and organogenesis. Mech Dev 79:57–72

    CAS  PubMed  Google Scholar 

  • Howitt JA, Clout NJ, Hohenester E (2004) Binding site for Robo receptors revealed by dissection of the leucine-rich repeat region of Slit. EMBO J 23:4406–4412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu H (2001) Cell-surface heparan sulfate is involved in the repulsive guidance activities of Slit2 protein. Nat Neurosci 4:695–701

    CAS  PubMed  Google Scholar 

  • Hu H, Li M, Labrador J-P, McEwen J, Lai EC, Goodman CS, Bashaw GJ (2005) Cross GTPase-activating protein (CrossGAP)/Vilse links the Roundabout receptor to Rac to regulate midline repulsion. Proc Natl Acad Sci USA 102:4613–4618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang L, Yu W, Li X, Niu L, Li K, Li J (2009a) Robo1/robo4: different expression patterns in retinal development. Exp Eye Res 88:583–588

    CAS  PubMed  Google Scholar 

  • Huang L, Yu W, Li X, Xu Y, Niu L, He X, Dong J, Yan Z (2009b) Expression of Robo4 in the fibrovascular membranes from patients with proliferative diabetic retinopathy and its role in RF/6A and RPE cells. Mol Vis 15:1057–1069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R (2002) Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics 79:547–552

    CAS  PubMed  Google Scholar 

  • Hussain S-A, Piper M, Fukuhara N, Strochlic L, Cho G, Howitt JA, Ahmed Y, Powell AK, Turnbull JE, Holt CE et al (2006) A molecular mechanism for the heparan sulfate dependence of slit-robo signaling. J Biol Chem 281:39693–39698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inatani M, Irie F, Plump AS, Tessier-Lavigne M, Yamaguchi Y (2003) Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 302:1044–1046

    CAS  PubMed  Google Scholar 

  • Ito H, Funahashi S-I, Yamauchi N, Shibahara J, Midorikawa Y, Kawai S, Kinoshita Y, Watanabe A, Hippo Y, Ohtomo T et al (2006) Identification of ROBO1 as a novel hepatocellular carcinoma antigen and a potential therapeutic and diagnostic target. Clin Cancer Res 12: 3257–3264

    CAS  PubMed  Google Scholar 

  • Itoh A, Miyabayashi T, Ohno M, Sakano S (1998) Cloning and expressions of three mammalian homologues of Drosophila slit suggest possible roles for Slit in the formation and maintenance of the nervous system. Brain Res Mol Brain Res 62:175–186

    CAS  PubMed  Google Scholar 

  • Jackson RE, Eickholt BJ (2009) Semaphorin signalling. Curr Biol 19:R504–R507

    CAS  PubMed  Google Scholar 

  • Jankovski A, Sotelo C (1996) Subventricular zone-olfactory bulb migratory pathway in the adult mouse: cellular composition and specificity as determined by heterochronic and heterotopic transplantation. J Comp Neurol 371:376–396

    CAS  PubMed  Google Scholar 

  • Jaworski A, Long H, Tessier-Lavigne M (2010) Collaborative and specialized functions of Robo1 and Robo2 in spinal commissural axon guidance. J Neurosci 30:9445–9453

    CAS  PubMed  Google Scholar 

  • Jen JC, Chan W-M, Bosley TM, Wan J, Carr JR, Rüb U, Shattuck D, Salamon G, Kudo LC, Ou J et al (2004) Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis. Science 304:1509–1513

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones CA, London NR, Chen H, Park KW, Sauvaget D, Stockton RA, Wythe JD, Suh W, Larrieu-Lahargue F, Mukouyama Y-S et al (2008) Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med 14:448–453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones CA, Nishiya N, London NR, Zhu W, Sorensen LK, Chan AC, Lim CJ, Chen H, Zhang Q, Schultz PG et al (2009) Slit2-Robo4 signalling promotes vascular stability by blocking Arf6 activity. Nat Cell Biol 11:1325–1331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaneko N, Marín O, Koike M, Hirota Y, Uchiyama Y, Wu JY, Lu Q, Tessier-Lavigne M, Alvarez-Buylla A, Okano H et al (2010) New neurons clear the path of astrocytic processes for their rapid migration in the adult brain. Neuron 67:213–223

    CAS  PubMed  Google Scholar 

  • Keleman K, Rajagopalan S, Cleppien D, Teis D, Paiha K, Huber LA, Technau GM, Dickson BJ (2002) Comm sorts robo to control axon guidance at the Drosophila midline. Cell 110:415–427

    CAS  PubMed  Google Scholar 

  • Kelsch W, Mosley CP, Lin C-W, Lois C (2007) Distinct mammalian precursors are committed to generate neurons with defined dendritic projection patterns. PLoS Biol 5:e300

    PubMed Central  PubMed  Google Scholar 

  • Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, Goodman CS, Tear G (1998a) Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92:205–215

    CAS  PubMed  Google Scholar 

  • Kidd T, Russell C, Goodman CS, Tear G (1998b) Dosage-sensitive and complementary functions of roundabout and commissureless control axon crossing of the CNS midline. Neuron 20: 25–33

    CAS  PubMed  Google Scholar 

  • Kidd T, Bland KS, Goodman CS (1999) Slit is the midline repellent for the robo receptor in Drosophila. Cell 96:785–794

    CAS  PubMed  Google Scholar 

  • Killeen MT, Sybingco SS (2008) Netrin, Slit and Wnt receptors allow axons to choose the axis of migration. Dev Biol 323:143–151

    CAS  PubMed  Google Scholar 

  • Klagsbrun M, Eichmann A (2005) A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev 16:535–548

    CAS  PubMed  Google Scholar 

  • Klein ME, Impey S, Goodman RH (2005) Role reversal: the regulation of neuronal gene expression by microRNAs. Curr Opin Neurobiol 15:507–513

    CAS  PubMed  Google Scholar 

  • Koch AW, Mathivet T, Larrivée B, Tong RK, Kowalski J, Pibouin-Fragner L, Bouvrée K, Stawicki S, Nicholes K, Rathore N et al (2011) Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev Cell 20:33–46

    CAS  PubMed  Google Scholar 

  • Kolodkin AL, Matthes DJ, Goodman CS (1993) The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 75:1389–1399

    CAS  PubMed  Google Scholar 

  • Kolodkin AL, Levengood DV, Rowe EG, Tai YT, Giger RJ, Ginty DD (1997) Neuropilin is a semaphorin III receptor. Cell 90:753–762

    CAS  PubMed  Google Scholar 

  • Kuwako K-I, Kakumoto K, Imai T, Igarashi M, Hamakubo T, Sakakibara S-I, Tessier-Lavigne M, Okano HJ, Okano H (2010) Neural RNA-binding protein Musashi1 controls midline crossing of precerebellar neurons through posttranscriptional regulation of Robo3/Rig-1 expression. Neuron 67:407–421

    CAS  PubMed  Google Scholar 

  • Lamminmaki S, Massinen S, Nopola-Hemmi J, Kere J, Hari R (2012) Human ROBO1 regulates interaural interaction in auditory pathways. J Neurosci 32:966–971

    CAS  PubMed  Google Scholar 

  • Lanier LM, Gates MA, Witke W, Menzies AS, Wehman AM, Macklis JD, Kwiatkowski D, Soriano P, Gertler FB (1999) Mena is required for neurulation and commissure formation. Neuron 22:313–325

    CAS  PubMed  Google Scholar 

  • Lee JS, Ray R, Chien CB (2001) Cloning and expression of three zebrafish roundabout homologs suggest roles in axon guidance and cell migration. Dev Dyn 221:216–230

    CAS  PubMed  Google Scholar 

  • Lee J-S, von der Hardt S, Rusch MA, Stringer SE, Stickney HL, Talbot WS, Geisler R, Nüsslein-Volhard C, Selleck SB, Chien C-B et al (2004) Axon sorting in the optic tract requires HSPG synthesis by ext2 (dackel) and extl3 (boxer). Neuron 44:947–960

    CAS  PubMed  Google Scholar 

  • Legg JA, Herbert JMJ, Clissold P, Bicknell R (2008) Slits and Roundabouts in cancer, tumour angiogenesis and endothelial cell migration. Angiogenesis 11:13–21

    PubMed  Google Scholar 

  • Levy-Strumpf N, Culotti JG (2007) VAB-8, UNC-73 and MIG-2 regulate axon polarity and cell migration functions of UNC-40 in C. elegans. Nat Neurosci 10:161–168

    CAS  PubMed  Google Scholar 

  • Li HS, Chen JH, Wu W, Fagaly T, Zhou L, Yuan W, Dupuis S, Jiang ZH, Nash W, Gick C et al (1999) Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Cell 96:807–818

    CAS  PubMed  Google Scholar 

  • Lindwall C, Fothergill T, Richards LJ (2007) Commissure formation in the mammalian forebrain. Curr Opin Neurobiol 17:3–14

    CAS  PubMed  Google Scholar 

  • Liu Z, Patel K, Schmidt H, Andrews W, Pini A, Sundaresan V (2004) Extracellular Ig domains 1 and 2 of Robo are important for ligand (Slit) binding. Mol Cell Neurosci 26:232–240

    CAS  PubMed  Google Scholar 

  • Liu Q-X, Hiramoto M, Ueda H, Gojobori T, Hiromi Y, Hirose S (2009) Midline governs axon pathfinding by coordinating expression of two major guidance systems. Genes Dev 23: 1165–1170

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    CAS  PubMed  Google Scholar 

  • Lois C, García-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981

    CAS  PubMed  Google Scholar 

  • Lopez-Bendito G, Flames N, Ma L, Fouquet C, Di Meglio T, Chedotal A, Tessier-Lavigne M, Marín O (2007) Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain. J Neurosci 27:3395–3407

    CAS  PubMed  Google Scholar 

  • Lu W, van Eerde AM, Fan X, Quintero-Rivera F, Kulkarni S, Ferguson H, Kim H-G, Fan Y, Xi Q, Li Q-G et al (2007) Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet 80:616–632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lundström A, Gallio M, Englund C, Steneberg P, Hemphälä J, Aspenström P, Keleman K, Falileeva L, Dickson BJ, Samakovlis C (2004) Vilse, a conserved Rac/Cdc42 GAP mediating Robo repulsion in tracheal cells and axons. Genes Dev 18:2161–2171

    PubMed Central  PubMed  Google Scholar 

  • Luo Y, Raible D, Raper JA (1993) Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75:217–227

    CAS  PubMed  Google Scholar 

  • Madura T, Yamashita T, Kubo T, Tsuji L, Hosokawa K, Tohyama M (2004) Changes in mRNA of Slit-Robo GTPase-activating protein 2 following facial nerve transection. Brain Res Mol Brain Res 123:76–80

    CAS  PubMed  Google Scholar 

  • Marcos-Mondejar P, Peregrín S, Li JY, Carlsson L, Tole S, Lopez-Bendito G (2012) The lhx2 transcription factor controls thalamocortical axonal guidance by specific regulation of robo1 and robo2 receptors. J Neurosci 32:4372–4385

    CAS  PubMed  Google Scholar 

  • Marillat V, Cases O, Nguyen-Ba-Charvet KT, Tessier-Lavigne M, Sotelo C, Chedotal A (2002) Spatiotemporal expression patterns of slit and robo genes in the rat brain. J Comp Neurol 442:130–155

    PubMed  Google Scholar 

  • Marillat V, Sabatier C, Failli V, Matsunaga E, Sotelo C, Tessier-Lavigne M, Chedotal A (2004) The slit receptor Rig-1/Robo3 controls midline crossing by hindbrain precerebellar neurons and axons. Neuron 43:69–79

    CAS  PubMed  Google Scholar 

  • Marion J-F, Yang C, Caqueret A, Boucher F, Michaud JL (2005) Sim1 and Sim2 are required for the correct targeting of mammillary body axons. Development 132:5527–5537

    CAS  PubMed  Google Scholar 

  • Marlow R, Strickland P, Lee JS, Wu X, Pebenito M, Binnewies M, Le EK, Moran A, Macias H, Cardiff RD et al (2008) SLITs suppress tumor growth in vivo by silencing Sdf1/Cxcr4 within breast epithelium. Cancer Res 68:7819–7827

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mascheretti S, Bureau A, Battaglia M, Simone D, Quadrelli E, Croteau J, Cellino MR, Giorda R, Beri S, Maziade M et al (2012) An assessment of gene-by-environment interactions in developmental dyslexia-related phenotypes. Genes Brain Behav 12:47–55

    PubMed  Google Scholar 

  • Mambetisaeva ET, Andrews W, Camurri L, Annan A, Sundaresan V (2005) Robo family of proteins exhibit differential expression in mouse spinal cord and Robo-Slit interaction is required for midline crossing in vertebrate spinal cord. Dev Dyn 233:41–51

    Google Scholar 

  • Mehlen P, Delloye-Bourgeois C, Chedotal A (2011) Novel roles for Slits and netrins: axon guidance cues as anticancer targets? Nat Rev Cancer 11:188–197

    CAS  PubMed  Google Scholar 

  • Menzies AS, Aszodi A, Williams SE, Pfeifer A, Wehman AM, Goh KL, Mason CA, Fassler R, Gertler FB (2004) Mena and vasodilator-stimulated phosphoprotein are required for multiple actin-dependent processes that shape the vertebrate nervous system. J Neurosci 24:8029–8038

    CAS  PubMed  Google Scholar 

  • Mertsch S, Schmitz N, Jeibmann A, Geng JG, Paulus W, Senner V (2008) Slit2 involvement in glioma cell migration is mediated by Robo1 receptor. J Neurooncol 87:1–7

    CAS  PubMed  Google Scholar 

  • Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA, Devon RS, St. Clair DM, Muir WJ, Blackwood DH et al (2000) Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 9:1415–1423

    CAS  PubMed  Google Scholar 

  • Morlot C, Thielens NM, Ravelli RBG, Hemrika W, Romijn RA, Gros P, Cusack S, McCarthy AA (2007) Structural insights into the Slit-Robo complex. Proc Natl Acad Sci USA 104: 14923–14928

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray RM, Lappin J, Di Forti M (2008) Schizophrenia: from developmental deviance to dopamine dysregulation. Eur Neuropsychopharmacol 18(Suppl 3):S129–S134

    CAS  PubMed  Google Scholar 

  • Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382:635–638

    CAS  PubMed  Google Scholar 

  • Nguyen-Ba-Charvet KT, Brose K, Marillat V, Sotelo C, Tessier-Lavigne M, Chedotal A (2001) Sensory axon response to substrate-bound Slit2 is modulated by laminin and cyclic GMP. Mol Cell Neurosci 17:1048–1058

    CAS  PubMed  Google Scholar 

  • Nguyen-Ba-Charvet KT, Picard-Riera N, Tessier-Lavigne M, Baron-Van Evercooren A, Sotelo C, Chedotal A (2004) Multiple roles for slits in the control of cell migration in the rostral migratory stream. J Neurosci 24:1497–1506

    CAS  PubMed  Google Scholar 

  • O’Donnell M, Chance RK, Bashaw GJ (2009) Axon growth and guidance: receptor regulation and signal transduction. Annu Rev Neurosci 32:383–412

    PubMed  Google Scholar 

  • Osbun N, Li J, O’Driscoll MC, Strominger Z, Wakahiro M, Rider E, Bukshpun P, Boland E, Spurrell CH, Schackwitz W et al (2011) Genetic and functional analyses identify DISC1 as a novel callosal agenesis candidate gene. Am J Med Genet A 155A:1865–1876

    PubMed  Google Scholar 

  • Ozdinler PH, Erzurumlu RS (2002) Slit2, a branching-arborization factor for sensory axons in the mammalian CNS. J Neurosci 22:4540–4549

    CAS  PubMed  Google Scholar 

  • Park KW, Morrison CM, Sorensen LK, Jones CA, Rao Y, Chien C-B, Wu JY, Urness LD, Li DY (2003) Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol 261: 251–267

    CAS  PubMed  Google Scholar 

  • Philipp M, Niederkofler V, Debrunner M, Alther T, Kunz B, Stoeckli ET (2012) RabGDI controls axonal midline crossing by regulating Robo1 surface expression. Neural Dev 7:36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piper M, Anderson R, Dwivedy A, Weinl C, van Horck F, Leung KM, Cogill E, Holt C (2006) Signaling mechanisms underlying Slit2-induced collapse of Xenopus retinal growth cones. Neuron 49:215–228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Plachez C, Richards LJ (2005) Mechanisms of axon guidance in the developing nervous system. Curr Top Dev Biol 69:267–346

    CAS  PubMed  Google Scholar 

  • Plump AS, Erskine L, Sabatier C, Brose K, Epstein CJ, Goodman CS, Mason CA, Tessier-Lavigne M (2002) Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 33:219–232

    CAS  PubMed  Google Scholar 

  • Potkin SG, Macciardi F, Guffanti G, Fallon JH, Wang Q, Turner JA, Lakatos A, Miles MF, Lander A, Vawter MP et al (2010) Identifying gene regulatory networks in schizophrenia. Neuroimage 53:839–847

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prasad A, Fernandis AZ, Rao Y, Ganju RK (2004) Slit protein-mediated inhibition of CXCR4-induced chemotactic and chemoinvasive signaling pathways in breast cancer cells. J Biol Chem 279:9115–9124

    CAS  PubMed  Google Scholar 

  • Prasad A, Qamri Z, Wu J, Ganju RK (2007) Slit-2/Robo-1 modulates the CXCL12/CXCR4-induced chemotaxis of T cells. J Leukoc Biol 82:465–476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pratt T, Conway CD, Tian NMM-L, Price DJ, Mason JO (2006) Heparan sulphation patterns generated by specific heparan sulfotransferase enzymes direct distinct aspects of retinal axon guidance at the optic chiasm. J Neurosci 26:6911–6923

    CAS  PubMed  Google Scholar 

  • Rajagopalan S, Nicolas E, Vivancos V, Berger J, Dickson BJ (2000) Crossing the midline: roles and regulation of Robo receptors. Neuron 28:767–777

    CAS  PubMed  Google Scholar 

  • Ramus F (2004) Neurobiology of dyslexia: a reinterpretation of the data. Trends Neurosci 27: 720–726

    CAS  PubMed  Google Scholar 

  • Renier N, Schonewille M, Giraudet F, Badura A, Tessier-Lavigne M, Avan P, De Zeeuw CI, Chedotal A (2010) Genetic dissection of the function of hindbrain axonal commissures. PLoS Biol 8:e1000325

    PubMed Central  PubMed  Google Scholar 

  • Rhee J, Buchan T, Zukerberg L, Lilien J, Balsamo J (2007) Cables links Robo-bound Abl kinase to N-cadherin-bound beta-catenin to mediate Slit-induced modulation of adhesion and transcription. Nat Cell Biol 9:883–892

    CAS  PubMed  Google Scholar 

  • Round JE, Sun H (2011) The adaptor protein Nck2 mediates Slit1-induced changes in cortical neuron morphology. Mol Cell Neurosci 47:265–273

    CAS  PubMed  Google Scholar 

  • Sabatier C, Plump AS, Le M, Brose K, Tamada A, Murakami F, Lee EY-HP, Tessier-Lavigne M (2004) The divergent Robo family protein rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons. Cell 117:157–169

    CAS  PubMed  Google Scholar 

  • Saha B, Jaber M, Gaillard A (2012) Potentials of endogenous neural stem cells in cortical repair. Front Cell Neurosci 6:14

    PubMed Central  PubMed  Google Scholar 

  • Sang Q, Wu J, Rao Y, Hsueh Y-P, Tan S-S (2002) Slit promotes branching and elongation of neurites of interneurons but not projection neurons from the developing telencephalon. Mol Cell Neurosci 21:250–265

    CAS  PubMed  Google Scholar 

  • Santiago-Martínez E, Soplop NH, Patel R, Kramer SG (2008) Repulsion by slit and roundabout prevents shotgun/E-cadherin-mediated cell adhesion during Drosophila heart tube lumen formation. J Cell Biol 182:241–248

    PubMed Central  PubMed  Google Scholar 

  • Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marín O, Rubenstein JLR et al (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311:629–632

    CAS  PubMed  Google Scholar 

  • Schmid BC, Rezniczek GA, Fabjani G, Yoneda T, Leodolter S, Zeillinger R (2007) The neuronal guidance cue Slit2 induces targeted migration and may play a role in brain metastasis of breast cancer cells. Breast Cancer Res Treat 106:333–342

    PubMed  Google Scholar 

  • Schweitzer J, Löhr H, Bonkowsky JL, Hübscher K, Driever W (2013) Sim1a and Arnt2 contribute to hypothalamo-spinal axon guidance by regulating Robo2 activity via a Robo3-dependent mechanism. Development 140:93–106

    CAS  PubMed  Google Scholar 

  • Seiradake E, von Philipsborn AC, Henry M, Fritz M, Lortat-Jacob H, Jamin M, Hemrika W, Bastmeyer M, Cusack S, McCarthy AA (2009) Structure and functional relevance of the Slit2 homodimerization domain. EMBO Rep 10:736–741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheldon H, Andre M, Legg JA, Heal P, Herbert JM, Sainson R, Sharma AS, Kitajewski JK, Heath VL, Bicknell R (2009) Active involvement of Robo1 and Robo4 in filopodia formation and endothelial cell motility mediated via WASP and other actin nucleation-promoting factors. FASEB J 23:513–522

    CAS  PubMed  Google Scholar 

  • Shiau CE, Bronner-Fraser M (2009) N-cadherin acts in concert with Slit1-Robo2 signaling in regulating aggregation of placode-derived cranial sensory neurons. Development 136: 4155–4164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shiau CE, Lwigale PY, Das RM, Wilson SA, Bronner-Fraser M (2008) Robo2-Slit1 dependent cell-cell interactions mediate assembly of the trigeminal ganglion. Nat Neurosci 11:269–276

    CAS  PubMed  Google Scholar 

  • Shu T, Li Y, Keller A, Richards LJ (2003a) The glial sling is a migratory population of developing neurons. Development 130:2929–2937

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shu T, Puche AC, Richards LJ (2003b) Development of midline glial populations at the corticoseptal boundary. J Neurobiol 57:81–94

    PubMed  Google Scholar 

  • Shu T, Sundaresan V, McCarthy MM, Richards LJ (2003c) Slit2 guides both precrossing and postcrossing callosal axons at the midline in vivo. J Neurosci 23:8176–8184

    CAS  PubMed  Google Scholar 

  • Silver J, Ogawa MY (1983) Postnatally induced formation of the corpus callosum in acallosal mice on glia-coated cellulose bridges. Science 220:1067–1069

    CAS  PubMed  Google Scholar 

  • Silver J, Lorenz SE, Wahlsten D, Coughlin J (1982) Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways. J Comp Neurol 210:10–29

    CAS  PubMed  Google Scholar 

  • Simpson JH, Kidd T, Bland KS, Goodman CS (2000) Short-range and long-range guidance by slit and its Robo receptors. Robo and Robo2 play distinct roles in midline guidance. Neuron 28: 753–766

    CAS  PubMed  Google Scholar 

  • Slováková J, Speicher S, Sánchez-Soriano N, Prokop A, Carmena A (2012) The actin-binding protein canoe/AF-6 forms a complex with Robo and is required for slit-Robo signaling during axon pathfinding at the CNS midline. J Neurosci 32:10035–10044

    PubMed  Google Scholar 

  • Stein E, Huynh-Do U, Lane AA, Cerretti DP, Daniel TO (1998) Nck recruitment to Eph receptor, EphB1/ELK, couples ligand activation to c-Jun kinase. J Biol Chem 273:1303–1308

    CAS  PubMed  Google Scholar 

  • Stein E, Zou Y, Poo M, Tessier-Lavigne M (2001) Binding of DCC by netrin-1 to mediate axon guidance independent of adenosine A2B receptor activation. Science 291:1976–1982

    CAS  PubMed  Google Scholar 

  • Stella MC, Trusolino L, Comoglio PM (2009) The Slit/Robo system suppresses hepatocyte growth factor-dependent invasion and morphogenesis. Mol Biol Cell 20:642–657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suchting S, Heal P, Tahtis K, Stewart LM, Bicknell R (2005) Soluble Robo4 receptor inhibits in vivo angiogenesis and endothelial cell migration. FASEB J 19:121–123

    CAS  PubMed  Google Scholar 

  • Suda S, Iwata K, Shimmura C, Kameno Y, Anitha A, Thanseem I, Nakamura K, Matsuzaki H, Tsuchiya KJ, Sugihara G et al (2011) Decreased expression of axon-guidance receptors in the anterior cingulate cortex in autism. Mol Autism 2:14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sundaresan V, Chung G, Heppell-Parton A, Xiong J, Grundy C, Roberts I, James L, Cahn A, Bench A, Douglas J et al (1998a) Homozygous deletions at 3p12 in breast and lung cancer. Oncogene 17:1723–1729

    CAS  PubMed  Google Scholar 

  • Sundaresan V, Roberts I, Bateman A, Bankier A, Sheppard M, Hobbs C, Xiong J, Minna J, Latif F, Lerman M et al (1998b) The DUTT1 gene, a novel NCAM family member is expressed in developing murine neural tissues and has an unusually broad pattern of expression. Mol Cell Neurosci 11:29–35

    CAS  PubMed  Google Scholar 

  • Tie J, Pan Y, Zhao L, Wu K, Liu J, Sun S, Guo X, Wang B, Gang Y, Zhang Y et al (2010) MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor. PLoS Genet 6:e1000879

    PubMed Central  PubMed  Google Scholar 

  • Tiveron M-C, Cremer H (2008) CXCL12/CXCR4 signalling in neuronal cell migration. Curr Opin Neurobiol 18:237–244

    CAS  PubMed  Google Scholar 

  • Unni DK, Piper M, Moldrich RX, Gobius I, Liu S, Fothergill T, Donahoo A-LS, Baisden JM, Cooper HM, Richards LJ (2012) Multiple Slits regulate the development of midline glial populations and the corpus callosum. Dev Biol 365:36–49

    CAS  PubMed  Google Scholar 

  • Van Vactor D, Wall DP, Johnson KG (2006) Heparan sulfate proteoglycans and the emergence of neuronal connectivity. Curr Opin Neurobiol 16:40–51

    PubMed  Google Scholar 

  • Vanderzalm PJ, Pandey A, Hurwitz ME, Bloom L, Horvitz HR, Garriga G (2009) C. elegans CARMIL negatively regulates UNC73/Trio function during neuronal development. Development 136:1201–1210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vargesson N, Luria V, Messina I, Erskine L, Laufer E (2001) Expression patterns of Slit and Robo family members during vertebrate limb development. Mech Dev 106:175–180

    CAS  PubMed  Google Scholar 

  • Verissimo AR, Herbert JMJ, Heath VL, Legg JA, Sheldon H, Andre M, Swain RK, Bicknell R (2009) Functionally defining the endothelial transcriptome, from Robo4 to ECSCR. Biochem Soc Trans 37:1214–1217

    CAS  PubMed  Google Scholar 

  • Waltereit R, Leimer U, von Bohlen und Halbach O, Panke J, Holter SM, Garrett L, Wittig K, Schneider M, Schmitt C, Calzada-Wack J et al (2012) Srgap3−/− mice present a neurodevelopmental disorder with schizophrenia-related intermediate phenotypes. FASEB J 26:4418–4428

    CAS  PubMed  Google Scholar 

  • Wang KH, Brose K, Arnott D, Kidd T, Goodman CS, Henzel W, Tessier-Lavigne M (1999) Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell 96:771–784

    CAS  PubMed  Google Scholar 

  • Wang B, Xiao Y, Ding BB, Zhang N, Yuan XB, Gui L, Qian KX, Duan S, Chen Z, Rao Y et al (2003) Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 4:19–29

    PubMed  Google Scholar 

  • Ward M, McCann C, DeWulf M, Wu JY, Rao Y (2003) Distinguishing between directional guidance and motility regulation in neuronal migration. J Neurosci 23:5170–5177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ward ME, Jiang H, Rao Y (2005) Regulated formation and selection of neuronal processes underlie directional guidance of neuronal migration. Mol Cell Neurosci 30:378–387

    CAS  PubMed  Google Scholar 

  • Watari-Goshima N, Ogura K-I, Wolf FW, Goshima Y, Garriga G (2007) C. elegans VAB-8 and UNC-73 regulate the SAX-3 receptor to direct cell and growth-cone migrations. Nat Neurosci 10:169–176

    CAS  PubMed  Google Scholar 

  • Werbowetski-Ogilvie TE, Seyed Sadr M, Jabado N, Angers-Loustau A, Agar NYR, Wu J, Bjerkvig R, Antel JP, Faury D, Rao Y et al (2006) Inhibition of medulloblastoma cell invasion by Slit. Oncogene 25:5103–5112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitford KL, Marillat V, Stein E, Goodman CS, Tessier-Lavigne M, Chedotal A, Ghosh A (2002) Regulation of cortical dendrite development by Slit-Robo interactions. Neuron 33:47–61

    CAS  PubMed  Google Scholar 

  • Wilson SI, Shafer B, Lee KJ, Dodd J (2008) A molecular program for contralateral trajectory: Rig-1 control by LIM homeodomain transcription factors. Neuron 59:413–424

    CAS  PubMed  Google Scholar 

  • Wilson NKA, Lee Y, Long R, Hermetz K, Rudd MK, Miller R, Rapoport JL, Addington AM (2011) A novel microduplication in the neurodevelopmental gene SRGAP3 that segregates with psychotic illness in the family of a COS proband. Case Rep Genet 2011:1–5

    Google Scholar 

  • Wong K, Ren XR, Huang YZ, Xie Y, Liu G, Saito H, Tang H, Wen L, Brady-Kalnay SM, Mei L et al (2001) Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell 107:209–221

    CAS  PubMed  Google Scholar 

  • Wright KM, Lyon KA, Leung H, Leahy DJ, Ma L, Ginty DD (2012) Dystroglycan organizes axon guidance cue localization and axonal pathfinding. Neuron 76:931–944

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu W, Wong K, Chen J, Jiang Z, Dupuis S, Wu JY, Rao Y (1999) Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400:331–336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu H-T, Yuan X-B, Guan C-B, Duan S, Wu C-P, Feng L (2004) Calcium signaling in chemorepellant Slit2-dependent regulation of neuronal migration. Proc Natl Acad Sci USA 101: 4296–4301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang L, Bashaw GJ (2006) Son of sevenless directly links the Robo receptor to rac activation to control axon repulsion at the midline. Neuron 52:595–607

    CAS  PubMed  Google Scholar 

  • Yao Q, Jin W-L, Wang Y, Ju G (2008) Regulated shuttling of Slit-Robo-GTPase activating proteins between nucleus and cytoplasm during brain development. Cell Mol Neurobiol 28:205–221

    PubMed  Google Scholar 

  • Ypsilanti AR, Zagar Y, Chedotal A (2010) Moving away from the midline: new developments for Slit and Robo. Development 137:1939–1952

    CAS  PubMed  Google Scholar 

  • Yu TW, Hao JC, Lim W, Tessier-Lavigne M, Bargmann CI (2002) Shared receptors in axon guidance: SAX-3/Robo signals via UNC-34/Enabled and a Netrin-independent UNC-40/DCC function. Nat Neurosci 5:1147–1154

    CAS  PubMed  Google Scholar 

  • Yuan SS, Cox LA, Dasika GK, Lee EY (1999) Cloning and functional studies of a novel gene aberrantly expressed in RB-deficient embryos. Dev Biol 207:62–75

    CAS  PubMed  Google Scholar 

  • Yuasa-Kawada J, Kinoshita-Kawada M, Rao Y, Wu JY (2009a) Deubiquitinating enzyme USP33/VDU1 is required for Slit signaling in inhibiting breast cancer cell migration. Proc Natl Acad Sci USA 106:14530–14535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yuasa-Kawada J, Kinoshita-Kawada M, Wu G, Rao Y, Wu JY (2009b) Midline crossing and Slit responsiveness of commissural axons require USP33. Nat Neurosci 12:1087–1089

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X (2010) Prevalence of diabetic retinopathy in the United States, 2005–2008. JAMA 304:649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H-Y, Zheng S-J, Zhao J-H, Zhao W, Zheng L-F, Zhao D, Li J-M, Zhang X-F, Chen Z-B, Yi X-N (2011) MicroRNAs 144, 145, and 214 are down-regulated in primary neurons responding to sciatic nerve transection. Brain Res 1383:62–70

    CAS  PubMed  Google Scholar 

  • Zheng W, Geng A-Q, Li P-F, Wang Y, Yuan X-B (2011) Robo4 regulates the radial migration of newborn neurons in developing neocortex. Cereb Cortex 22:2587–2601

    PubMed  Google Scholar 

  • Zhou W, Yu W, Xie W, Huang L, Xu Y, Li X (2011a) The role of SLIT-ROBO signaling in proliferative diabetic retinopathy and retinal pigment epithelial cells. Mol Vis 17:1526–1536

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou W-J, Geng ZH, Chi S, Zhang W, Niu X-F, Lan S-J, Ma L, Yang X, Wang L-J, Ding Y-Q et al (2011b) Slit-Robo signaling induces malignant transformation through Hakai-mediated E-cadherin degradation during colorectal epithelial cell carcinogenesis. Cell Res 21:609–626

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Requirements

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athéna R. Ypsilanti Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ypsilanti, A.R., Chedotal, A. (2014). ROUNDABOUT Receptors. In: Berezin, V., Walmod, P. (eds) Cell Adhesion Molecules. Advances in Neurobiology, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8090-7_7

Download citation

Publish with us

Policies and ethics