Skip to main content

Stem Cell Therapy: From the Heart to the Periphery

  • Chapter
  • First Online:
Stem Cells: Current Challenges and New Directions

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1707 Accesses

Abstract

Peripheral artery disease remains a clinical challenge—together with coronary artery disease, it accounts for increased morbidity and mortality in the concerned patients. Therapeutic concepts are often limited because of underlying co-morbidities and generalised atherosclerosis. The search for new forms of intervention follows several directions with stem cell therapy or therapeutic angiogenesis being one of the most promising approaches. The following chapter should provide an overview on the significance of the disease and the limitations of currently applied procedures. The biological concept which is the driving force of improvement in this special clinical situation is presented, and a brief overview on the history of stem cell therapy for vascular regeneration is given. So far, regarding peripheral artery disease, this story is a story of success, and future clinical approaches will take into account new sources of stem cells beside bone marrow to successfully treat patients with the disease, even in palliative situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steg PG, Bhatt DL, Wilson PW et al (2007) One-year cardiovascular event rates in outpatients with atherothrombosis. JAMA 297:1197–1206

    Article  CAS  PubMed  Google Scholar 

  2. Kannel WB (1994) Risk factors for atherosclerotic cardiovascular outcomes in different arterial territories. J Cardiovasc Risk 1:333–339

    Article  CAS  PubMed  Google Scholar 

  3. Dormandy J, Heeck L, Vig S (1999) The natural history of claudication: risk to life and limb. Semin Vasc Surg 12:123–137

    CAS  PubMed  Google Scholar 

  4. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG (2007) Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg 45(Suppl S):S5–S67

    Article  PubMed  Google Scholar 

  5. Hooi JD, Stoffers HE, Knottnerus JA, van Ree JW (1999) The prognosis of non-critical limb ischaemia: a systematic review of population-based evidence. Br J Gen Pract 49:49–55

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Diehm C, Schuster A, Allenberg JR et al (2004) High prevalence of peripheral arterial disease and co-morbidity in 6880 primary care patients: cross-sectional study. Atherosclerosis 172:95–105

    Article  CAS  PubMed  Google Scholar 

  7. Gregg EW, Sorlie P, Paulose-Ram R et al (2004) Prevalence of lower-extremity disease in the US adult population >=40 years of age with and without diabetes: 1999–2000 national health and nutrition examination survey. Diabetes Care 27:1591–1597

    Article  PubMed  Google Scholar 

  8. Abbott RD, Brand FN, Kannel WB (1990) Epidemiology of some peripheral arterial findings in diabetic men and women: experiences from the Framingham Study. Am J Med 88:376–381

    Article  CAS  PubMed  Google Scholar 

  9. Peters EJ, Lavery LA (2001) Effectiveness of the diabetic foot risk classification system of the International Working Group on the Diabetic Foot. Diabetes Care 24:1442–1447

    Article  CAS  PubMed  Google Scholar 

  10. Siitonen OI, Niskanen LK, Laakso M, Siitonen JT, Pyorala K (1993) Lower-extremity amputations in diabetic and nondiabetic patients. A population-based study in eastern Finland. Diabetes Care 16:16–20

    Article  CAS  PubMed  Google Scholar 

  11. Trautner C, Haastert B, Giani G, Berger M (1996) Incidence of lower limb amputations and diabetes. Diabetes Care 19:1006–1009

    Article  CAS  PubMed  Google Scholar 

  12. Singh N, Armstrong DG, Lipsky BA (2005) Preventing foot ulcers in patients with diabetes. JAMA 293:217–228

    Article  CAS  PubMed  Google Scholar 

  13. Adam DJ, Beard JD, Cleveland T et al (2005) Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet 366:1925–1934

    Article  CAS  PubMed  Google Scholar 

  14. Hirsch AT, Haskal ZJ, Hertzer NR et al (2006) ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation 113:e463–e654

    Article  PubMed  Google Scholar 

  15. Schofield CJ, Libby G, Brennan GM, MacAlpine RR, Morris AD, Leese GP (2006) Mortality and hospitalization in patients after amputation: a comparison between patients with and without diabetes. Diabetes Care 29:2252–2256

    Article  PubMed  Google Scholar 

  16. Landry GJ (2007) Functional outcome of critical limb ischemia. J Vasc Surg 45(Suppl A):A141–A148

    Article  PubMed  Google Scholar 

  17. Hooi JD, Kester AD, Stoffers HE, Rinkens PE, Knottnerus JA, van Ree JW (2004) Asymptomatic peripheral arterial occlusive disease predicted cardiovascular morbidity and mortality in a 7-year follow-up study. J Clin Epidemiol 57:294–300

    Article  CAS  PubMed  Google Scholar 

  18. Willrich A, Pinzur M, McNeil M, Juknelis D, Lavery L (2005) Health related quality of life, cognitive function, and depression in diabetic patients with foot ulcer or amputation. A preliminary study. Foot Ankle Int 26:128–134

    PubMed  Google Scholar 

  19. Albers M, Fratezi AC, De Luccia N (1992) Assessment of quality of life of patients with severe ischemia as a result of infrainguinal arterial occlusive disease. J Vasc Surg 16:54–59

    Article  CAS  PubMed  Google Scholar 

  20. Gillum RF (1990) Peripheral arterial occlusive disease of the extremities in the United States: hospitalization and mortality. Am Heart J 120:1414–1418

    Article  CAS  PubMed  Google Scholar 

  21. Smolderen KG, Wang K, de Pouvourville G et al (2012) Two-year vascular hospitalisation rates and associated costs in patients at risk of atherothrombosis in France and Germany: highest burden for peripheral arterial disease. Eur J Vasc Endovasc Surg 43:198–207

    Article  CAS  PubMed  Google Scholar 

  22. Criqui MH, Langer RD, Fronek A et al (1992) Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl J Med 326:381–386

    Article  CAS  PubMed  Google Scholar 

  23. McKenna M, Wolfson S, Kuller L (1991) The ratio of ankle and arm arterial pressure as an independent predictor of mortality. Atherosclerosis 87:119–128

    Article  CAS  PubMed  Google Scholar 

  24. Howell MA, Colgan MP, Seeger RW, Ramsey DE, Sumner DS (1989) Relationship of severity of lower limb peripheral vascular disease to mortality and morbidity: a six-year follow-up study. J Vasc Surg 9:691–696, discussion 696–697

    CAS  PubMed  Google Scholar 

  25. Valentine RJ, Myers SI, Inman MH, Roberts JR, Clagett GP (1996) Late outcome of amputees with premature atherosclerosis. Surgery 119:487–493

    Article  CAS  PubMed  Google Scholar 

  26. Dormandy JA, Rutherford RB (2000) Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Consensus (TASC). J Vasc Surg 31:S1–S296

    Article  CAS  PubMed  Google Scholar 

  27. Hiatt WR (2001) Medical treatment of peripheral arterial disease and claudication. N Engl J Med 344:1608–1621

    Article  CAS  PubMed  Google Scholar 

  28. Chung J, Bartelson BB, Hiatt WR et al (2006) Wound healing and functional outcomes after infrainguinal bypass with reversed saphenous vein for critical limb ischemia. J Vasc Surg 43:1183–1190

    Article  PubMed  Google Scholar 

  29. Aronow WS (2005) Management of peripheral arterial disease. Cardiol Rev 13:61–68

    Article  PubMed  Google Scholar 

  30. Stoyioglou A, Jaff MR (2004) Medical treatment of peripheral arterial disease: a comprehensive review. J Vasc Interv Radiol 15:1197–1207

    Article  PubMed  Google Scholar 

  31. Caro J, Migliaccio-Walle K, Ishak KJ, Proskorovsky I (2005) The morbidity and mortality following a diagnosis of peripheral arterial disease: long-term follow-up of a large database. BMC Cardiovasc Disord 5:14

    Article  PubMed  PubMed Central  Google Scholar 

  32. Singh S, Evans L, Datta D, Gaines P, Beard JD (1996) The costs of managing lower limb-threatening ischaemia. Eur J Vasc Endovasc Surg 12:359–362

    Article  CAS  PubMed  Google Scholar 

  33. Sprengers RW, Lips DJ, Moll FL, Verhaar MC (2008) Progenitor cell therapy in patients with critical limb ischemia without surgical options. Ann Surg 247:411–420

    Article  PubMed  Google Scholar 

  34. Fadini GP, Agostini C, Avogaro A (2010) Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature. Atherosclerosis 209:10–17

    Article  CAS  PubMed  Google Scholar 

  35. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  36. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684

    Article  CAS  PubMed  Google Scholar 

  37. Takahashi T, Kalka C, Masuda H et al (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    Article  CAS  PubMed  Google Scholar 

  38. Zhou B, Poon MC, Pu WT, Han ZC (2007) Therapeutic neovascularization for peripheral arterial diseases: advances and perspectives. Histol Histopathol 22:677–686

    CAS  PubMed  Google Scholar 

  39. Simons M (2005) Angiogenesis: where do we stand now? Circulation 111:1556–1566

    Article  PubMed  Google Scholar 

  40. Schaper W, Scholz D (2003) Factors regulating arteriogenesis. Arterioscler Thromb Vasc Biol 23:1143–1151

    Article  CAS  PubMed  Google Scholar 

  41. Hirota K, Semenza GL (2006) Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 59:15–26

    Article  PubMed  Google Scholar 

  42. Madeddu P (2005) Therapeutic angiogenesis and vasculogenesis for tissue regeneration. Exp Physiol 90:315–326

    Article  CAS  PubMed  Google Scholar 

  43. Choksy SA, Chan P (2006) Therapeutic angiogenesis. Br J Surg 93:261–263

    Article  CAS  PubMed  Google Scholar 

  44. Kalka C, Masuda H, Takahashi T et al (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 97:3422–3427

    Article  CAS  PubMed  Google Scholar 

  45. Yoshida M, Horimoto H, Mieno S et al (2003) Intra-arterial bone marrow cell transplantation induces angiogenesis in rat hindlimb ischemia. Eur Surg Res 35:86–91

    Article  CAS  PubMed  Google Scholar 

  46. Kawamoto A, Gwon HC, Iwaguro H et al (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103:634–637

    Article  CAS  PubMed  Google Scholar 

  47. Gulati R, Simari RD (2009) Defining the potential for cell therapy for vascular disease using animal models. Dis Model Mech 2:130–137

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kirana S, Stratmann B, Lammers D et al (2007) Wound therapy with autologous bone marrow stem cells in diabetic patients with ischaemia-induced tissue ulcers affecting the lower limbs. Int J Clin Pract 61:690–692

    Article  CAS  PubMed  Google Scholar 

  49. Gastens MH, Goltry K, Prohaska W et al (2007) Good manufacturing practice-compliant expansion of marrow-derived stem and progenitor cells for cell therapy. Cell Transplant 16:685–696

    PubMed  Google Scholar 

  50. Astori G, Soncin S, Lo Cicero V et al (2010) Bone marrow derived stem cells in regenerative medicine as advanced therapy medicinal products. Am J Transl Res 2:285–295

    PubMed  PubMed Central  Google Scholar 

  51. Urbanek K, Quaini F, Tasca G et al (2003) Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci USA 100:10440–10445

    Article  CAS  PubMed  Google Scholar 

  52. Rota M, Kajstura J, Hosoda T et al (2007) Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc Natl Acad Sci USA 104:17783–17788

    Article  CAS  PubMed  Google Scholar 

  53. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    Article  CAS  PubMed  Google Scholar 

  54. Yousef M, Schannwell CM, Kostering M, Zeus T, Brehm M, Strauer BE (2009) The BALANCE Study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction. J Am Coll Cardiol 53:2262–2269

    Article  PubMed  Google Scholar 

  55. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  56. Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95:9–20

    Article  CAS  PubMed  Google Scholar 

  57. Asahara T, Masuda H, Takahashi T et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    Article  CAS  PubMed  Google Scholar 

  58. Hill JM, Zalos G, Halcox JP et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600

    Article  PubMed  Google Scholar 

  59. Jackson KA, Majka SM, Wang H et al (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107:1395–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pfister O, Mouquet F, Jain M et al (2005) CD31- but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97:52–61

    Article  CAS  PubMed  Google Scholar 

  61. Sica V, Williams-Ignarro S, de Nigris F et al (2006) Autologous bone marrow cell therapy and metabolic intervention in ischemia-induced angiogenesis in the diabetic mouse hindlimb. Cell Cycle 5:2903–2908

    Article  CAS  PubMed  Google Scholar 

  62. Pacilli A, Faggioli G, Stella A, Pasquinelli G (2010) An update on therapeutic angiogenesis for peripheral vascular disease. Ann Vasc Surg 24:258–268

    Article  PubMed  Google Scholar 

  63. Silva GV, Litovsky S, Assad JA et al (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111:150–156

    Article  CAS  PubMed  Google Scholar 

  64. Tang J, Wang J, Yang J, Kong X (2008) Adenovirus-mediated stromal cell-derived- factor-1alpha gene transfer induces cardiac preservation after infarction via angiogenesis of CD133+ stem cells and anti-apoptosis. Interact Cardiovasc Thorac Surg 7:767–770

    Article  PubMed  Google Scholar 

  65. Beohar N, Rapp J, Pandya S, Losordo DW (2010) Rebuilding the damaged heart: the potential of cytokines and growth factors in the treatment of ischemic heart disease. J Am Coll Cardiol 56:1287–1297

    Article  PubMed  PubMed Central  Google Scholar 

  66. Madeddu P, Emanueli C, Pelosi E et al (2004) Transplantation of low dose CD34 + KDR + cells promotes vascular and muscular regeneration in ischemic limbs. FASEB J 18:1737–1739

    CAS  PubMed  Google Scholar 

  67. Crisostomo PR, Wang Y, Markel TA, Wang M, Lahm T, Meldrum DR (2008) Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. Am J Physiol Cell Physiol 294:C675–C682

    Article  CAS  PubMed  Google Scholar 

  68. Salven P, Mustjoki S, Alitalo R, Alitalo K, Rafii S (2003) VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 101:168–172

    Article  CAS  PubMed  Google Scholar 

  69. Friedrich EB, Walenta K, Scharlau J, Nickenig G, Werner N (2006) CD34-/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ Res 98:e20–e25

    Article  CAS  PubMed  Google Scholar 

  70. Furuya Y, Okazaki Y, Kaji K, Sato S, Takehara K, Kuwana M (2010) Mobilization of endothelial progenitor cells by intravenous cyclophosphamide in patients with systemic sclerosis. Rheumatology (Oxford) 49:2375–2380

    Article  CAS  Google Scholar 

  71. Bertolini F, Paul S, Mancuso P et al (2003) Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 63:4342–4346

    CAS  PubMed  Google Scholar 

  72. Heeschen C, Aicher A, Lehmann R et al (2003) Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102:1340–1346

    Article  CAS  PubMed  Google Scholar 

  73. Kirana S, Stratmann B, Prante C et al (2012) Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int J Clin Pract 66:384–393

    Article  CAS  PubMed  Google Scholar 

  74. Huang NF, Okogbaa J, Babakhanyan A, Cooke JP (2012) Bioluminescence imaging of stem cell-based therapeutics for vascular regeneration. Theranostics 2:346–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. van der Bogt KE, Hellingman AA, Lijkwan MA et al (2012) Molecular imaging of bone marrow mononuclear cell survival and homing in murine peripheral artery disease. JACC Cardiovasc Imaging 5:46–55

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zan T, Du Z, Li H, Li Q, Gu B (2012) Cobalt chloride improves angiogenic potential of CD133+ cells. Front Biosci 17:2247–2258

    Article  CAS  Google Scholar 

  77. Kinnaird T, Stabile E, Burnett MS, Epstein SE (2004) Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res 95:354–363

    Article  CAS  PubMed  Google Scholar 

  78. Heil M, Ziegelhoeffer T, Mees B, Schaper W (2004) A different outlook on the role of bone marrow stem cells in vascular growth: bone marrow delivers software not hardware. Circ Res 94:573–574

    Article  CAS  PubMed  Google Scholar 

  79. Jin DK, Shido K, Kopp HG et al (2006) Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 12:557–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Strauer BE, Steinhoff G (2011) 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. J Am Coll Cardiol 58:1095–1104

    Article  PubMed  Google Scholar 

  81. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  CAS  PubMed  Google Scholar 

  82. Oh H, Bradfute SB, Gallardo TD et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100:12313–12318

    Article  CAS  PubMed  Google Scholar 

  83. Anversa P, Leri A, Kajstura J (2006) Cardiac regeneration. J Am Coll Cardiol 47:1769–1776

    Article  PubMed  Google Scholar 

  84. Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2003) Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res 92:139–150

    Article  CAS  PubMed  Google Scholar 

  85. Terada N, Hamazaki T, Oka M et al (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545

    Article  CAS  PubMed  Google Scholar 

  86. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM et al (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973

    Article  CAS  PubMed  Google Scholar 

  87. Sedighiani F, Nikol S (2011) Gene therapy in vascular disease. Surgeon 9:326–335

    Article  PubMed  Google Scholar 

  88. Bartsch T, Brehm M, Zeus T, Strauer BE (2006) Autologous mononuclear stem cell transplantation in patients with peripheral occlusive arterial disease. J Cardiovasc Nurs 21:430–432

    Article  PubMed  Google Scholar 

  89. Dimmeler S, Zeiher AM, Schneider MD (2005) Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 115:572–583

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33:907–921

    Article  CAS  PubMed  Google Scholar 

  91. Gu YZJ, Qi L (2007) Comparative study on autologous implantation between bone marrow stem cells and peripheral blood stem cells for treatment of lower limb ischemia. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 21:675–678

    CAS  PubMed  Google Scholar 

  92. Higashi Y, Kimura M, Hara K et al (2004) Autologous bone-marrow mononuclear cell implantation improves endothelium-dependent vasodilation in patients with limb ischemia. Circulation 109:1215–1218

    Article  PubMed  Google Scholar 

  93. Durdu S, Akar AR, Arat M, Sancak T, Eren NT, Ozyurda U (2006) Autologous bone-marrow mononuclear cell implantation for patients with Rutherford grade II-III thromboangiitis obliterans. J Vasc Surg 44:732–739

    Article  PubMed  Google Scholar 

  94. Bartsch T, Falke T, Brehm M et al (2006) Transplantation of autologous adult bone marrow stem cells in patients with severe peripheral arterial occlusion disease. Med Klin (Munich) 101(Suppl 1):195–197

    Google Scholar 

  95. Kajiguchi M, Kondo T, Izawa H et al (2007) Safety and efficacy of autologous progenitor cell transplantation for therapeutic angiogenesis in patients with critical limb ischemia. Circ J 71:196–201

    Article  PubMed  Google Scholar 

  96. Tateishi-Yuyama E, Matsubara H, Murohara T et al (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360:427–435

    Article  PubMed  Google Scholar 

  97. Ruiz-Salmeron R, de la Cuesta-Diaz A, Constantino-Bermejo M et al (2011) Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischaemia. Cell Transplant 20:1629–1639

    Article  PubMed  Google Scholar 

  98. Lasala GP, Silva JA, Minguell JJ (2012) Therapeutic angiogenesis in patients with severe limb ischemia by transplantation of a combination stem cell product. J Thorac Cardiovasc Surg 144:377–382

    Article  PubMed  Google Scholar 

  99. Lawall H, Bramlage P, Amann B (2010) Stem cell and progenitor cell therapy in peripheral artery disease. A critical appraisal. Thromb Haemost 103:696–709

    Article  CAS  PubMed  Google Scholar 

  100. Lasala GP, Minguell JJ (2011) Vascular disease and stem cell therapies. Br Med Bull 98:187–197

    Article  PubMed  Google Scholar 

  101. Lu D, Chen B, Liang Z et al (2011) Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 92:26–36

    Article  PubMed  Google Scholar 

  102. Ye L, Chang JC, Lin C, Sun X, Yu J, Kan YW (2009) Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc Natl Acad Sci USA 106:9826–9830

    Article  CAS  PubMed  Google Scholar 

  103. Hanna J, Wernig M, Markoulaki S et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923

    Article  CAS  PubMed  Google Scholar 

  104. Wernig M, Zhao JP, Pruszak J et al (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci USA 105:5856–5861

    Article  CAS  PubMed  Google Scholar 

  105. Rufaihah AJ, Huang NF, Jame S et al (2011) Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol 31:e72–e79

    Article  CAS  PubMed  Google Scholar 

  106. Hussein SM, Batada NN, Vuoristo S et al (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471:58–62

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Stratmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stratmann, B., Tschoepe, D. (2013). Stem Cell Therapy: From the Heart to the Periphery. In: Turksen, K. (eds) Stem Cells: Current Challenges and New Directions. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8066-2_8

Download citation

Publish with us

Policies and ethics