Skip to main content

Immunoregulatory Properties of Mesenchymal Stem Cells: In Vitro and In Vivo

  • Chapter
  • First Online:
Stem Cells: Current Challenges and New Directions

Abstract

Over the last few years, because of their self-renewal capacity and multilineage differentiation potency, mesenchymal stem cells (MSCs) have been thought to have important therapeutic potential. MSCs are considered to be effective in immune system by suppressing maturation of DC and the functions of T cells, B cells, and natural killer (NK) cells, by inducing regulatory T (Treg) cells. Although target cell–MSC interactions may play important role, the MSC-mediated immunosuppression also mainly acts through the secretion of soluble molecules and cytokines that are induced or upregulated following interactions with immune cells. The majority of data on the immunomodulation of MSCs are in vitro, although several studies have been in vivo. Various animal models such as mouse, baboon, and rat have been used to evaluate in vivo MSC immunoregulatory properties related to alloreactive immunity in SC and organ transplantations, autoimmunity, or tumor immunity. Clinical studies with MSC have aimed to demonstrate promising results in treating patients with cancer, reducing the incidence of GVHD after BM transplantation, improving and treating amyotrophic lateral sclerosis, Crohn’s disease, metachromatic leukodystrophy, Hurler syndrome, rheumatoid arthritis, type 1 diabetes mellitus, lupus nephritis, and liver cirrhosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luria EA, Panasyuk AF, Friedenstein AY (1971) Fibroblast colony formation from monolayer cultures of blood cells. Transfusion 11:345–349

    CAS  PubMed  Google Scholar 

  2. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242

    CAS  PubMed  Google Scholar 

  3. Gronthos S, Mankani M, Brahim J, Gehron RP, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Karaöz E, Patır A, Eker Sarıboyacı A, Okcu A, Köktürk S, Gacar G, Demırcan PC, Kasap M, Seymen F (2008) Characterization and differentiation of dental pulp and PDL stem cells. Continental European Division (CED) of the International Association for Dental Research (IADR) for 4th meeting of the Pan European Federation in London, England. p228

    Google Scholar 

  5. Karaöz E, Doğan BN, Aksoy A, Gacar G, Akyüz S, Ayhan S, Genç ZS, Yürüker S, Duruksu G, Demircan PC, Sarıboyacı AE (2010) Isolation and characterization of dental pulp stem cells from natal teeth. Histochem Cell Biol 133:95–112

    PubMed  Google Scholar 

  6. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    CAS  PubMed  Google Scholar 

  7. Karaöz E, Aksoy A, Genç SZ, Ayhan S, Gacar G, Okçu A, Demircan PC, Caliskan E, Sariboyaci AE (2009) Comparative analysis of mesenchymal stem cells from bone marrow, dental pulp, adipose tissue and endometrium. Haematologica, 14th Congress of the European Hematology Association, June 4–7, Berlin, Germany. p 459

    Google Scholar 

  8. In’t Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RC, Beekhuizen W, Willemze R, Kanhai HH, Fibbe WE (2003) Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 88:845–852

    Google Scholar 

  9. In’t Anker PS, Scherjon SA, Kleijburg-vander Keur C (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102:1548–1549

    Google Scholar 

  10. Villaron EM, Almeida J, López-Holgado N, Sánchez-Abarca LI, Ferminmartin MSG, Joseantonio PS, Sanmiguel JF, Cañizo MCD (2004) Mesenchymal stem cells are present in peripheral blood and can engraft after allogeneic hematopoietic stem cell transplantation. Haematologica 89:1421–1427

    PubMed  Google Scholar 

  11. Karaoz E, Ayhan S, Gacar G, Aksoy A, Duruksu G, Okçu A, Demircan PC, Eker Sarıboyacı A, Kaymaz F, Kasap M (2010) Isolation and characterization of stem cells from pancreatic islet: pluripotency, differentiation potential and ultra structural characteristics. Cytotherapy 12:288–302

    CAS  PubMed  Google Scholar 

  12. Karaoz E, Genç ZS, Demircan PÇ, Aksoy A, Duruksu G (2010) Protection of rat pancreatic islet function and viability by coculture with rat bone-marrow derived mesenchymal stem cells. Cell Death Dis 1:1–8

    Google Scholar 

  13. Karaoz E, Okçu A, Saglam O, Seda Genc Z, Ayhan S, Kasap M (2010) Pancreatic islet derived stem cells can express co-stimulatory molecules of antigen-presenting cells. Transplant Proc 42:3663–3670

    CAS  PubMed  Google Scholar 

  14. Musina RA, Belyavski AV, Tarusova OV, Solovyova EV, Sukhikh GT (2008) Sukhikh endometrial mesenchymal stem cells isolated from the menstrual blood. Bull Exp Biol Med 145:539–543

    CAS  PubMed  Google Scholar 

  15. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    CAS  PubMed  Google Scholar 

  16. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    CAS  PubMed  Google Scholar 

  17. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675

    CAS  PubMed  Google Scholar 

  18. Shay JW, Wright WE (2005) Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis 26:867–874

    CAS  PubMed  Google Scholar 

  19. Zimmermann S, Voss M, Kaiser S, Kapp U, Waller CF, Martens UM (2003) Lack of telomerase activity in human mesenchymal stem cells. Leukemia 17:1146–1149

    CAS  PubMed  Google Scholar 

  20. Bassi ÊJ, Aita CAM, Câmara NOS (2011) Immune regulatory properties of multipotent mesenchymal stromal cells: where do we stand? World J Stem Cells 3(1):1–8

    PubMed Central  PubMed  Google Scholar 

  21. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A (2005) Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7:393–395

    CAS  PubMed  Google Scholar 

  22. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Dj P, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    CAS  PubMed  Google Scholar 

  23. Demircan Cetinalp P, Gacar G, Eker A, Karaoz E (2010) Study on the immuno-suppressive characteristics of human dental pulp derived mesenchymal stem cells on T cells in-vitro: initial study outputs. Haematologica 95(suppl 2):652, abs. p 1661

    Google Scholar 

  24. Demircan Cetinalp P, Sariboyaci Eker A, Gacar G, Karaoz E (2010) Comparative study of immunosupressive characteristics of human dental pulp derived mesenchymal stem cells on T cells in-vitro. 5th World Congress on preventetive & regenerative medicine, Germany. p 90

    Google Scholar 

  25. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts A, Zhao RC, Shi Y (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2:141–150

    CAS  PubMed  Google Scholar 

  26. Kassem M (2004) Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning Stem Cells 6:369–374

    CAS  PubMed  Google Scholar 

  27. Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K, Hiratsu E (2009) Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 206:2483–2496

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    PubMed  Google Scholar 

  29. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24:74–85

    PubMed  Google Scholar 

  30. Ringden O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lonnies H, Marschall HU, Dlugosz A, Szakos A, Hassan Z, Omazic B, Aschan J, Barkholt L, Le Blanc K (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81:1390–1397

    PubMed  Google Scholar 

  31. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48

    PubMed  Google Scholar 

  32. Yañez R, Lamana ML, García-Castro J, Colmenero I, Ramirez M, Bueren JA (2006) Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells 24:2582–2591

    PubMed  Google Scholar 

  33. Mathew JM, Carreno M, Fuller L, Esquenazi V, Ricordi C, Miller J (1997) Modulatory effects of human donor bone marrow cells on allogeneic cellular immune responses. Transplantation 63:686–692

    CAS  PubMed  Google Scholar 

  34. Jorgensen C, Djouad F, Apparilly F, Sany J, Noel D (2003) Immunosupressive effect of mesenchymal stem cells in collogen-induced arthritis. Arthritis Res Ther 5:105. doi:10.1186/ar906

    PubMed Central  Google Scholar 

  35. Tyndall CB, Bracci L, Spagnoli G, Braccini A, Bouchenaki M, Ceredig R, Pistoia V, Martin I, Tyndal A (2007) Bone marrow mesenchymal stromal cells (BM-MSCs) from healthy donors and auto-immune disease patients reduce the proliferation of autologous- and allogeneic-stimulated lymphocytes in vitro. Rheumatology 46:403–408

    PubMed  Google Scholar 

  36. Gerdoni E, Gallo B, Casazza S, Musio S, Bonanni I, Pedemonte E, Mantegazza R, Frassoni F, Mancardi G, Pedotti R, Uccelli A (2007) Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol 61:219–227

    CAS  PubMed  Google Scholar 

  37. Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, Giunti D, Ceravolo A, Cazzanti F, Frassoni F, Mancardi G, Uccelli A (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106:1755–1761

    CAS  PubMed  Google Scholar 

  38. Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24:1030–1041

    CAS  PubMed  Google Scholar 

  39. Dazzi F, Marelli-Berg FM (2008) Mesenchymal stem cells for graft-versus-host disease: close encounters with T cells. Eur J Immunol 38:1479–1482

    CAS  PubMed  Google Scholar 

  40. Bian L, Guo ZK, Wang HX, Wang JS, Wang H, Li QF, Yang YF, Xiao FJ, Wu CT, Wang LS (2009) In vitro and in vivo immunosuppressive characteristics of hepatocyte growth factor-modified murine mesenchymal stem cells. In Vivo 23:21–27

    CAS  PubMed  Google Scholar 

  41. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A (2005) Human mesenchymal stem cells modulate B cell functions. Blood 107:367–372

    PubMed  Google Scholar 

  42. Benvenuto F, Ferrari S, Gerdoni E, Gualandi F, Frassoni F, Pistoia V, Mancardi G, Uccelli A (2007) Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells 25:1753–1760

    CAS  PubMed  Google Scholar 

  43. Ramasamy R, Lam EW, Soeiro I, Tisato V, Bonnet D, Dazzi F (2007) Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia 21:304–310

    CAS  PubMed  Google Scholar 

  44. Mourez RR, Francois M, Boivin MN (2007) Regulation of MHC class II expression and antigen processing in murine and human mesenchymal stromal cells by IFN-gamma, TGF-beta, and cell density. J Immunol 179:1549–1558

    Google Scholar 

  45. Svobodova E, Krulova M, Zajicova A, Pokorna K, Prochazkova J, Trosan P, Holan V (2011) The role of mouse mesenchymal stem cells in differentiation of naive T-cells into anti-ınflammatory regulatory T-cell or proinflammatory helper T-cell 17 population. Stem Cells Dev 21(6):901–910. doi:10.1089/scd.2011.0157

    PubMed Central  PubMed  Google Scholar 

  46. Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F, Cantos C, Jorgensen C, Noël D (2007) Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25:2025–2032

    CAS  PubMed  Google Scholar 

  47. English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP (2009) Cell contact, prostaglandin E2 and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4-CD25 high forkhead box P3+ regulatory T cells. Clin Exp Immunol 156:149–160

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Freiss NR, Carosella ED, Deschaseaux F (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4-CD25 high FOXP3+ regulatory T cells. Stem Cells 26:212–222

    CAS  PubMed  Google Scholar 

  49. Selmani Z, Naji A, Gaiffe E, Obert L, Tiberghien P, Freiss NR, Carosella ED, Deschaseaux F (2009) HLA-G is a crucial immunosuppressive molecule secreted by adult human mesenchymal stem cells. Transplantation 87:62–66

    Google Scholar 

  50. Kögler G, Radke TF, Lefort A, Sensken S, Fischer J, Sorg RV, Wernet P (2005) Cytokine production and hematopoiesis supporting activity of cord blood-derived unrestricted somatic stem cells. Exp Hematol 33:573–583

    PubMed  Google Scholar 

  51. Ren G, Zhao X, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Yet S (2010) Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol 184:2321–2328

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bonifacio E, Piemonti L (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106:419–427

    CAS  PubMed  Google Scholar 

  53. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105:2821–2827

    CAS  PubMed  Google Scholar 

  54. Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, Galun E, Rachmilewitz J (2005) Human mesenchymal stem cells alter antigenpresenting cell maturation and induce T-cell unresponsiveness. Blood 105:2214–2219

    CAS  PubMed  Google Scholar 

  55. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105:4120–4126

    CAS  PubMed  Google Scholar 

  56. Inoue S, Popp FC, Koehl GE, Piso P, Schlitt HJ, Geissler EK, Dahlke MH (2006) Immunomodulatory effects of mesenchymal stem cells in a rat organ transplant model. Transplantation 81:1589–1595

    PubMed  Google Scholar 

  57. Bocelli-Tyndall C, Bracci L, Schaeren S, Feder-Mengus C, Barbero A, Tyndall A, Spagnoli GC (2009) Human bone marrow mesenchymal stem cells and chondrocytes promote and/or suppress the in vitro proliferation of lymphocytes stimulated by interleukins 2, 7 and 15. Ann Rheum Dis 68:1352–1359

    CAS  PubMed  Google Scholar 

  58. Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS, Eom Y, Lee JE, Kim YJ, Yang SK, Jung HL, Sung KW, Kim CW, Koo HH (2009) Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol 259:150–156

    CAS  PubMed  Google Scholar 

  59. Najar M, Rouas R, Raicevic G, Boufker HI, Lewalle P, Meuleman N, Bron D, Toungouz M, Martiat P, Lagneaux L (2009) Mesenchymal stromal cells promote or suppress the proliferation of T lymphocytes from cord blood and peripheral blood: the importance of low cell ratio and role of interleukin-6. Cytotherapy 11:570–583

    CAS  PubMed  Google Scholar 

  60. Cutler AJ, Limbani V, Girdlestone J, Navarrete CV (2010) Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation. J Immunol 185:6617–6623

    CAS  PubMed  Google Scholar 

  61. Li C, Zhang W, Jiang X, Mao N (2007) Human-placenta-derived mesenchymal stem cells inhibit proliferation and function of allogeneic immune cells. Cell Tissue Res 330:437–446

    PubMed  Google Scholar 

  62. De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106

    PubMed  Google Scholar 

  63. Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB (2010) Pro-infl ammatory cytokines, IFNgamma and TNFalpha, infl uence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One 5:1–16

    Google Scholar 

  64. Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C, Alviano F, Fossati V, Staffolani N, Franchina M, Grossi A, Bagnara GP (2005) Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80:836–842

    PubMed  Google Scholar 

  65. Demircan PC, Sariboyaci AE, Unal ZS, Gacar G, Subasi C, Karaoz E (2011) Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems. Cytotherapy 13(10):1205–1220

    CAS  PubMed  Google Scholar 

  66. Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, Santarlasci V, Mazzinghi B, Pizzolo G, Vinante F, Romagnani P, Maggi E, Romagnani S, Annunziato F (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24:386–398

    CAS  PubMed  Google Scholar 

  67. Nasef A, Mathieu N, Chapel A, Frick J, François S, Mazurier C, Boutarfa A, Bouchet S, Gorin NC, Thierry D, Fouillard L (2007) Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation 84:231–237

    CAS  PubMed  Google Scholar 

  68. Asadullah K, Sterry W, Volk HD (2003) Interleukin-10 therapy: review of a new approach. Pharmacol Rev 55:241–269

    CAS  PubMed  Google Scholar 

  69. Kim YH, Wee YM, Choi MY, Lim DG, Kim SC, Han DJ (2011) Interleukin (IL)-10 induced by CD11b(+) cells and IL-10-activated regulatory T cells play a role in immune modulation of mesenchymal stem cells in rat islet allografts. Mol Med 17(7–8):697–708

    PubMed Central  PubMed  Google Scholar 

  70. Bifari F, Lisi V, Mimiola E, Pasini A, Krampera M (2008) Immune modulation by mesenchymal stem cells. Transfus Med Hemother 35:194–204

    PubMed Central  PubMed  Google Scholar 

  71. Djouad F, Fritz V, Apparailly F, Louis-Plence P, Bony C, Sany J, Jorgensen C, Noël D (2005) Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collagen-induced arthritis. Arthritis Rheum 52:1595–1603

    CAS  PubMed  Google Scholar 

  72. Franzke A, Geffers R, Hunger JK, Pförtner S, Piao W, Ivanyi P, Grosse J, Probst-Kepper M, Ganser A, Buer J (2006) Identifi cation of novel regulators in T-cell differentiation of aplastic anemia patients. BMC Genomics 7:1–11

    Google Scholar 

  73. Rasmusson I, Ringden O, Sundberg B, Le Blanc K (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76:1208–1213

    PubMed  Google Scholar 

  74. Le Blanc K, Rasmusson I, Götherström C, Seidel C, Sundberg B, Sundin M, Rosendahl K, Tammik C, Ringdén O (2004) Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol 60:307–315

    PubMed  Google Scholar 

  75. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103

    CAS  PubMed  Google Scholar 

  76. Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, Carbone DP (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92:4150–4166

    CAS  PubMed  Google Scholar 

  77. Plumas J, Chaperot L, Richard MJ, Molens JP, Bensa JC, Favrot MC (2005) Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia 19:1597–1604

    CAS  PubMed  Google Scholar 

  78. Suva D, Passweg J, Arnaudeau S, Hoffmeyer P, Kindler V (2007) In vitro activated human T lymphocytes very efficiently attach to allogenic multipotent mesenchymal stromal cells and transmigrate under them. Cell Physiol 214:588–594

    Google Scholar 

  79. Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannella B, Allard J, Klonowski P, Austin A, Lad N, Kaminski N, Galli SJ, Oksenberg JR, Raine CS, Heller R, Steinman L (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8:500–508

    CAS  PubMed  Google Scholar 

  80. Charo IF, Peters W (2003) Chemokine receptor 2 (CCR2) in atherosclerosis, infectious diseases, and regulation of T-cell polarization. Microcirculation 10:259–264

    CAS  PubMed  Google Scholar 

  81. Hultqvist M, Olofsson P, Holmberg J, Bäckström BT, Tordsson J, Holmdahl R (2004) Enhanced autoimmunity, arthritis and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the Ncf1 gene. Proc Natl Acad Sci USA 101:12646–12651

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Yao Z, Fanslow WC, Seldin MF, Rousseau AM, Painter SL, Comeau MR, Cohen JI, Spriggs MK (1995) Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3:811–821

    CAS  PubMed  Google Scholar 

  83. Ghannam S, Pène J, Torcy-Moquet G, Jorgensen C, Yssel H (2010) Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 18:302–312

    Google Scholar 

  84. Robertson MJ (2002) Role of chemokines in the biology of natural killer cells. J Leukoc Biol 71:173–183

    CAS  PubMed  Google Scholar 

  85. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    CAS  PubMed  Google Scholar 

  86. Patel SA, Sherman L, Munoz J, Rameshwar P (2008) Immunological properties of mesenchymal stem cells and clinical implications. Arch Immunol Ther Exp (Warsz) 56:1–8

    CAS  Google Scholar 

  87. Coleman JW (2001) Nitric oxide in immunity and inflammation. Int Immunopharmacol 1:1397–1406

    CAS  PubMed  Google Scholar 

  88. Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, Muroi K, Ozawa K (2007) Nitric oxide plays a critical role in supression of T-cell proliferation by mesenchymal stem cells. Blood 109:228–234

    CAS  PubMed  Google Scholar 

  89. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193

    CAS  PubMed  Google Scholar 

  90. Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103:4619–4621

    CAS  PubMed  Google Scholar 

  91. Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA (2000) Indoleamine 2,3-dioxygenaseproduction by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 164:3596–3599

    CAS  PubMed  Google Scholar 

  92. Gieseke F, Schütt B, Viebahn S, Koscielniak E, Friedrich W, Handgretinger R, Müller I (2007) Human multipotent mesenchymal stromal cells inhibit proliferation of PBMCs independently of IFNγR1 signaling and IDO expression. Blood 110:2197–2200

    CAS  PubMed  Google Scholar 

  93. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–397

    CAS  PubMed  Google Scholar 

  94. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringdén O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20

    PubMed  Google Scholar 

  95. Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P (2003) Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol 171:3426–3434

    CAS  PubMed  Google Scholar 

  96. Liu J, Lu XF, Wan L, Li YP, Li SF, Zeng LY, Zeng YZ, Cheng LH, Lu YR, Cheng JQ (2004) Supression of human peripheral blood lymphocyte proliferation by immortalized mesencymal stem cells derived from bone marrow of Banna Minipig inbredline. Transplant Proc 36:3272–3275

    CAS  PubMed  Google Scholar 

  97. Asari S, Itakura S, Ferreri K, Liu CP, Kuroda Y, Kandeel F, Mullen Y (2009) Mesenchymal stem cells suppress B-cell terminal differentiation. Exp Hematol 37:604–615

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Zhao S, Wehner R, Bornhäuser M, Wassmuth R, Bachmann M, Schmitz M (2010) Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders. Stem Cells Dev 19(5):607–614

    CAS  PubMed  Google Scholar 

  99. Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, Pennesi G (2005) Bone marrow mesenchymal progenitors cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 35:1482–1490

    CAS  PubMed  Google Scholar 

  100. Deng W, Han Q, Liao L, You S, Deng H, Zhao RC (2005) Effects of allogeneic bone marrow-derived mesenchymalstem cells on T and B lymphocytes from BXSB mice. DNA Cell Biol 24:458–463

    CAS  PubMed  Google Scholar 

  101. Rasmusson I, Le Blanc K, Sundberg B, Ringdén O (2007) Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand J Immunol 65:336–343

    CAS  PubMed  Google Scholar 

  102. Xu G, Zhang Y, Zhang L, Ren G, Shi Y (2007) The role of IL-6 in inhibition of lymphocyte apoptosis by mesenchymal stem cells. Biochem Biophys Res Commun 361:745–750

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Rafei M, Hsieh J, Fortier S, Li M, Yuan S, Birman E, Forner K, Boivin MN, Doody K, Tremblay M, Annabi B, Galipeau J (2008) Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood 112:4991–4998

    CAS  PubMed  Google Scholar 

  104. Traggiai E, Volpi S, Schena F, Gattorno M, Ferlito F, Moretta L, Martini A (2008) Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells 26:562–569

    CAS  PubMed  Google Scholar 

  105. Rutella S, Danese S, Leone G (2006) Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 108:1435–1440

    CAS  PubMed  Google Scholar 

  106. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    CAS  PubMed  Google Scholar 

  107. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F (2003) Bone marrow mesenchymal stem cells inhibit the response of naïve and memory antigen-specific T cells to their cognate peptide. Blood 101:3722–3729

    CAS  PubMed  Google Scholar 

  108. Zhang W, Ge W, Li C, You S, Liao L, Han Q, Deng W, Zhao RC (2004) Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 13:263–271

    CAS  PubMed  Google Scholar 

  109. Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE (2006) Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol 177:2080–2087

    CAS  PubMed  Google Scholar 

  110. Gur-Wahnon D, Borovsky Z, Beyth S, Liebergall M, Rachmilewitz J (2007) Contact-dependent induction of regulatory antigen-presenting cells by human mesenchymal stem cells is mediated via STAT3 signaling. Exp Hematol 35:426–433

    CAS  PubMed  Google Scholar 

  111. Ristich V, Liang S, Zhang W, Wu J, Horuzsko A (2005) Tolerization of dendritic cells by HLA-G. Eur J Immunol 35:1133–1142

    CAS  PubMed  Google Scholar 

  112. Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110:3499–3506

    CAS  PubMed  Google Scholar 

  113. Hegde S, Pahne J, Hess SS (2004) Novel immunosuppressive properties of interleukin-6 in dendritic cells: inhibition of NF-κB binding activity and CCR7 expression. FASEB J 18:1439–1441

    CAS  PubMed  Google Scholar 

  114. Smyth MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2:850–861

    CAS  PubMed  Google Scholar 

  115. Maccario R, Podesta M, Moretta A, Cometa A, Comoli P, Montagna D, Daudt L, Ibatici A, Piaggio G, Pozzi S, Frassoni F, Locatelli F (2005) Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 90:516–525

    CAS  PubMed  Google Scholar 

  116. Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, Ringdén O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441

    PubMed  Google Scholar 

  117. Ljunggren HG, Malmberg KJ (2007) Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 7:329–339

    CAS  PubMed  Google Scholar 

  118. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L (2006) Mesenchymal stem cell (MSC)/natural killer (NK) cell interactions: evidence that activated NK cells are capable of killing MSC while MSC can inhibit IL-2-induced NK cell proliferation. Blood 107:1484–1490

    CAS  PubMed  Google Scholar 

  119. Nasef A, Ashammakhi N, Fouillard L (2008) Immunomodulatory effect of mesenchymal stromal cells: possible mechanisms. Regen Med 3(4):531–546

    CAS  PubMed  Google Scholar 

  120. Gurevich O (1999) Transplantation of allogeneic or xenogeneic bone marrow within the donor stromal microenvironment. Transplantation 68:1362–1368

    Google Scholar 

  121. Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, Marshak DR, Flake AW (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286

    CAS  PubMed  Google Scholar 

  122. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noël D, Jorgensen C (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102:3837–3844

    CAS  PubMed  Google Scholar 

  123. Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE (2006) Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 108:2114–2120

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Sudres M, Norol F, Trenado A, Grégoire S, Charlotte F, Levacher B, Lataillade JJ, Bourin P, Holy X, Vernant JP, Klatzmann D, Cohen JL (2006) Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft versus-host disease in mice. J Immunol 176:7761–7767

    CAS  PubMed  Google Scholar 

  125. Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C (2005) Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiationindependent mechanisms. Am J Physiol Renal Physiol 289:31–42

    Google Scholar 

  126. Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD, Prockop DJ (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci USA 103:17438–17443

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Wu GD, Nolta JA, Jin YS, Barr ML, Yu H, Starnes VA, Cramer DV (2003) Migration of mesenchymal stem cells to heart allografts during chronic rejection. Transplantation 75:679–685

    PubMed  Google Scholar 

  128. Guo J, Lin GS, Bao CY, Hu ZM, Hu MY (2007) Anti-inflammation role for mesenchymal stem cells transplantation in myocardial infarction. Inflammation 30:97–104

    CAS  PubMed  Google Scholar 

  129. Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA (2007) Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 179:1855–1863

    CAS  PubMed  Google Scholar 

  130. Ortiz LA, Dutreil M, Fattman C (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 104:11002–11007

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Augello A, Tasso R, Negrini SM (2007) Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum 56:1175–1186

    CAS  PubMed  Google Scholar 

  132. Duffield JS, Park KM, Hsiao LL (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115:1743–1755

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW, Yarmush ML (2007) Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One 2:p941

    Google Scholar 

  134. Ikehara S (2003) A novel strategy for allogeneic stem cell transplantation: perfusion method plus intra-bone marrow injection of stem cells. Exp Hematol 31:1142–1146

    PubMed  Google Scholar 

  135. Huang X-P, Sun Z, Miyagi Y, McDonald Kinkaid H, Zhang L, Weisel RD, Li RK (2010) Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 122:2419–2429

    CAS  PubMed  Google Scholar 

  136. Zhou Y, Yuan J, Zhou B, Lee AJ, Lee AJ, Ghawji M Jr, Yoo TJ (2011) The therapeutic efficacy of human adipose tissue-derived mesenchymal stem cells on experimental autoimmune hearing loss in mice. Immunology 133:133–140

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH (2008) Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for Type 1 diabetes. Diabetes 57:1759–1767

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringdén O (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586

    PubMed  Google Scholar 

  139. Ning H, Yang F, Jiang M, Hu L, Feng K, Zhang J, Yu Z, Li B, Xu C, Li Y, Wang J, Hu J, Lou X, Chen H (2008) The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia 22:593–599

    CAS  PubMed  Google Scholar 

  140. Gonzalo-Daganzo R, Regidor C, Martin-Donaire T, Rico MA, Bautista G, Krsnik I, Forés R, Ojeda E, Sanjuán I, García-Marco JA, Navarro B, Gil S, Sánchez R, Panadero N, Gutiérrez Y, García-Berciano M, Pérez N, Millán I, Cabrera R, Fernández MN (2009) Results of a pilot study on the use of third-party donor mesenchymal stromal cells in cord blood transplantation in adults. Cytotherapy 11:278–288

    CAS  PubMed  Google Scholar 

  141. Le Blanc K, Samuelsson H, Gustafsson B, Remberger M, Sundberg B, Arvidson J, Ljungman P, Lönnies H, Nava S, Ringdén O (2007) Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia 21:1733–1738

    PubMed  Google Scholar 

  142. Ball LM, Bernardo ME, Roelofs H, Lankester A, Cometa A, Egeler RM, Locatelli F, Fibbe WE (2007) Cotransplantation of ex vivo-expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood 110:2764–2767

    CAS  PubMed  Google Scholar 

  143. Sun L, Akiyama K, Zhang H, Yamaza T, Hou Y, Zhao S, Xu T, Le A, Shi S (2009) Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells 27:1421–1432

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Von Bonin M, Stölzel F, Goedecke A, Richter K, Wuschek N, Hölig K, Platzbecker U, Illmer T, Schaich M, Schetelig J, Kiani A, Ordemann R, Ehninger G, Schmitz M, Bornhäuser M (2009) Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant 43(3):245–251

    Google Scholar 

  145. Patel AN, Genovese J (2011) Potential clinical applications of adult human mesenchymal stem cell (Prochymal®) therapy. Stem Cell Clon Adv Appl 4:61–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinar Çetinalp Demircan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Demircan, P.Ç., Sariboyaci, A.E., Karaoz, E. (2013). Immunoregulatory Properties of Mesenchymal Stem Cells: In Vitro and In Vivo. In: Turksen, K. (eds) Stem Cells: Current Challenges and New Directions. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8066-2_3

Download citation

Publish with us

Policies and ethics