Skip to main content

Therapy Resistance in Prostate Cancer: A Stem Cell Perspective

  • Chapter
  • First Online:
Stem Cells: Current Challenges and New Directions

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1715 Accesses

Abstract

Primary human prostate cancers are frequently treated with radiotherapy and subsequently with compounds which block the response to male sex hormones. After the failure of these treatments, the tumours are notoriously resistant to standard chemotherapies. Such therapy resistance has been ascribed to the heterogeneous cellular nature of the tumours and the ability of tumours to rapidly sustain mutations to counteract therapy. This is inconsistent with the low rate of mismatch repair seen in prostate cancer. An alternative and complementary explanation lies in the existence of a therapy-resistant core of cells within the heterogeneous tumour mass. These cells, frequently termed cancer stem cells, exhibit a less-differentiated, basal phenotype, which is resistant to therapies directed against the majority luminal cell population in prostate cancers. The cancer stem cells are largely quiescent, rendering them resistant to cell cycle and proliferation-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    PubMed  Google Scholar 

  2. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    PubMed  Google Scholar 

  3. Gallagher DJ, Gaudet MM, Pal P, Kirchhoff T, Balistreri L, Vora K, Bhatia J, Stadler Z, Fine SW, Reuter V et al (2010) Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res 16:2115–2121

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Gallagher DJ, Vijai J, Cronin AM, Bhatia J, Vickers AJ, Gaudet MM, Fine S, Reuter V, Scher HI, Hallden C et al (2010) Susceptibility loci associated with prostate cancer progression and mortality. Clin Cancer Res 16:2819–2832

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Powell IJ (2011) The precise role of ethnicity and family history on aggressive prostate cancer: a review analysis. Arch Esp Urol 64:711–719

    PubMed Central  PubMed  Google Scholar 

  6. Schultz C, Meier M, Schmid HP (2011) Nutrition, dietary supplements and adenocarcinoma of the prostate. Maturitas 70:339–342

    Google Scholar 

  7. Stein QP, Flanagan JD (2010) Genetic and familial factors influencing breast, colon, prostate and lung cancers. S D Med Spec No:16–22

    Google Scholar 

  8. Isaacs W, De Marzo A, Nelson WG (2002) Focus on prostate cancer. Cancer Cell 2:113–116

    CAS  PubMed  Google Scholar 

  9. Sakr WA, Grignon DJ, Crissman JD, Heilbrun LK, Cassin BJ, Pontes JJ, Haas GP (1994) High grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma between the ages of 20–69: an autopsy study of 249 cases. In Vivo 8:439–443

    CAS  PubMed  Google Scholar 

  10. Breslow N, Chan CW, Dhom G, Drury RA, Franks LM, Gellei B, Lee YS, Lundberg S, Sparke B, Sternby NH et al (1977) Latent carcinoma of prostate at autopsy in seven areas. The international agency for research on cancer, Lyons, France. Int J Cancer 20:680–688

    CAS  PubMed  Google Scholar 

  11. Kheirandish P, Chinegwundoh F (2011) Ethnic differences in prostate cancer. Br J Cancer 105:481–485

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Gleason DF (1966) Classification of prostatic carcinomas. Cancer Chemother Rep 50:125–128

    CAS  PubMed  Google Scholar 

  13. Placer J, Morote J (2011) Usefulness of prostatic specific antigen (PSA) for diagnosis and staging of patients with prostate cancer. Arch Esp Urol 64:659–680

    PubMed  Google Scholar 

  14. Kollmeier MA, Zelefsky MJ (2011) Brachytherapy for clinically localized prostate cancer: optimal patient selection. Arch Esp Urol 64:847–857

    PubMed  Google Scholar 

  15. Koontz BF, Lee WR (2011) External beam radiation therapy for clinically localized prostate cancer: when and how we optimize with concurrent hormonal deprivation. Arch Esp Urol 64:858–864

    PubMed  Google Scholar 

  16. Duchesne G (2011) Localised prostate cancer – current treatment options. Aust Fam Physician 40:768–771

    PubMed  Google Scholar 

  17. Gomella LG, Singh J, Lallas C, Trabulsi EJ (2010) Hormone therapy in the management of prostate cancer: evidence-based approaches. Ther Adv Urol 2:171–181

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Massard C, Deutsch E, Soria JC (2006) Tumour stem cell-targeted treatment: elimination or differentiation. Ann Oncol 17:1620–1624

    CAS  PubMed  Google Scholar 

  19. Garcia JA, Rini BI (2011) Castration-resistant prostate cancer: many treatments, many options, many challenges ahead. Cancer 118:2583–2593

    Google Scholar 

  20. Garcia JA, Hutson TE, Shepard D, Elson P, Dreicer R (2011) Gemcitabine and docetaxel in metastatic, castrate-resistant prostate cancer: results from a phase 2 trial. Cancer 117:752–757

    CAS  PubMed  Google Scholar 

  21. Seruga B, Tannock IF (2011) Chemotherapy-based treatment for castration-resistant prostate cancer. J Clin Oncol 29:3686–3694

    CAS  PubMed  Google Scholar 

  22. Sartor O, Michels RM, Massard C, de Bono JS (2011) Novel therapeutic strategies for metastatic prostate cancer in the post-docetaxel setting. Oncologist 16:1487–1497

    Google Scholar 

  23. Jones JS (2011) Radiorecurrent prostate cancer: an emerging and largely mismanaged epidemic. Eur Urol 60:411–412

    Google Scholar 

  24. Catton C, Milosevic M, Warde P, Bayley A, Crook J, Bristow R, Gospodarowicz M (2003) Recurrent prostate cancer following external beam radiotherapy: follow-up strategies and management. Urol Clin North Am 30:751–763

    PubMed  Google Scholar 

  25. Ishkanian AS, Zafarana G, Thoms J, Bristow RG (2010) Array CGH as a potential predictor of radiocurability in intermediate risk prostate cancer. Acta Oncol 49:888–894

    CAS  PubMed  Google Scholar 

  26. Zafarana G, Bristow RG (2010) Tumor senescence and radioresistant tumor-initiating cells (TICs): let sleeping dogs lie! Breast Cancer Res 12:111

    PubMed Central  PubMed  Google Scholar 

  27. Lindner U, Trachtenberg J, Lawrentschuk N (2010) Focal therapy in prostate cancer: modalities, findings and future considerations. Nat Rev Urol 7:562–571

    PubMed  Google Scholar 

  28. Gerritsen WR, Sharma P (2011) Current and emerging treatment options for castration-resistant prostate cancer: a focus on immunotherapy. J Clin Immunol 32:25–35

    Google Scholar 

  29. Madan RA, Mohebtash M, Schlom J, Gulley JL (2010) Therapeutic vaccines in metastatic castration-resistant prostate cancer: principles in clinical trial design. Expert Opin Biol Ther 10:19–28

    PubMed  Google Scholar 

  30. Rivera-Gonzalez GC, Swift SL, Dussupt V, Georgopoulos LJ, Maitland NJ (2011) Baculoviruses as gene therapy vectors for human prostate cancer. J Invertebr Pathol 107(Suppl):S59–S70

    CAS  PubMed  Google Scholar 

  31. Ailles LE, Weissman IL (2007) Cancer stem cells in solid tumors. Curr Opin Biotechnol 18:460–466

    CAS  PubMed  Google Scholar 

  32. Bapat SA (2007) Evolution of cancer stem cells. Semin Cancer Biol 17:204–213

    CAS  PubMed  Google Scholar 

  33. Blagosklonny MV (2007) Cancer stem cell and cancer stemloids: from biology to therapy. Cancer Biol Ther 6:1684–1690

    CAS  PubMed  Google Scholar 

  34. Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124:1111–1115

    CAS  PubMed  Google Scholar 

  35. Dick JE (2008) Stem cell concepts renew cancer research. Blood 112:4793–4807

    CAS  PubMed  Google Scholar 

  36. Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15:1010–1012

    CAS  PubMed  Google Scholar 

  37. Houghton J, Morozov A, Smirnova I, Wang TC (2007) Stem cells and cancer. Semin Cancer Biol 17:191–203

    CAS  PubMed  Google Scholar 

  38. Huntly BJ, Gilliland DG (2005) Cancer biology: summing up cancer stem cells. Nature 435:1169–1170

    CAS  PubMed  Google Scholar 

  39. Jordan CT (2004) Cancer stem cell biology: from leukemia to solid tumors. Curr Opin Cell Biol 16:708–712

    CAS  PubMed  Google Scholar 

  40. Lee JT, Herlyn M (2007) Old disease, new culprit: tumor stem cells in cancer. J Cell Physiol 213:603–609

    CAS  PubMed  Google Scholar 

  41. Schatton T, Frank NY, Frank MH (2009) Identification and targeting of cancer stem cells. Bioessays 31:1038–1049

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea–a paradigm shift. Cancer Res 66:1883–1890, discussion 1895–1886

    CAS  PubMed  Google Scholar 

  43. Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF (2004) Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 14:43–47

    CAS  PubMed  Google Scholar 

  44. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    CAS  PubMed  Google Scholar 

  45. Ishii H, Iwatsuki M, Ieta K, Ohta D, Haraguchi N, Mimori K, Mori M (2008) Cancer stem cells and chemoradiation resistance. Cancer Sci 99:1871–1877

    CAS  PubMed  Google Scholar 

  46. Maitland NJ, Collins AT (2010) Cancer stem cells – A therapeutic target? Curr Opin Mol Ther 12:662–673

    CAS  PubMed  Google Scholar 

  47. Rich JN (2007) Cancer stem cells in radiation resistance. Cancer Res 67:8980–8984

    CAS  PubMed  Google Scholar 

  48. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    CAS  PubMed  Google Scholar 

  49. Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP, Butler PD, Yang GP, Joshua B, Kaplan MJ et al (2010) Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466:133–137

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Bussolati B, Bruno S, Grange C, Ferrando U, Camussi G (2008) Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J 22:3696–3705

    CAS  PubMed  Google Scholar 

  51. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514

    CAS  PubMed  Google Scholar 

  52. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, Zheng BJ, Guan XY (2007) Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132:2542–2556

    CAS  PubMed  Google Scholar 

  54. Rutella S, Bonanno G, Procoli A, Mariotti A, Corallo M, Prisco MG, Eramo A, Napoletano C, Gallo D, Perillo A et al (2009) Cells with characteristics of cancer stem/progenitor cells express the CD133 antigen in human endometrial tumors. Clin Cancer Res 15:4299–4311

    CAS  PubMed  Google Scholar 

  55. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68:4311–4320

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, Gill H, Presti J Jr, Chang HY, van de Rijn M et al (2009) Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci USA 106:14016–14021

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Chiou SH, Kao CL, Chen YW, Chien CS, Hung SC, Lo JF, Chen YJ, Ku HH, Hsu MT, Wong TT (2008) Identification of CD133-positive radioresistant cells in atypical teratoid/rhabdoid tumor. PLoS One 3:e2090

    PubMed Central  PubMed  Google Scholar 

  58. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104:973–978

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C et al (2008) Identification of cells initiating human melanomas. Nature 451:345–349

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    CAS  PubMed  Google Scholar 

  61. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    CAS  PubMed  Google Scholar 

  62. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  63. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    CAS  PubMed  Google Scholar 

  64. English HF, Santen RJ, Isaacs JT (1987) Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate 11:229–242

    CAS  PubMed  Google Scholar 

  65. Isaacs JT (1987) Control of cell proliferation and cell death in the normal and neoplastic prostate: A stem cell model. In: Rodgers CH, Coffey DS, Gunha G, Grayhack JT, Hinman F Jr, Horton R (eds) Benign prostate hyperplasia. NIH No. 87-2881, vol 2. NIH, Bethesda, MD, pp 85–94

    Google Scholar 

  66. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT (2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117:3539–3545

    CAS  PubMed  Google Scholar 

  67. Risbridger GP, Taylor RA (2011) The complexities of identifying a cell of origin for human prostate cancer. Asian J Androl 13:118–119

    PubMed Central  PubMed  Google Scholar 

  68. Frame FM, Maitland NJ (2011) In: Rhim JS, Kremer R (eds) Human cell transformation – role of stem cells and the microenvironment, Springer Science + Business Media, LLC, pp 105–118

    Google Scholar 

  69. Maitland NJ, Frame FM, Polson ES, Lewis JL, Collins AC (2011) Prostate cancer stem cells: do they have a basal or luminal phenotype? Horm Cancer 2:47–61

    Google Scholar 

  70. Taylor RA, Toivanen R, Risbridger GP (2010) Stem cells in prostate cancer: treating the root of the problem. Endocr Relat Cancer 17:R273–R285

    CAS  PubMed  Google Scholar 

  71. Oldridge EE, Pellacani D, Collins AT, Maitland NJ (2011) Prostate cancer stem cells: are they androgen-responsive? Mol Cell Endocrinol 360:14–24

    Google Scholar 

  72. Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26:2839–2845

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Baumann M, Krause M, Hill R (2008) Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 8:545–554

    CAS  PubMed  Google Scholar 

  74. Birnie R, Bryce SD, Roome C, Dussupt V, Droop A, Lang SH, Berry PA, Hyde CF, Lewis JL, Stower MJ et al (2008) Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol 9:R83

    PubMed Central  PubMed  Google Scholar 

  75. Rajasekhar VK, Studer L, Gerald W, Socci ND, Scher HI (2011) Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappaB signalling. Nat Commun 2:162

    PubMed Central  PubMed  Google Scholar 

  76. True L, Coleman I, Hawley S, Huang CY, Gifford D, Coleman R, Beer TM, Gelmann E, Datta M, Mostaghel E et al (2006) A molecular correlate to the Gleason grading system for prostate adenocarcinoma. Proc Natl Acad Sci USA 103:10991–10996

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Humphrey PA (2007) Diagnosis of adenocarcinoma in prostate needle biopsy tissue. J Clin Pathol 60:35–42

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON (2010) Identification of a cell of origin for human prostate cancer. Science 329:568–571

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Goldstein AS, Stoyanova T, Witte ON (2010) Primitive origins of prostate cancer: in vivo evidence for prostate-regenerating cells and prostate cancer-initiating cells. Mol Oncol 4:385–396

    PubMed Central  PubMed  Google Scholar 

  80. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K et al (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25:1696–1708

    CAS  PubMed  Google Scholar 

  81. Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG (2007) Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44 + alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 67:6796–6805

    CAS  PubMed  Google Scholar 

  82. Robinson EJ, Neal DE, Collins AT (1998) Basal cells are progenitors of luminal cells in primary cultures of differentiating human prostatic epithelium. Prostate 37:149–160

    CAS  PubMed  Google Scholar 

  83. Trerotola M, Rathore S, Goel HL, Li J, Alberti S, Piantelli M, Adams D, Jiang Z, Languino LR (2010) CD133, Trop-2 and alpha2beta1 integrin surface receptors as markers of putative human prostate cancer stem cells. Am J Transl Res 2:135–144

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Taipale J, Beachy PA (2001) The Hedgehog and Wnt signalling pathways in cancer. Nature 411:349–354

    CAS  PubMed  Google Scholar 

  85. Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV, Hu YP, Price SM, Abate-Shen C, Shen MM (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461:495–500

    CAS  PubMed Central  PubMed  Google Scholar 

  86. El-Alfy M, Pelletier G, Hermo LS, Labrie F (2000) Unique features of the basal cells of human prostate epithelium. Microsc Res Tech 51:436–446

    CAS  PubMed  Google Scholar 

  87. Visvader JE (2009) Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 23:2563–2577

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Blanpain C, Mohrin M, Sotiropoulou PA, Passegue E (2011) DNA-damage response in tissue-specific and cancer stem cells. Cell Stem Cell 8:16–29

    CAS  PubMed  Google Scholar 

  90. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659

    CAS  PubMed  Google Scholar 

  91. Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Baba H, Mori M (2010) Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 101:293–299

    Google Scholar 

  92. Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15:117–134

    Google Scholar 

  93. van der Pluijm G (2010) Epithelial plasticity, cancer stem cells and bone metastasis formation. Bone 48:37–43

    Google Scholar 

  94. Kunz M, Ibrahim SM (2003) Molecular responses to hypoxia in tumor cells. Mol Cancer 2:23

    PubMed Central  PubMed  Google Scholar 

  95. Harris AL (2002) Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    CAS  PubMed  Google Scholar 

  96. Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182

    CAS  PubMed  Google Scholar 

  97. Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11:393–410

    CAS  PubMed  Google Scholar 

  98. Hashimoto O, Shimizu K, Semba S, Chiba S, Ku Y, Yokozaki H, Hori Y (2011) Hypoxia induces tumor aggressiveness and the expansion of CD133-positive cells in a hypoxia-inducible factor-1alpha-dependent manner in pancreatic cancer cells. Pathobiology 78:181–192

    CAS  PubMed  Google Scholar 

  99. Iida H, Suzuki M, Goitsuka R, Ueno H (2012) Hypoxia induces CD133 expression in human lung cancer cells by up-regulation of OCT3/4 and SOX2. Int J Oncol 40:71–79

    CAS  PubMed  Google Scholar 

  100. Matsumoto K, Arao T, Tanaka K, Kaneda H, Kudo K, Fujita Y, Tamura D, Aomatsu K, Tamura T, Yamada Y et al (2009) mTOR signal and hypoxia-inducible factor-1 alpha regulate CD133 expression in cancer cells. Cancer Res 69:7160–7164

    CAS  PubMed  Google Scholar 

  101. Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, Engh J, Iwama T, Kunisada T, Kassam AB et al (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28:3949–3959

    CAS  PubMed  Google Scholar 

  102. Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447

    CAS  PubMed  Google Scholar 

  103. Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Marignol L, Coffey M, Lawler M, Hollywood D (2008) Hypoxia in prostate cancer: a powerful shield against tumour destruction? Cancer Treat Rev 34:313–327

    CAS  PubMed  Google Scholar 

  105. Flamant L, Notte A, Ninane N, Raes M, Michiels C (2010) Anti-apoptotic role of HIF-1 and AP-1 in paclitaxel exposed breast cancer cells under hypoxia. Mol Cancer 9:191

    PubMed Central  PubMed  Google Scholar 

  106. Chen J, Kobayashi M, Darmanin S, Qiao Y, Gully C, Zhao R, Yeung SC, Lee MH (2009) Pim-1 plays a pivotal role in hypoxia-induced chemoresistance. Oncogene 28:2581–2592

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Bennewith KL, Dedhar S (2011) Targeting hypoxic tumour cells to overcome metastasis. BMC Cancer 11:504

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Chapman JD, Engelhardt EL, Stobbe CC, Schneider RF, Hanks GE (1998) Measuring hypoxia and predicting tumor radioresistance with nuclear medicine assays. Radiother Oncol 46:229–237

    CAS  PubMed  Google Scholar 

  109. Bristow RG, Hill RP (2008) Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8:180–192

    CAS  PubMed  Google Scholar 

  110. Hennessey D, Martin LM, Atzberger A, Lynch TH, Hollywood D, Marignol L (2011) Exposure to hypoxia following irradiation increases radioresistance in prostate cancer cells. Urol Oncol, In press (available online)

    Google Scholar 

  111. Rodriguez-Jimenez FJ, Moreno-Manzano V (2012) Modulation of hypoxia-inducible factors (HIF) from an integrative pharmacological perspective. Cell Mol Life Sci 87:367–379

    Google Scholar 

  112. Muthana M, Giannoudis A, Scott SD, Fang HY, Coffelt SB, Morrow FJ, Murdoch C, Burton J, Cross N, Burke B et al (2011) Use of macrophages to target therapeutic adenovirus to human prostate tumors. Cancer Res 71:1805–1815

    CAS  PubMed  Google Scholar 

  113. Massard C, Fizazi K (2011) Targeting continued androgen receptor signaling in prostate cancer. Clin Cancer Res 17:3876–3883

    CAS  PubMed  Google Scholar 

  114. Cannata DH, Kirschenbaum A, Levine AC (2012) Androgen deprivation therapy as primary treatment for prostate cancer. J Clin Endocrinol Metab 97:360–365

    Google Scholar 

  115. Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1:34–45

    CAS  PubMed  Google Scholar 

  116. Harris WP, Mostaghel EA, Nelson PS, Montgomery B (2009) Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol 6:76–85

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG, Sawyers CL (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10:33–39

    PubMed  Google Scholar 

  118. Taplin ME (2007) Drug insight: role of the androgen receptor in the development and progression of prostate cancer. Nat Clin Pract Oncol 4:236–244

    CAS  PubMed  Google Scholar 

  119. Aggarwal R, Ryan CJ (2011) Castration-resistant prostate cancer: targeted therapies and individualized treatment. Oncologist 16:264–275

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Zhu W, Zhu DS, Madan RA, Gulley JL, Figg WD, Dahut WL (2010) Treatment of castration-resistant prostate cancer: updates on therapeutics targeting the androgen receptor signaling pathway. Am J Ther 17:176–181

    PubMed  Google Scholar 

  121. Gross ME, Jo S, Agus DB (2004) Update on HER-kinase-directed therapy in prostate cancer. Clin Adv Hematol Oncol 2(53–56):64

    Google Scholar 

  122. Salzberg M, Rochlitz C, Morant R, Thalmann G, Pedrazzini A, Roggero E, Schonenberger A, Knuth A, Borner M (2007) An open-label, noncomparative phase II trial to evaluate the efficacy and safety of docetaxel in combination with gefitinib in patients with hormone-refractory metastatic prostate cancer. Onkologie 30:355–360

    CAS  PubMed  Google Scholar 

  123. Gross M, Higano C, Pantuck A, Castellanos O, Green E, Nguyen K, Agus DB (2007) A phase II trial of docetaxel and erlotinib as first-line therapy for elderly patients with androgen-independent prostate cancer. BMC Cancer 7:142

    PubMed Central  PubMed  Google Scholar 

  124. de Bono JS, Bellmunt J, Attard G, Droz JP, Miller K, Flechon A, Sternberg C, Parker C, Zugmaier G, Hersberger-Gimenez V et al (2007) Open-label phase II study evaluating the efficacy and safety of two doses of pertuzumab in castrate chemotherapy-naive patients with hormone-refractory prostate cancer. J Clin Oncol 25:257–262

    PubMed  Google Scholar 

  125. Morris MJ, Reuter VE, Kelly WK, Slovin SF, Kenneson K, Verbel D, Osman I, Scher HI (2002) HER-2 profiling and targeting in prostate carcinoma. Cancer 94:980–986

    CAS  PubMed  Google Scholar 

  126. Lara PN Jr, Chee KG, Longmate J, Ruel C, Meyers FJ, Gray CR, Edwards RG, Gumerlock PH, Twardowski P, Doroshow JH et al (2004) Trastuzumab plus docetaxel in HER-2/neu-positive prostate carcinoma: final results from the California Cancer Consortium Screening and Phase II Trial. Cancer 100:2125–2131

    CAS  PubMed  Google Scholar 

  127. Jathal MK, Chen L, Mudryj M, Ghosh PM (2011) Targeting ErbB3: the New RTK(id) on the prostate cancer block. Immunol Endocr Metab Agents Med Chem 11:131–149

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Choi CH (2005) ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int 5:30

    PubMed Central  PubMed  Google Scholar 

  129. Fletcher JI, Haber M, Henderson MJ, Norris MD (2010) ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 10:147–156

    CAS  PubMed  Google Scholar 

  130. Pascal LE, Oudes AJ, Petersen TW, Goo YA, Walashek LS, True LD, Liu AY (2007) Molecular and cellular characterization of ABCG2 in the prostate. BMC Urol 7:6

    PubMed Central  PubMed  Google Scholar 

  131. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95:15665–15670

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Aronica E, Gorter JA, Redeker S, van Vliet EA, Ramkema M, Scheffer GL, Scheper RJ, van der Valk P, Leenstra S, Baayen JC et al (2005) Localization of breast cancer resistance protein (BCRP) in microvessel endothelium of human control and epileptic brain. Epilepsia 46:849–857

    CAS  PubMed  Google Scholar 

  133. Kusuhara H, Sugiyama Y (2005) Active efflux across the blood-brain barrier: role of the solute carrier family. NeuroRx 2:73–85

    PubMed Central  PubMed  Google Scholar 

  134. Zhang W, Mojsilovic-Petrovic J, Andrade MF, Zhang H, Ball M, Stanimirovic DB (2003) The expression and functional characterization of ABCG2 in brain endothelial cells and vessels. FASEB J 17:2085–2087

    PubMed  Google Scholar 

  135. Schinkel AH, Jonker JW (2003) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 55:3–29

    CAS  PubMed  Google Scholar 

  136. Smalley MJ, Clarke RB (2005) The mammary gland "side population": a putative stem/progenitor cell marker? J Mammary Gland Biol Neoplasia 10:37–47

    PubMed  Google Scholar 

  137. Murase M, Kano M, Tsukahara T, Takahashi A, Torigoe T, Kawaguchi S, Kimura S, Wada T, Uchihashi Y, Kondo T et al (2009) Side population cells have the characteristics of cancer stem-like cells/cancer-initiating cells in bone sarcomas. Br J Cancer 101:1425–1432

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Hosonuma S, Kobayashi Y, Kojo S, Wada H, Seino K, Kiguchi K, Ishizuka B (2011) Clinical significance of side population in ovarian cancer cells. Hum Cell 24:9–12

    PubMed Central  PubMed  Google Scholar 

  139. Newton TC, Wolcott K, Roberts SS (2010) Comparison of the side populations in pretreatment and postrelapse neuroblastoma cell lines. Transl Oncol 3:246–251

    PubMed Central  PubMed  Google Scholar 

  140. Qi S, Zheng J, Zhu H, Yang L, Xiao X (2010) Identification of neuroblastoma stem cells by characterization of side population cells in the human neuroblastoma SK-N-SH cell line. J Pediatr Surg 45:2305–2311

    PubMed  Google Scholar 

  141. Kuppers R (2010) Side population cells in Hodgkin lymphoma. Leuk Lymphoma 51:741–742

    PubMed  Google Scholar 

  142. Mathew G, Timm EA Jr, Sotomayor P, Godoy A, Montecinos VP, Smith GJ, Huss WJ (2009) ABCG2-mediated DyeCycle violet efflux defined side population in benign and malignant prostate. Cell Cycle 8:1053–1061

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Huss WJ, Gray DR, Greenberg NM, Mohler JL, Smith GJ (2005) Breast cancer resistance protein-mediated efflux of androgen in putative benign and malignant prostate stem cells. Cancer Res 65:6640–6650

    CAS  PubMed  Google Scholar 

  144. Fedoruk MN, Gimenez-Bonafe P, Guns ES, Mayer LD, Nelson CC (2004) P-glycoprotein increases the efflux of the androgen dihydrotestosterone and reduces androgen responsive gene activity in prostate tumor cells. Prostate 59:77–90

    CAS  PubMed  Google Scholar 

  145. Janvilisri T, Venter H, Shahi S, Reuter G, Balakrishnan L, van Veen HW (2003) Sterol transport by the human breast cancer resistance protein (ABCG2) expressed in Lactococcus lactis. J Biol Chem 278:20645–20651

    CAS  PubMed  Google Scholar 

  146. Hamidovic A, Hahn K, Kolesar J (2010) Clinical significance of ABCB1 genotyping in oncology. J Oncol Pharm Pract 16:39–44

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Sissung TM, Baum CE, Deeken J, Price DK, Aragon-Ching J, Steinberg SM, Dahut W, Sparreboom A, Figg WD (2008) ABCB1 genetic variation influences the toxicity and clinical outcome of patients with androgen-independent prostate cancer treated with docetaxel. Clin Cancer Res 14:4543–4549

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Wu CP, Calcagno AM, Ambudkar SV (2008) Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies. Curr Mol Pharmacol 1:93–105

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Karnak D, Xu L (2010) Chemosensitization of prostate cancer by modulating Bcl-2 family proteins. Curr Drug Targets 11:699–707

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Kirkin V, Joos S, Zornig M (2004) The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta 1644:229–249

    CAS  PubMed  Google Scholar 

  151. Krajewska M, Krajewski S, Epstein JI, Shabaik A, Sauvageot J, Song K, Kitada S, Reed JC (1996) Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers. Am J Pathol 148:1567–1576

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Bubendorf L, Sauter G, Moch H, Jordan P, Blochlinger A, Gasser TC, Mihatsch MJ (1996) Prognostic significance of Bcl-2 in clinically localized prostate cancer. Am J Pathol 148:1557–1565

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Catz SD, Johnson JL (2003) BCL-2 in prostate cancer: a minireview. Apoptosis 8:29–37

    CAS  PubMed  Google Scholar 

  154. Yamaguchi H, Wang HG (2001) The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 20:7779–7786

    CAS  PubMed  Google Scholar 

  155. Rege YD, Rangnekar VM (2004) Molecular therapy intervention prospects in prostate cancer. Curr Pharm Des 10:523–530

    CAS  PubMed  Google Scholar 

  156. Gleave M, Nelson C, Chi K (2003) Antisense targets to enhance hormone and cytotoxic therapies in advanced prostate cancer. Curr Drug Targets 4:209–221

    CAS  PubMed  Google Scholar 

  157. Gutierrez-Puente Y, Zapata-Benavides P, Tari AM, Lopez-Berestein G (2002) Bcl-2-related antisense therapy. Semin Oncol 29:71–76

    CAS  PubMed  Google Scholar 

  158. Lebedeva I, Rando R, Ojwang J, Cossum P, Stein CA (2000) Bcl-xL in prostate cancer cells: effects of overexpression and down-regulation on chemosensitivity. Cancer Res 60:6052–6060

    CAS  PubMed  Google Scholar 

  159. Miyake H, Hara I, Kamidono S, Gleave ME (2001) Novel therapeutic strategy for advanced prostate cancer using antisense oligodeoxynucleotides targeting anti-apoptotic genes upregulated after androgen withdrawal to delay androgen-independent progression and enhance chemosensitivity. Int J Urol 8:337–349

    CAS  PubMed  Google Scholar 

  160. Miyake H, Monia BP, Gleave ME (2000) Inhibition of progression to androgen-independence by combined adjuvant treatment with antisense BCL-XL and antisense Bcl-2 oligonucleotides plus taxol after castration in the Shionogi tumor model. Int J Cancer 86:855–862

    CAS  PubMed  Google Scholar 

  161. Goda N, Ryan HE, Khadivi B, McNulty W, Rickert RC, Johnson RS (2003) Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia. Mol Cell Biol 23:359–369

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Seruga B, Ocana A, Tannock IF (2011) Drug resistance in metastatic castration-resistant prostate cancer. Nat Rev Clin Oncol 8:12–23

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Yorkshire Cancer Research for the provision of programme and project support to the Cancer Research Unit, Mark Meuth (Univ of Sheffield) for discussion and input on DNA repair mechanisms, and the White Rose Studentship Network for support of S.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman J. Maitland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Klein, S., Frame, F.M., Maitland, N.J. (2013). Therapy Resistance in Prostate Cancer: A Stem Cell Perspective. In: Turksen, K. (eds) Stem Cells: Current Challenges and New Directions. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8066-2_13

Download citation

Publish with us

Policies and ethics