Skip to main content

Neural Stem Cells as Therapeutic Delivery Vehicles for Malignant Brain Tumors

  • Chapter
  • First Online:
Stem Cells: Current Challenges and New Directions

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1716 Accesses

Abstract

Malignant brain tumors are nearly untreatable due to their highly infiltrative nature and resistance to existing therapies. The main reason for recurrent tumor growth is believed to be the presence of tumor cells that migrate great distances into the brain tissue. In addition, poor delivery of therapeutics to the tumors due to blood–brain barrier limits the clinical success of currently available systemically delivered antitumor therapies. Recently, a different mode of therapeutic delivery, whereby therapeutic biomolecules are expressed by tumor-tropic neural stem cells (NSCs), has gained considerable attention. Exploiting the intrinsic tumor-homing ability of NSCs, the past decade has witnessed significant advances in the discovery and development of NSC-based therapies for malignant brain tumors. Prodrug converting enzymes, immunomodulatory cytokines, pro-apoptotic (tumouricidal) agents, growth-inhibiting factors, anti-angiogenic agents, and viral particles have been among the most commonly studied antitherapeutic molecules produced by NSCs. While the mechanisms of tumor-directed NSC migration and fate of NSCs after engrafting are still not truly understood, the results from current preclinical tumor models have demonstrated promising utility for NSCs as “armed vehicles” in treatment of aggressive brain tumors. Indeed, the first clinical trial with NSC-delivered antitumor agents is now in progress for recurrent gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GBM:

Glioblastoma multiforme

TMZ:

Temozolomide

BBB:

Blood–brain barrier

NSC:

Neural stem cell

CNS:

Central nervous system

ES:

Embryonic stem

SVZ:

Subventricular zone

Fluc:

Firefly luciferase

Rluc:

Renilla luciferase

MRI:

Magnetic resonance imaging

BLI:

Bioluminescence imaging

FE-Pro:

Ferumoxide protamine sulfate complex

SF/HGF:

Scatter factor/hepatocyte growth factor

SDF-1:

Stromal-derived factor

CXCR4:

CXC chemokine receptor 4

VEGF:

Vascular endothelial growth factor

PI3K:

Phosphoinositide 3 kinase

TMEM18:

Transmembrane protein 18

ECM:

Extracellular matrix

PCE:

Prodrug converting enzyme

HSV-TK:

Herpes simplex virus-thymidine kinase

CD:

Cytosine deaminase

CE:

Carboxylesterase

GCV:

Ganciclovir

5-FC:

5-Fluorocytosine

5-FU:

5-Fluorouracil

CPT-11:

Camptothecin-11

CPA:

Cyclophosphamide

CYP2B6:

CPA-activating enzyme cytochrome p450 2B6

TSP:

Thrombospondin

OV:

Oncolytic virus

CRAd:

Conditionally replicating adenovirus

MMP:

Matrix metalloproteinase

EGFR:

Epidermal growth factor receptor

ENb:

EGFR targeting nanobody

IL:

Interleukin

IFN:

Interferon

BM-NSC:

Bone marrow-derived NSC

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

GMP:

Good manufacturing practice

iPSc:

Induced pluripotent stem cell

References

  1. Huse JT, Holland EC (2010) Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10(5):319–331

    CAS  PubMed  Google Scholar 

  2. Berens ME, Giese A (1999) “…those left behind.” Biology and oncology of invasive glioma cells. Neoplasia 1(3):208–219

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    CAS  PubMed  Google Scholar 

  4. Bagci T, Wu JK, Pfannl R, Ilag LL, Jay DG (2009) Autocrine semaphorin 3A signaling promotes glioblastoma dispersal. Oncogene 28(40):3537–3550

    CAS  PubMed  Google Scholar 

  5. Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8(8):610–622

    CAS  PubMed  Google Scholar 

  6. Zhou J, Atsina KB, Himes BT, Strohbehn GW, Saltzman WM (2012) Novel delivery strategies for glioblastoma. Cancer J 18(1):89–99

    PubMed  Google Scholar 

  7. Conti L, Cattaneo E (2010) Neural stem cell systems: physiological players or in vitro entities? Nat Rev Neurosci 11(3):176–187

    CAS  PubMed  Google Scholar 

  8. Conti L, Reitano E, Cattaneo E (2006) Neural stem cell systems: diversities and properties after transplantation in animal models of diseases. Brain Pathol 16(2):143–154

    CAS  PubMed  Google Scholar 

  9. Rossi F, Cattaneo E (2002) Opinion: neural stem cell therapy for neurological diseases: dreams and reality. Nat Rev Neurosci 3(5):401–409

    CAS  PubMed  Google Scholar 

  10. Tsuji O, Miura K, Fujiyoshi K, Momoshima S, Nakamura M, Okano H (2011) Cell therapy for spinal cord injury by neural stem/progenitor cells derived from iPS/ES cells. Neurotherapeutics 8(4):668–676

    PubMed Central  PubMed  Google Scholar 

  11. Aboody K, Capela A, Niazi N, Stern JH, Temple S (2011) Translating stem cell studies to the clinic for CNS repair: current state of the art and the need for a Rosetta stone. Neuron 70(4):597–613

    CAS  PubMed  Google Scholar 

  12. Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59(1):89–102

    CAS  PubMed  Google Scholar 

  13. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Muller FJ, Snyder EY, Loring JF (2006) Gene therapy: can neural stem cells deliver? Nat Rev Neurosci 7(1):75–84

    PubMed  Google Scholar 

  16. Ahmed AU, Alexiades NG, Lesniak MS (2010) The use of neural stem cells in cancer gene therapy: predicting the path to the clinic. Curr Opin Mol Ther 12(5):546–552

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Kim SU (2011) Neural stem cell-based gene therapy for brain tumors. Stem Cell Rev 7(1):130–140

    CAS  PubMed  Google Scholar 

  18. Aboody KS, Najbauer J, Danks MK (2008) Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther 15(10):739–752

    CAS  PubMed  Google Scholar 

  19. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, Breakefield XO et al (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 97(23):12846–12851

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Kim SU (2007) Genetically engineered human neural stem cells for brain repair in neurological diseases. Brain Dev 29(4):193–201

    CAS  PubMed  Google Scholar 

  21. Kim JH, Lee JE, Kim SU, Cho KG (2010) Stereological analysis on migration of human neural stem cells in the brain of rats bearing glioma. Neurosurgery 66(2):333–342, discussion 342

    PubMed  Google Scholar 

  22. Lin D, Najbauer J, Salvaterra PM, Mamelak AN, Barish ME, Garcia E, Metz MZ, Kendall SE, Bowers M, Kateb B, Kim SU et al (2007) Novel method for visualizing and modeling the spatial distribution of neural stem cells within intracranial glioma. Neuroimage 37(Suppl 1): S18–S26

    PubMed  Google Scholar 

  23. Jeon JY, An JH, Kim SU, Park HG, Lee MA (2008) Migration of human neural stem cells toward an intracranial glioma. Exp Mol Med 40(1):84–91

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Tang Y, Shah K, Messerli SM, Snyder E, Breakefield X, Weissleder R (2003) In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther 14(13):1247–1254

    CAS  PubMed  Google Scholar 

  25. Shah K, Bureau E, Kim DE, Yang K, Tang Y, Weissleder R, Breakefield XO (2005) Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann Neurol 57(1):34–41

    CAS  PubMed  Google Scholar 

  26. Shah K, Hingtgen S, Kasmieh R, Figueiredo JL, Garcia-Garcia E, Martinez-Serrano A, Breakefield X, Weissleder R (2008) Bimodal viral vectors and in vivo imaging reveal the fate of human neural stem cells in experimental glioma model. J Neurosci 28(17):4406–4413

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Shah K (2009) Imaging neural stem cell fate in mouse model of glioma. Curr Protoc Stem Cell Biol Chapter 5: unit 5A 1

    Google Scholar 

  28. Shah K (2011) Imaging fate of stem cells at a cellular resolution in the brains of mice. Methods Mol Biol 680:91–101

    PubMed  Google Scholar 

  29. Ashwal S, Obenaus A, Snyder EY (2009) Neuroimaging as a basis for rational stem cell therapy. Pediatr Neurol 40(3):227–236

    PubMed  Google Scholar 

  30. Thu MS, Najbauer J, Kendall SE, Harutyunyan I, Sangalang N, Gutova M, Metz MZ, Garcia E, Frank RT, Kim SU, Moats RA et al (2009) Iron labeling and pre-clinical MRI visualization of therapeutic human neural stem cells in a murine glioma model. PLoS One 4(9):e7218

    PubMed Central  PubMed  Google Scholar 

  31. Heese O, Disko A, Zirkel D, Westphal M, Lamszus K (2005) Neural stem cell migration toward gliomas in vitro. Neuro Oncol 7(4):476–484

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY et al (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 101(52):18117–18122

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Ehtesham M, Yuan X, Kabos P, Chung NH, Liu G, Akasaki Y, Black KL, Yu JS (2004) Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4. Neoplasia 6(3):287–293

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Harris AL (2002) Hypoxia – a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47

    CAS  PubMed  Google Scholar 

  35. Schmidt NO, Przylecki W, Yang W, Ziu M, Teng Y, Kim SU, Black PM, Aboody KS, Carroll RS (2005) Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia 7(6):623–629

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Zhao D, Najbauer J, Garcia E, Metz MZ, Gutova M, Glackin CA, Kim SU, Aboody KS (2008) Neural stem cell tropism to glioma: critical role of tumor hypoxia. Mol Cancer Res 6(12):1819–1829

    CAS  PubMed  Google Scholar 

  37. Kendall SE, Najbauer J, Johnston HF, Metz MZ, Li S, Bowers M, Garcia E, Kim SU, Barish ME, Aboody KS, Glackin CA (2008) Neural stem cell targeting of glioma is dependent on phosphoinositide 3-kinase signaling. Stem Cells 26(6):1575–1586

    CAS  PubMed  Google Scholar 

  38. Jurvansuu J, Zhao Y, Leung DS, Boulaire J, Yu YH, Ahmed S, Wang S (2008) Transmembrane protein 18 enhances the tropism of neural stem cells for glioma cells. Cancer Res 68(12):4614–4622

    CAS  PubMed  Google Scholar 

  39. Ziu M, Schmidt NO, Cargioli TG, Aboody KS, Black PM, Carroll RS (2006) Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells. J Neurooncol 79(2):125–133

    CAS  PubMed  Google Scholar 

  40. An JH, Lee SY, Jeon JY, Cho KG, Kim SU, Lee MA (2009) Identification of gliotropic factors that induce human stem cell migration to malignant tumor. J Proteome Res 8(6): 2873–2881

    CAS  PubMed  Google Scholar 

  41. Yip S, Shah K (2008) Stem-cell based therapies for brain tumors. Curr Opin Mol Ther 10(4):334–342

    PubMed  Google Scholar 

  42. Yip S, Aboody KS, Burns M, Imitola J, Boockvar JA, Allport J, Park KI, Teng YD, Lachyankar M, McIntosh T, O’Rourke DM et al (2003) Neural stem cell biology may be well suited for improving brain tumor therapies. Cancer J 9(3):189–204

    CAS  PubMed  Google Scholar 

  43. Binello E, Germano IM (2012) Stem cells as therapeutic vehicles for the treatment of high-grade gliomas. Neuro Oncol 14(3):256–265

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Brown AB, Yang W, Schmidt NO, Carroll R, Leishear KK, Rainov NG, Black PM, Breakefield XO, Aboody KS (2003) Intravascular delivery of neural stem cell lines to target intracranial and extracranial tumors of neural and non-neural origin. Hum Gene Ther 14(18):1777–1785

    CAS  PubMed  Google Scholar 

  45. Kim SK, Kim SU, Park IH, Bang JH, Aboody KS, Wang KC, Cho BK, Kim M, Menon LG, Black PM, Carroll RS (2006) Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res 12(18):5550–5556

    CAS  PubMed  Google Scholar 

  46. Shimato S, Natsume A, Takeuchi H, Wakabayashi T, Fujii M, Ito M, Ito S, Park IH, Bang JH, Kim SU, Yoshida J (2007) Human neural stem cells target and deliver therapeutic gene to experimental leptomeningeal medulloblastoma. Gene Ther 14(15):1132–1142

    CAS  PubMed  Google Scholar 

  47. Lee DH, Ahn Y, Kim SU, Wang KC, Cho BK, Phi JH, Park IH, Black PM, Carroll RS, Lee J, Kim SK (2009) Targeting rat brainstem glioma using human neural stem cells and human mesenchymal stem cells. Clin Cancer Res 15(15):4925–4934

    CAS  PubMed  Google Scholar 

  48. Gutova M, Najbauer J, Chen MY, Potter PM, Kim SU, Aboody KS (2010) Therapeutic targeting of melanoma cells using neural stem cells expressing carboxylesterase, a CPT-11 activating enzyme. Curr Stem Cell Res Ther 5(3):273–276

    CAS  PubMed  Google Scholar 

  49. Aboody KS, Najbauer J, Schmidt NO, Yang W, Wu JK, Zhuge Y, Przylecki W, Carroll R, Black PM, Perides G (2006) Targeting of melanoma brain metastases using engineered neural stem/progenitor cells. Neuro Oncol 8(2):119–126

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Joo KM, Park IH, Shin JY, Jin J, Kang BG, Kim MH, Lee SJ, Jo MY, Kim SU, Nam DH (2009) Human neural stem cells can target and deliver therapeutic genes to breast cancer brain metastases. Mol Ther 17(3):570–575

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Lee SJ, Kim Y, Jo MY, Kim HS, Jin Y, Kim SU, Jin J, Joo KM, Nam DH (2011) Combined treatment of tumor-tropic human neural stem cells containing the CD suicide gene effectively targets brain tumors provoking a mild immune response. Oncol Rep 25(1):63–68

    PubMed  Google Scholar 

  52. Danks MK, Yoon KJ, Bush RA, Remack JS, Wierdl M, Tsurkan L, Kim SU, Garcia E, Metz MZ, Najbauer J, Potter PM et al (2007) Tumor-targeted enzyme/prodrug therapy mediates long-term disease-free survival of mice bearing disseminated neuroblastoma. Cancer Res 67(1):22–25

    CAS  PubMed  Google Scholar 

  53. Lim SH, Choi SA, Lee JY, Wang KC, Phi JH, Lee DH, Song SH, Song JH, Jin X, Kim H, Lee HJ et al (2011) Therapeutic targeting of subdural medulloblastomas using human neural stem cells expressing carboxylesterase. Cancer Gene Ther 18(11):817–824

    CAS  PubMed  Google Scholar 

  54. Gutova M, Shackleford GM, Khankaldyyan V, Herrmann KA, Shi XH, Mittelholtz K, Abramyants Y, Blanchard MS, Kim SU, Annala AJ, Najbauer J et al (2012) Neural stem cell-mediated CE/CPT-11 enzyme/prodrug therapy in transgenic mouse model of intracerebellar medulloblastoma. Gene Ther 20(2):143–150

    PubMed  Google Scholar 

  55. Seol HJ, Jin J, Seong DH, Joo KM, Kang W, Yang H, Kim J, Shin CS, Kim Y, Kim KH, Kong DS et al (2011) Genetically engineered human neural stem cells with rabbit carboxyl esterase can target brain metastasis from breast cancer. Cancer Lett 311(2):152–159

    CAS  PubMed  Google Scholar 

  56. Zhao D, Najbauer J, Annala AJ, Garcia E, Metz MZ, Gutova M, Polewski MD, Gilchrist M, Glackin CA, Kim SU, Aboody KS (2012) Human neural stem cell tropism to metastatic breast cancer. Stem Cells 30(2):314–325

    CAS  PubMed  Google Scholar 

  57. Li S, Tokuyama T, Yamamoto J, Koide M, Yokota N, Namba H (2005) Bystander effect-mediated gene therapy of gliomas using genetically engineered neural stem cells. Cancer Gene Ther 12(7):600–607

    CAS  PubMed  Google Scholar 

  58. Li S, Tokuyama T, Yamamoto J, Koide M, Yokota N, Namba H (2005) Potent bystander effect in suicide gene therapy using neural stem cells transduced with herpes simplex virus thymidine kinase gene. Oncology 69(6):503–508

    PubMed  Google Scholar 

  59. Li S, Gao Y, Tokuyama T, Yamamoto J, Yokota N, Yamamoto S, Terakawa S, Kitagawa M, Namba H (2007) Genetically engineered neural stem cells migrate and suppress glioma cell growth at distant intracranial sites. Cancer Lett 251(2):220–227

    CAS  PubMed  Google Scholar 

  60. Uhl M, Weiler M, Wick W, Jacobs AH, Weller M, Herrlinger U (2005) Migratory neural stem cells for improved thymidine kinase-based gene therapy of malignant gliomas. Biochem Biophys Res Commun 328(1):125–129

    CAS  PubMed  Google Scholar 

  61. Zhao Y, Wang S (2010) Human NT2 neural precursor-derived tumor-infiltrating cells as delivery vehicles for treatment of glioblastoma. Hum Gene Ther 21(6):683–694

    CAS  PubMed  Google Scholar 

  62. Mercapide J, Rappa G, Anzanello F, King J, Fodstad O, Lorico A (2010) Primary gene-engineered neural stem/progenitor cells demonstrate tumor-selective migration and antitumor effects in glioma. Int J Cancer 126(5):1206–1215

    CAS  PubMed  Google Scholar 

  63. Wang C, Natsume A, Lee HJ, Motomura K, Nishimira Y, Ohno M, Ito M, Kinjo S, Momota H, Iwami K, Ohka F et al (2012) Neural stem cell-based dual suicide gene delivery for metastatic brain tumors. Cancer Gene Ther 19(11):796–801

    CAS  PubMed  Google Scholar 

  64. van Eekelen M, Sasportas LS, Kasmieh R, Yip S, Figueiredo JL, Louis DN, Weissleder R, Shah K (2010) Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors. Oncogene 29(22):3185–3195

    PubMed Central  PubMed  Google Scholar 

  65. Herrlinger U, Woiciechowski C, Sena-Esteves M, Aboody KS, Jacobs AH, Rainov NG, Snyder EY, Breakefield XO (2000) Neural precursor cells for delivery of replication-conditional HSV-1 vectors to intracerebral gliomas. Mol Ther 1(4):347–357

    CAS  PubMed  Google Scholar 

  66. Tyler MA, Ulasov IV, Sonabend AM, Nandi S, Han Y, Marler S, Roth J, Lesniak MS (2009) Neural stem cells target intracranial glioma to deliver an oncolytic adenovirus in vivo. Gene Ther 16(2):262–278

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Ahmed AU, Thaci B, Alexiades NG, Han Y, Qian S, Liu F, Balyasnikova IV, Ulasov IY, Aboody KS, Lesniak MS (2011) Neural stem cell-based cell carriers enhance therapeutic efficacy of an oncolytic adenovirus in an orthotopic mouse model of human glioblastoma. Mol Ther 19(9):1714–1726

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Ahmed AU, Tyler MA, Thaci B, Alexiades NG, Han Y, Ulasov IV, Lesniak MS (2010) A comparative study of neural and mesenchymal stem cell-based carriers for oncolytic adenovirus in a model of malignant glioma. Mol Pharm 8(5):1559–1572

    Google Scholar 

  69. Thaci B, Ahmed AU, Ulasov IV, Tobias AL, Han Y, Aboody KS, Lesniak MS (2012) Pharmacokinetic study of neural stem cell-based cell carrier for oncolytic virotherapy: targeted delivery of the therapeutic payload in an orthotopic brain tumor model. Cancer Gene Ther 19(6):431–442

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Kim SK, Cargioli TG, Machluf M, Yang W, Sun Y, Al-Hashem R, Kim SU, Black PM, Carroll RS (2005) PEX-producing human neural stem cells inhibit tumor growth in a mouse glioma model. Clin Cancer Res 11(16):5965–5970

    CAS  PubMed  Google Scholar 

  71. Firer MA, Gellerman G (2012) Targeted drug delivery for cancer therapy: the other side of antibodies. J Hematol Oncol 5(1):70

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Frank RT, Edmiston M, Kendall SE, Najbauer J, Cheung CW, Kassa T, Metz MZ, Kim SU, Glackin CA, Wu AM, Yazaki PJ et al (2009) Neural stem cells as a novel platform for tumor-specific delivery of therapeutic antibodies. PLoS One 4(12):e8314

    PubMed Central  PubMed  Google Scholar 

  73. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23(9):1126–1136

    CAS  PubMed  Google Scholar 

  74. Muyldermans S (2001) Single domain camel antibodies: current status. J Biotechnol 74(4):277–302

    CAS  PubMed  Google Scholar 

  75. Van de Water JA, Bagci-Onder T, Agarwal AS, Wakimoto H, Roovers RC, Zhu Y, Kasmieh R, Bhere D, Van Bergen En Henegouwen PM, Shah K (2012) Therapeutic stem cells expressing variants of EGFR-specific nanobodies have antitumor effects. Proc Natl Acad Sci USA 109(41):16642–16647

    PubMed Central  PubMed  Google Scholar 

  76. Benedetti S, Pirola B, Pollo B, Magrassi L, Bruzzone MG, Rigamonti D, Galli R, Selleri S, Di Meco F, De Fraja C, Vescovi A et al (2000) Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 6(4):447–450

    CAS  PubMed  Google Scholar 

  77. Ehtesham M, Kabos P, Kabosova A, Neuman T, Black KL, Yu JS (2002) The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res 62(20):5657–5663

    CAS  PubMed  Google Scholar 

  78. Yuan X, Hu J, Belladonna ML, Black KL, Yu JS (2006) Interleukin-23-expressing bone marrow-derived neural stem-like cells exhibit antitumor activity against intracranial glioma. Cancer Res 66(5):2630–2638

    CAS  PubMed  Google Scholar 

  79. Hingtgen S, Kasmieh R, Elbayly E, Nesterenko I, Figueiredo JL, Dash R, Sarkar D, Hall D, Kozakov D, Vajda S, Fisher PB et al (2012) A first-generation multi-functional cytokine for simultaneous optical tracking and tumor therapy. PLoS One 7(7):e40234

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Wang BX, Rahbar R, Fish EN (2011) Interferon: current status and future prospects in cancer therapy. J Interferon Cytokine Res 31(7):545–552

    PubMed  Google Scholar 

  81. Dickson PV, Hamner JB, Burger RA, Garcia E, Ouma AA, Kim SU, Ng CY, Gray JT, Aboody KS, Danks MK, Davidoff AM (2007) Intravascular administration of tumor tropic neural progenitor cells permits targeted delivery of interferon-beta and restricts tumor growth in a murine model of disseminated neuroblastoma. J Pediatr Surg 42(1):48–53

    PubMed  Google Scholar 

  82. Sims TL Jr, Hamner JB, Bush RA, Williams RF, Zhou J, Kim SU, Aboody KS, Danks MK, Davidoff AM (2008) Neural progenitor cell-mediated delivery of interferon beta improves neuroblastoma response to cyclophosphamide. Ann Surg Oncol 15(11):3259–3267

    PubMed Central  PubMed  Google Scholar 

  83. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271(22):12687–12690

    CAS  PubMed  Google Scholar 

  84. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3(6):673–682

    CAS  PubMed  Google Scholar 

  85. Ashkenazi A (2008) Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev 19(3–4):325–331

    CAS  PubMed  Google Scholar 

  86. Ashkenazi A, Holland P, Eckhardt SG (2008) Ligand-based targeting of apoptosis in cancer: the potential of recombinant human apoptosis ligand 2/Tumor necrosis factor-related apoptosis-inducing ligand (rhApo2L/TRAIL). J Clin Oncol 26(21):3621–3630

    CAS  PubMed  Google Scholar 

  87. Dimberg LY, Anderson CK, Camidge R, Behbakht K, Thorburn A, Ford HL (2012) On the TRAIL to successful cancer therapy? Predicting and counteracting resistance against TRAIL-based therapeutics. Oncogene 32(11):1341–1350

    PubMed  Google Scholar 

  88. Gonzalvez F, Ashkenazi A (2010) New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene 29(34):4752–4765

    CAS  PubMed  Google Scholar 

  89. Johnstone RW, Frew AJ, Smyth MJ (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8(10):782–798

    CAS  PubMed  Google Scholar 

  90. Kelley SK, Harris LA, Xie D, Deforge L, Totpal K, Bussiere J, Fox JA (2001) Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety. J Pharmacol Exp Ther 299(1):31–38

    CAS  PubMed  Google Scholar 

  91. Wiezorek J, Holland P, Graves J (2010) Death receptor agonists as a targeted therapy for cancer. Clin Cancer Res 16(6):1701–1708

    CAS  PubMed  Google Scholar 

  92. Ashkenazi A (2008) Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov 7(12):1001–1012

    CAS  PubMed  Google Scholar 

  93. Ashkenazi A, Herbst RS (2008) To kill a tumor cell: the potential of proapoptotic receptor agonists. J Clin Invest 118(6):1979–1990

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Mahalingam D, Szegezdi E, Keane M, de Jong S, Samali A (2009) TRAIL receptor signalling and modulation: are we on the right TRAIL? Cancer Treat Rev 35(3):280–288

    CAS  PubMed  Google Scholar 

  95. Pennarun B, Meijer A, de Vries EG, Kleibeuker JH, Kruyt F, de Jong S (2010) Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim Biophys Acta 1805(2):123–140

    CAS  PubMed  Google Scholar 

  96. Ehtesham M, Kabos P, Gutierrez MA, Chung NH, Griffith TS, Black KL, Yu JS (2002) Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 62(24):7170–7174

    CAS  PubMed  Google Scholar 

  97. Shah K, Tang Y, Breakefield X, Weissleder R (2003) Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo. Oncogene 22(44):6865–6872

    CAS  PubMed  Google Scholar 

  98. Shah K, Tung CH, Breakefield XO, Weissleder R (2005) In vivo imaging of S-TRAIL-mediated tumor regression and apoptosis. Mol Ther 11(6):926–931

    CAS  PubMed  Google Scholar 

  99. Shah K, Tung CH, Yang K, Weissleder R, Breakefield XO (2004) Inducible release of TRAIL fusion proteins from a proapoptotic form for tumor therapy. Cancer Res 64(9):3236–3242

    CAS  PubMed  Google Scholar 

  100. Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67(19):8994–9000

    CAS  PubMed  Google Scholar 

  101. Kock N, Kasmieh R, Weissleder R, Shah K (2007) Tumor therapy mediated by lentiviral expression of shBcl-2 and S-TRAIL. Neoplasia 9(5):435–442

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Hingtgen S, Ren X, Terwilliger E, Classon M, Weissleder R, Shah K (2008) Targeting multiple pathways in gliomas with stem cell and viral delivered S-TRAIL and Temozolomide. Mol Cancer Ther 7(11):3575–3585

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Bagci-Onder T, Wakimoto H, Anderegg M, Cameron C, Shah K (2011) A dual PI3K/mTOR inhibitor, PI-103, cooperates with stem cell-delivered TRAIL in experimental glioma models. Cancer Res 71(1):154–163

    CAS  PubMed  Google Scholar 

  104. Bagci-Onder T, Agarwal A, Flusberg D, Wanningen S, Sorger P, Shah K (2012) Real-time imaging of the dynamics of death receptors and therapeutics that overcome TRAIL resistance in tumors. Oncogene. doi:10.1038/onc.2012.304

    PubMed  Google Scholar 

  105. Balyasnikova IV, Ferguson SD, Han Y, Liu F, Lesniak MS (2011) Therapeutic effect of neural stem cells expressing TRAIL and bortezomib in mice with glioma xenografts. Cancer Lett 310(2):148–159

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Hingtgen SD, Kasmieh R, Van de Water J, Weissleder R, Shah K (2010) A novel molecule integrating therapeutic and diagnostic activities reveals multiple aspects of stem cell-based therapy. Stem Cells 28(4):832–841

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Ito S, Natsume A, Shimato S, Ohno M, Kato T, Chansakul P, Wakabayashi T, Kim SU (2010) Human neural stem cells transduced with IFN-beta and cytosine deaminase genes intensify bystander effect in experimental glioma. Cancer Gene Ther 17(5):299–306

    CAS  PubMed  Google Scholar 

  108. Kauer TM, Figueiredo JL, Hingtgen S, Shah K (2012) Encapsulated therapeutic stem cells implanted in the tumor resection cavity induce cell death in gliomas. Nat Neurosci 15(2):197–204

    CAS  Google Scholar 

  109. Tsuji O, Miura K, Okada Y, Fujiyoshi K, Mukaino M, Nagoshi N, Kitamura K, Kumagai G, Nishino M, Tomisato S, Higashi H et al (2010) Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci USA 107(28):12704–12709

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Han SS, Williams LA, Eggan KC (2011) Constructing and deconstructing stem cell models of neurological disease. Neuron 70(4):626–644

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tugba Bagci-Onder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bagci-Onder, T. (2013). Neural Stem Cells as Therapeutic Delivery Vehicles for Malignant Brain Tumors. In: Turksen, K. (eds) Stem Cells: Current Challenges and New Directions. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8066-2_12

Download citation

Publish with us

Policies and ethics