Skip to main content

Distributed Optimization Techniques in Wireless Communication Networks

  • Chapter
  • First Online:
Resource Allocation and MIMO for 4G and Beyond

Abstract

This chapter addresses distributed parameter coordination methods for wireless communication systems. We present two distributed algorithms for the problem of precoder selection. The first and simplest method is the greedy solution in which each communication node in the network acts selfishly. The second method and the focus of this chapter is based on a message-passing algorithm, namely min-sum algorithm, in factor graphs. Three kinds of precoding codebook are considered: transmit antenna selection, fixed-beam selection, and LTE precoder selection. Evaluations on the potential of such an approach in a wireless communication network are provided and its performance and convergence properties are compared with those of a baseline selfish/greedy approach. Simulation results are presented and discussed, which show that the graph-based technique generally obtains gain in sum rate over the greedy approach at the cost of a larger message size. For instance, the percentage gain in sum rate over the greedy is about 33  % within 5 iterations in a 7-cell network considering single-layer LTE precoders. Besides, the graph-based method usually reaches the global optimum in a efficient manner. Methods of improving the rate of convergence of graph-based distributed coordination technique and reducing its associated message size are therefore important topics for wireless communication networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han, Z., Liu, K.: Resource Allocation for Wireless Networks: Basics, Techniques, and Applications. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  2. Paulraj, A., Nabar, R., Gore, D.: Introduction to Space-Time Wireless Communications. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  3. Rappaport, T.: Wireless Communications: Principles and Practice, 2nd edn. Prentice Hall PTR, Upper Saddle River, NJ (2001)

    Google Scholar 

  4. Andrews, J., Choi, W., Heath, R.: Overcoming interference in spatial multiplexing MIMO cellular networks. IEEE Wirel. Commun. 14(6), 95–104 (2007). doi:10.1109/MWC.2007.4407232

    Google Scholar 

  5. Han, Z., Niyato, D., Saad, W., Başar, T., Hjørungnes, A.: Game Theory in Wireless and Communication Networks: Theory, Models, and Applications. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  6. MacKenzie, A., DaSilva, L.: Game Theory for Wireless Engineers. Synthesis Lectures on Commnunications, Morgan and Claypool Publishers (2006)

    Google Scholar 

  7. Lasaulce, S., Debbah, M., Altman, E.: Methodologies for analyzing equilibria in wireless games. IEEE Signal Process. Mag. 26(5), 41–52 (2009). doi:10.1109/MSP.2009.933496

    Google Scholar 

  8. Guerreiro, I., Cavalcante, C.: A distributed approach for antenna subset selection in MIMO systems. In: 2010 7th International Symposium on Wireless Communication Systems (ISWCS 2010), pp. 199–203 (2010). doi:10.1109/ISWCS.2010.5624543

  9. Scutari, G., Palomar, D.P., Barbarossa, S.: Competitive design of multiuser MIMO systems based on game theory: a unified view. IEEE J. Sel. Areas Commun. 26(7), 1089–1103 (2008). doi:10.1109/JSAC.2008.080907

    Google Scholar 

  10. Scutari, G., Palomar, D.P., Barbarossa, S.: Optimal linear precoding strategies for wideband non-cooperative systems based on game theory–part II: algorithms. IEEE Trans. Signal Process. 56(3), 1250–1267 (2008). doi:10.1109/TSP.2007.907808

    Google Scholar 

  11. Scutari, G., Palomar, D. P., Barbarossa, S.: Optimal linear precoding strategies for wideband noncooperative systems based on game theory–Part I: Nash Equilibria. IEEE Trans. Signal Process. 56(3), 1230–1249 (2008). doi:10.1109/TSP.2007.907807

    Google Scholar 

  12. Kschischang, F., Frey, B., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001). doi:10.1109/18.910572

    Google Scholar 

  13. Başar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. Harcourt Brace and Company, Great Britain (1995)

    Google Scholar 

  14. Ng, B.L., Evans, J., Hanly, S., Aktas, D.: Transmit beamforming with cooperative base stations. In: 2005 International Symposium on Information Theory (ISIT 2005), pp. 1431–1435 (2005). doi:10.1109/ISIT.2005.1523579

  15. Ng, B.L., Evans, J., Hanly, S., Aktas, D.: Distributed downlink beamforming with cooperative base stations. IEEE Trans. Inf. Theory 54(12), 5491–5499 (2008). doi:10.1109/TIT.2008.2006426

    Google Scholar 

  16. Sohn, I., Lee, S.H., Andrews, J.: A graphical model approach to downlink cooperative MIMO systems. In: 2010 IEEE Global Telecommunications Conference (GLOBECOM 2010), pp. 1–5 (2010). doi:10.1109/GLOCOM.2010.5684347

  17. Sohn, I., Lee, S.H., Andrews, J.: Belief propagation for distributed downlink beamforming in cooperative MIMO cellular networks. IEEE Trans. Wireless Commun. 10(12), 4140–4149 (2011). doi:10.1109/TWC.2011.101210.101698

    Google Scholar 

  18. Heath R.W. Jr., Love, D.J.: Multimode antenna selection for spatial multiplexing systems with linear receivers. IEEE Trans. Signal Process. 53(8), 3042–3056 (2005). doi:10.1109/TSP.2005.851109

    Google Scholar 

  19. Aji, S., McEliece, R.: The generalized distributive law. IEEE Trans. Inf. Theory 46(2), 325–343 (2000). doi:10.1109/18.825794

    Google Scholar 

  20. Lee, J., Han, J.K., Zhang, J.: MIMO technologies in 3GPP LTE and LTE-advanced. EURASIP J Wireless Commun Networking 2009, 3:1–3:10 (2009). doi:10.1155/2009/302092. http://dx.doi.org/10.1155/2009/302092

  21. Bertsekas, D.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    Google Scholar 

  22. 3GPP: Evolved universal terrestrial radio access (E-UTRA); physical channels and modulation. Technical Report TR 36.211 V8.9.0 Release 8, Third Generation Partnership Project (2010)

    Google Scholar 

  23. Telatar, E.: Capacity of multi-antenna Gaussian channels. European Trans. Telecommun. 10, 585–595 (1999). http://citeseer.ist.psu.edu/346880.html

  24. Binelo, M., De Almeida, A.L.F., Medbo, J., Asplund, H., Cavalcanti, F.R.P.: Mimo channel characterization and capacity evaluation in an outdoor environment. In: Vehicular Technology Conference Fall (VTC 2010-Fall), 2010 IEEE 72nd, pp. 1–5 (Sept.). doi:10.1109/VETECF.2010.5594357

  25. Selen, Y., Asplund, H.: 3G LTE simulations using measured MIMO channels. In: 2008 IEEE Global Telecommunications Conference (IEEE GLOBECOM 2008), pp. 1–5 (2008). doi:10.1109/GLOCOM.2008.ECP.879

  26. Ozcelik, M., Czink, N., Bonek, E.: What makes a good MIMO channel model? In: 2005 IEEE 61st Vehicular Technology Conference 2005. VTC 2005-Spring. vol. 1, pp. 156–160 (2005). doi:10.1109/VETECS.2005.1543269

  27. Heath R.W. Jr., Sandhu, S., Paulraj, A.: Antenna selection for spatial multiplexing systems with linear receivers. IEEE Commun. Lett. 5(4), 142–144 (2001). doi:10.1109/4234.917094

    Google Scholar 

  28. Loeliger, H.A.: An introduction to factor graphs. IEEE Signal Process. Mag. 21(1), 28–41 (2004). doi:10.1109/MSP.2004.1267047

  29. Loeliger, H.A., Dauwels, J., Hu, J., Korl, S., Ping, L., Kschischang, F.: The factor graph approach to model-based signal processing. Proc. IEEE 95(6), 1295–1322 (2007). doi:10.1109/JPROC.2007.896497

    Google Scholar 

  30. Kschischang, F., Frey, B.: Iterative decoding of compound codes by probability propagation in graphical models. IEEE J. Sel. Areas Commun. 16(2), 219–230 (1998). doi:10.1109/49.661110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor M. Guerreiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guerreiro, I.M., Cavalcante, C.C., Hui, D. (2014). Distributed Optimization Techniques in Wireless Communication Networks. In: Cavalcanti, F. (eds) Resource Allocation and MIMO for 4G and Beyond. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8057-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8057-0_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8056-3

  • Online ISBN: 978-1-4614-8057-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics