Skip to main content

Apoptosis Deregulation in CLL

  • Chapter
  • First Online:
Advances in Chronic Lymphocytic Leukemia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 792))

Abstract

The description of apoptosis and the identification of the genes that regulate it have proved pivotal to our understanding of how cancer cells accumulate and ultimately cause morbidity and mortality. It has become increasingly clear that in CLL the balance between the pro- and anti-apoptotic members of the BCL2 family of apoptotic regulatory proteins is critical in the development and clinical progression of CLL. Furthermore, the apoptotic potential of the CLL cell determines chemotherapy sensitivity and ultimately progression-free and overall survival. The unravelling of the BCL2 story in CLL has led to the development of a whole new class of therapeutic agents—the BH3 mimetics—which are significantly more targeted than conventional chemo-immunotherapy and therefore promise potent clinical activity coupled with reduced toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.

    PubMed  CAS  Google Scholar 

  2. Wyllie AH, Kerr JR, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306.

    PubMed  CAS  Google Scholar 

  3. Yu J, Zhang L. Apoptosis in human cancer. Curr Opin Oncol. 2003;16:19–24.

    Google Scholar 

  4. Medema RH, Macurek L. Checkpoint control and cancer. Oncogene. 2012;31:2601–13.

    PubMed  CAS  Google Scholar 

  5. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998;391:43–50.

    PubMed  CAS  Google Scholar 

  6. Fuentes-Prior P, Salvesen GS. The protein structures that shape caspase-activity, specificity, activation and inhibition. Biochem J. 2004;384:201–32.

    PubMed  CAS  Google Scholar 

  7. Renatus M, Stennicke HR, Salvesen GS. Dimer formation drives the activation of the cell death protease caspase-9. Proc Natl Acad Sci U S A. 2001;98:14250–5.

    PubMed  CAS  Google Scholar 

  8. Khosravi-Far R, Esposti MD. Death receptor signals to mitochondria. Cancer Biol Ther. 2004;3:1051–7.

    PubMed  CAS  Google Scholar 

  9. Guicciardi ME, Gores GJ. Life and death by death receptors. FASEB J. 2009;23:1625–37.

    PubMed  CAS  Google Scholar 

  10. Walczak H, Haas TL. Biochemical analysis of the native TRAIL death-inducing signaling complex. Methods Mol Biol. 2008;414:221–39.

    PubMed  CAS  Google Scholar 

  11. Danial NN. BCL-2 family protein: critical checkpoints of apoptotic cells death. Clin Cancer Res. 2007;13:7254–63.

    PubMed  CAS  Google Scholar 

  12. Giam M, Huang DC, Bouillet P. BH3-only proteins and their roles in programmed cell death. Oncogene. 2008;27 Suppl 1:S128–36.

    PubMed  CAS  Google Scholar 

  13. Cheng EHYA, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, et al. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX and BAK mediated mitochondrial apoptosis. Mol Cell. 2001;8:705–11.

    PubMed  CAS  Google Scholar 

  14. Hinds MG, Day CL. Regulation of apoptosis: uncovering the binding determinants. Curr Opin Struct Biol. 2005;15:690–9.

    PubMed  CAS  Google Scholar 

  15. Dewson G, Kluck RM. Mechanisms by which Bak and Bax permeabilise mitochondria apoptosis. J Cell Sci. 2009;122:2801–8.

    PubMed  CAS  Google Scholar 

  16. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26:1324–37.

    PubMed  CAS  Google Scholar 

  17. Akao Y, Otsuki Y, Kataoka S, Ito Y, Tsujimoto Y. Multiple subcellular localizations of bcl-2: detection in nuclear outer membrane, endoplasmic reticulum membrane, and mitochondrial membranes. Cancer Res. 1994;54:2468–71.

    PubMed  CAS  Google Scholar 

  18. D’Amelio M, Tino E, Cecconi F. The apoptosome: emerging insights and new potential targets for drug design. Pharm Res. 2008;25:740–51.

    PubMed  Google Scholar 

  19. Kim H, Tu HC, Ren D, Takeuchi O, Jeffers R, Zambetti GP, et al. Stepwise activation of BAX and BAK by tBID, BIM and PUMA initiates mitochondrial apoptosis. Mol Cell. 2009;36:487–99.

    PubMed  CAS  Google Scholar 

  20. Bleicken S, Classen M, Padmavathi PV, Ishikawa T, Zeth K, Steinhoff HJ, et al. Molecular details of bax activation, oligomerization and membrane insertion. J Biol Chem. 2010;285:6636–47.

    PubMed  CAS  Google Scholar 

  21. Marsden VS, O’Connor L, O’Reilly LA, Silke J, Metcalf D, Ekert PG, et al. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature. 2002;419:634–7.

    PubMed  CAS  Google Scholar 

  22. de Graaf AO, de Witte T, Jansen JH. Inhibitors of apoptosis proteins: new therapeutic targets in haematological cancers? Leukemia. 2004;18:1751–9.

    PubMed  Google Scholar 

  23. Eckelman BP, Salvesen GS. The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases. J Biol Chem. 2006;281(281):3254–60.

    PubMed  CAS  Google Scholar 

  24. Mace PD, Shirley S, Day CL. Assembling the building blocks: structure and function of inhibitor of apoptosis proteins. Cell Death Differ. 2010;17:46–53.

    PubMed  CAS  Google Scholar 

  25. Gyrd-Hansen M, Meier P. IAP’s from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer. 2010;10:561–74.

    PubMed  CAS  Google Scholar 

  26. Bagnoli M, Canevari S, Mezzanzanica D. Cellular FLICE-inhibitory protein (c-FLIP) signalling: a key regulator of receptor mediated apoptosis in physiologic context and in cancer. Int J Biochem Cell Biol. 2010;42:210–3.

    PubMed  CAS  Google Scholar 

  27. Du C, Fang M, Li Y, Wang K. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102:33–42.

    PubMed  CAS  Google Scholar 

  28. Hedge R, Srinivasula SM, Zhang Z, Wassell R, Mukattash R, Cilenti L, et al. Identification of Omi/HtrA2 is a mitochondrial apoptotic serine protease that disrupts inhibitors of apoptosis-caspase interactions. J Biol Chem. 2002;277:432–8.

    Google Scholar 

  29. Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature. 2000;406:855–62.

    PubMed  CAS  Google Scholar 

  30. Yang QH, Church-Hajduk R, Ren J, Newton ML, Du C. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAP’s and facilitates caspase activity in apoptosis. Genes Dev. 2003;17:1487–96.

    PubMed  CAS  Google Scholar 

  31. Schimmer AD, Dalili S, Batey RA, Riedl J. Targeting XIAP for the treatment of malignancy. Cell Death Differ. 2006;13:179–88.

    PubMed  CAS  Google Scholar 

  32. Beere HM. Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways. J Clin Invest. 2005;115:2633–9.

    PubMed  CAS  Google Scholar 

  33. Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES. Negative regulation of the Apaf1 apoptosome by Hsp70. Nat Cell Biol. 2000;3:839–43.

    Google Scholar 

  34. Sondermann H, Scheufler C, Schneider C, Höhfeld J, Hartl FU, Moarefi I. Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science. 2001;291:1553–7.

    PubMed  CAS  Google Scholar 

  35. Goldin LR, Landgren O, Marti GE, Caporaso NE. Familial aspects of chronic lymphocytic leukemia, monoclonal B-cell lymphocytosis (MBL), and related lymphomas. European J Clin Med Oncol. 2010;2:119–26.

    PubMed  Google Scholar 

  36. Gunawardana C, Austen B, Powell JE, Fegan C, Wandroo F, Jacobs A, et al. South Asian chronic lymphocytic leukaemia patients have more rapid disease progression in comparison to White patients. Br J Haematol. 2008;142:606–9.

    PubMed  Google Scholar 

  37. Slager SL, Skibola CF, Di Bernardo MC, Conde L, Broderick P, McDonnell SK, et al. Common variation at 6p21.31 (BAK1) influences the risk of chronic lymphocytic leukemia. Blood. 2012;120:843–6.

    PubMed  CAS  Google Scholar 

  38. McConkey DJ, Chandra J, Wright S, Plunkett W, McDonnell TJ, Reed JC, et al. Apoptosis sensitivity in chronic lymphocytic leukemia is determined by endogenous endonuclease content and relative expression of BCL-2 and BAX. J Immunol. 1996;156:2624–30.

    PubMed  CAS  Google Scholar 

  39. Thomas A, El Rouby S, Reed JC, Krajewski S, Silber R, Potmesil M, et al. Drug-induced apoptosis in B-cell chronic lymphocytic leukemia: relationship between p53 gene mutation and bcl-2/bax proteins in drug resistance. Oncogene. 1996;12:1055–62.

    PubMed  CAS  Google Scholar 

  40. Robertson LE, Plunkett W, McConnell K, Keating MJ, McDonnell TJ. Bcl-2 expression in chronic lymphocytic leukemia and its correlation with the induction of apoptosis and clinical outcome. Leukemia. 1996;10:456–9.

    PubMed  CAS  Google Scholar 

  41. Ghia P, Granziero L, Chilosi M, Caligaris-Cappio F. Chronic B cell malignancies and bone marrow microenvironment. Semin Cancer Biol. 2002;12:149–55.

    PubMed  Google Scholar 

  42. Caligaris-Cappio F. Role of the microenvironment in chronic lymphocytic leukaemia. Br J Haematol. 2003;123:380–8.

    PubMed  Google Scholar 

  43. Munk-Pedersen I, Reed J. Microenvironmental interactions and survival of CLL B-cells. Leuk Lymphoma. 2004;45:2365–72.

    PubMed  CAS  Google Scholar 

  44. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D, et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest. 2005;115:755–64.

    PubMed  CAS  Google Scholar 

  45. Herishanu Y, Pérez-Galán P, Liu D, Biancotto A, Pittaluga S, Vire B, et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117:563–74.

    PubMed  CAS  Google Scholar 

  46. Smit LA, Hallaert DY, Spijker R, de Goeij B, Jaspers A, Kater AP, et al. Differential Noxa/Mcl-1 balance in peripheral versus lymph node chronic lymphocytic leukemia cells correlates with survival capacity. Blood. 2007;109:1660–8.

    PubMed  CAS  Google Scholar 

  47. Davids MS, Deng J, Wiestner A, Lannutti BJ, Wang L, Wu CJ, et al. Decreased mitochondrial apoptotic priming underlies stroma-mediated treatment resistance in chronic lymphocytic leukemia. Blood. 2012;120:3501–9.

    PubMed  CAS  Google Scholar 

  48. Schena M, Gottardi D, Ghia P, Larsson LG, Carlsson M, Nilsson K, et al. The role of Bcl-2 in the pathogenesis of B chronic lymphocytic leukemia. Leuk Lymphoma. 1993;11:173–9.

    PubMed  CAS  Google Scholar 

  49. Reed JC. Mechanisms of Bcl-2 family protein function and dysfunction in health and disease. Behring Inst Mitt. 1996;97:72–100.

    PubMed  CAS  Google Scholar 

  50. Faderl S, Keating MJ, Do KA. Expression profile of 11 proteins and their prognostic significance in patients with chronic lymphocytic leukemia (CLL). Leukemia. 2002;16:1045–52.

    PubMed  CAS  Google Scholar 

  51. Pepper C, Hoy T, Bentley DP. Bcl-2/Bax ratios in chronic lymphocytic leukaemia and their correlation with in vitro apoptosis and clinical resistance. Br J Cancer. 1997;76:935–8.

    PubMed  CAS  Google Scholar 

  52. Pepper C, Hoy T, Bentley DP. Elevated Bcl-2/Bax are a consistent feature of apoptosis resistance in B-cell chronic lymphocytic leukaemia and are correlated with in vivo chemoresistance. Leuk Lymphoma. 1998;28:355–61.

    PubMed  CAS  Google Scholar 

  53. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S, et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with In vitro and In vivo chemoresponses. Blood. 1998;91:3379–89.

    PubMed  CAS  Google Scholar 

  54. Pepper C, Lin TT, Pratt G, Hewamana S, Brennan P, Hiller L, et al. Mcl-1 expression has in vitro and in vivo significance in chronic lymphocytic leukemia and is associated with other poor prognostic markers. Blood. 2008;112:3807–17.

    PubMed  CAS  Google Scholar 

  55. Pepper C, Ward R, Lin TT, Brennan P, Starczynski J, Musson M, et al. Highly purified CD38+ and CD38- sub-clones derived from the same chronic lymphocytic leukemia patient have distinct gene expression signatures despite their monoclonal origin. Leukemia. 2007;21:687–96.

    PubMed  CAS  Google Scholar 

  56. Paterson A, Mockridge CI, Adams JE, Krysov S, Potter KN, Duncombe AS, et al. Mechanisms and clinical significance of BIM phosphorylation in chronic lymphocytic leukaemia. Blood. 2012;119:1726–36.

    PubMed  CAS  Google Scholar 

  57. Grzybowska-Izydorczyk O, Cebula B, Robak T, Smolewski P. Expression and prognostic significance of the inhibitor of apoptosis protein (IAP) family and its antagonists in chronic lymphocytic leukaemia. Eur J Cancer. 2010;46:800–10.

    PubMed  CAS  Google Scholar 

  58. Hanada M, Delia D, Aiello A, Stadtmauer E, Jeed JC. bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood. 1993;82:1820–8.

    PubMed  CAS  Google Scholar 

  59. Huntzinger E, Izaurralde E. Gene silencing by micro-RNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2001;12:99–110.

    Google Scholar 

  60. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down regulations of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99:15524–9.

    PubMed  CAS  Google Scholar 

  61. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005;102:13944–9.

    PubMed  CAS  Google Scholar 

  62. Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, et al. The DLEU2/miR15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010;17:28–40.

    PubMed  CAS  Google Scholar 

  63. Mott JL, Kobayashi S, Bronk SF, Gores GJ. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene. 2007;26:6133–40.

    PubMed  CAS  Google Scholar 

  64. Visone R, Veronese A, Rassenti LZ, Balatti V, Pearl DK, Acunzo M, et al. miR-181b is a biomarker of disease progression in chronic lymphocytic leukemia. Blood. 2011;118:3072–9.

    PubMed  CAS  Google Scholar 

  65. Zhu DX, Zhu W, Fang C, Fan L, Zou ZJ, Wang YH, et al. miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis. 2012;33:1294–301.

    PubMed  CAS  Google Scholar 

  66. Fabbri M, Bottoni A, Shimizu M, Spizzo R, Nicoloso MS, Rossi S. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA. 2011;305:59–67.

    PubMed  CAS  Google Scholar 

  67. Baer C, Claus R, Frenzel LP, Zucknick M, Park YJ, Gu L, et al. Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia. Cancer Res. 2012;72:3775–85.

    PubMed  CAS  Google Scholar 

  68. Starczynski J, Pepper C, Pratt G, Hooper L, Thomas A, Milligan D, et al. Common polymorphism G(−248)A in the promoter region of the bax gene results in significantly shorter survival in patients with chronic lymphocytic leukemia once treatment is initiated. J Clin Oncol. 2005;23:1514–21.

    PubMed  CAS  Google Scholar 

  69. Moshynka O, Sankaran K, Pahwa P, Saxena A. Prognostic significance of a short sequence insertion in the MCL-1 promoter in chronic lymphocytic leukemia. J Natl Cancer Inst. 2004;96:673–82.

    Google Scholar 

  70. Tobin G, Skogsberg A, Thunberg U, Laurell A, Aleskog A, Merup M, et al. Mcl-1 gene promoter insertions do not correlate with disease outcome, stage or VH gene mutation status in chronic lymphocytic leukaemia. Leukemia. 2005;19:871–3.

    PubMed  CAS  Google Scholar 

  71. Pedersen IM, Kitada S, Leoni LM, Zapata JM, Karras JG, Tsukada N, et al. Protection of CLL B cells by a follicular dendritic cell line is dependent on induction of Mcl-1. Blood. 2002;100:1795–801.

    PubMed  CAS  Google Scholar 

  72. Petlickovski A, Laurenti L, Li X, Marietti S, Chiusolo P, Sica S, et al. Sustained signaling through the B-cell receptor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B cells. Blood. 2005;105:4820–7.

    PubMed  CAS  Google Scholar 

  73. Ringshausen I, Schneller F, Bogner C, Hipp S, Duyster J, Peschel C, et al. Constitutively activated phosphatidylinositol-3 kinase (PI-3K) is involved in the defect of apoptosis in B-CLL: association with protein kinase Cdelta. Blood. 2002;100:3741–8.

    PubMed  CAS  Google Scholar 

  74. Willimott S, Baou M, Naresh K, Wagner SD. CD154 induces a switch in pro-survival Bcl-2 family members in chronic lymphocytic leukaemia. Br J Haematol. 2007;138:721–32.

    PubMed  CAS  Google Scholar 

  75. Longo PG, Laurenti L, Gobessi S, Sica S, Leone G, Efremov DG. The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood. 2008;111:846–55.

    PubMed  CAS  Google Scholar 

  76. Hewamana S, Lin TT, Jenkins C, Burnett AK, Jordan CT, Fegan C, et al. The novel nuclear factor-κB inhibitor LC-1 is equipotent in poor prognostic subsets of chronic lymphocytic leukemia and shows strong synergy with fludarabine. Clin Cancer Res. 2008;14:8102–11.

    PubMed  CAS  Google Scholar 

  77. Lee YK, Bone ND, Strege AK, Shanafelt TD, Jelinek DF, Kay NE. VEGF receptor phosphorylation status and apoptosis is modulated by a green tea component, epigallocatechin-3-gallate (EGCG), in B-cell chronic lymphocytic leukemia. Blood. 2004;104:788–94.

    PubMed  CAS  Google Scholar 

  78. Buggins AGS, Pepper C, Patten PEM, Hewamana S, Gohil S, Moorhead J, et al. Interaction with vascular endothelium enhances survival in primary chronic lymphocytic leukemia cells via NF-κB activation and de novo gene transcription. Cancer Res. 2010;70:7523–33.

    PubMed  CAS  Google Scholar 

  79. Ni Chonghaile T, Sarosiek KA, Vo TT, Ryan JA, Tammareddi A, Moore Vdel G, et al. Pre-treatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science. 2012;334:1129–33.

    Google Scholar 

  80. Osorio LM, De Santiago A, Aguilar-Santelises M, Mellstedt H, Jondal M. CD6 ligation modulates the Bcl-2/Bax ratio and protects chronic lymphocytic leukemia B cells from apoptosis induced by anti-IgM. Blood. 1997;89:2833–41.

    PubMed  CAS  Google Scholar 

  81. Molica S, Dattilo A, Giulino C, Levato D, Levato L. Increased bcl-2/bax ratio in B-cell chronic lymphocytic leukemia is associated with a progressive pattern of disease. Haematologica. 1998;83:1122–4.

    PubMed  CAS  Google Scholar 

  82. Pepper C, Thomas A, Hoy T, Bentley P. Chlorambucil resistance in B-cell chronic lymphocytic leukaemia is mediated through failed Bax induction and selection of high Bcl-2-expressing subclones. Br J Haematol. 1999;104:581–8.

    PubMed  CAS  Google Scholar 

  83. Bannerji R, Kitada S, Flinn IW, Pearson M, Young D, Reed JC, et al. Apoptotic-regulatory and complement-protecting protein expression in chronic lymphocytic leukemia: relationship to in vivo rituximab resistance. J Clin Oncol. 2003;21:1466–71.

    PubMed  CAS  Google Scholar 

  84. Hussain SR, Cheney CM, Johnson AJ, Lin TS, Grever MR, Caligiuri MA, et al. Mcl-1 is a relevant therapeutic target in acute and chronic lymphoid malignancies: down-regulation enhances rituximab-mediated apoptosis and complement-dependent cytotoxicity. Clin Cancer Res. 2007;13:2144–50.

    PubMed  CAS  Google Scholar 

  85. Mackus WJ, Kater AP, Grummels A, Evers LM, Hooijbrink B, Kramer MH, et al. Chronic lymphocytic leukemia cells display p53-dependent drug-induced Puma upregulation. Leukemia. 2005;19:427–34.

    PubMed  CAS  Google Scholar 

  86. Iglesias-Serret D, de Frias M, Santidrián AF, Coll-Mulet L, Cosialls AM, Barragán M, et al. Regulation of the proapoptotic BH3-only protein BIM by glucocorticoids, survival signals and proteasome in chronic lymphocytic leukemia cells. Leukemia. 2007;21:281–7.

    PubMed  CAS  Google Scholar 

  87. Chen R, Keating MJ, Gandhi V, Plunkett W. Transcription inhibition by flavopiridol: mechanism of chronic lymphocytic leukemia cell death. Blood. 2005;106:2513–9.

    PubMed  CAS  Google Scholar 

  88. Pepper C, Thomas A, Hoy T, Tighe J, Culligan D, Fegan C, Bentley P. Leukemic and non-leukemic lymphocytes from patients with Li Fraumeni syndrome demonstrate loss of p53 function, Bcl-2 family dysregulation and intrinsic resistance to conventional chemotherapeutic drugs but not flavopiridol. Cell Cycle. 2003;2:53–8.

    PubMed  CAS  Google Scholar 

  89. Hahntow IN, Schneller F, Oelsner M, Weick K, Ringshausen I, Fend F, et al. Cyclin-dependent kinase inhibitor Roscovitine induces apoptosis in chronic lymphocytic leukemia cells. Leukemia. 2004;18:747–55.

    PubMed  CAS  Google Scholar 

  90. Vousden KH, Lane DP. P53 in health and disease. Nat Rev Mol Cell Biol. 2007;8:275–83.

    PubMed  CAS  Google Scholar 

  91. Steele AJ, Prentice AG, Hoffbrand AV, Yogashangary BC, Hart SM, Nacheval EP, et al. p53-mediated apoptosis of CLL cells: evidence for a transcription-independent mechanism. Blood. 2008;112:3827–34.

    PubMed  CAS  Google Scholar 

  92. Pepper C, Thomas A, Hoy T, Cotter F, Bentley P. Antisense-mediated suppression of Bcl-2 highlights its pivotal role in failed apoptosis in B-cell chronic lymphocytic leukaemia. Br J Haematol. 1999;107:611–5.

    PubMed  CAS  Google Scholar 

  93. Pepper C, Hooper K, Thomas A, Hoy T, Bentley P. Bcl-2 antisense oligonucleotides enhance the cytotoxicity of chlorambucil in B-cell chronic lymphocytic leukaemia cells. Leuk Lymphoma. 2001;42:491–8.

    PubMed  CAS  Google Scholar 

  94. Pepper C, Thomas A, Hoy T, Bentley P. Antisense oligonucleotides complementary to Bax transcripts reduce the susceptibility of B-cell chronic lymphocytic leukaemia cells to apoptosis in a bcl-2 independent manner. Leuk Lymphoma. 2002;43:2003–9.

    PubMed  CAS  Google Scholar 

  95. O’Brien SM, Cunningham CC, Golenkov AK, Turkina AG, Novick SC, Rai KR. Phase I to II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in patients with advanced chronic lymphocytic leukemia. J Clin Oncol. 2005;23:7697–702.

    PubMed  Google Scholar 

  96. O’Brien S, Moore JO, Boyd TE, Larratt LM, Skotnicki A, Koziner B, et al. Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol. 2007;25:1114–20.

    PubMed  Google Scholar 

  97. O’Brien S, Moore JO, Boyd TE, Larratt LM, Skotnicki AB, Koziner B, et al. 5-year survival in patients with relapsed or refractory chronic lymphocytic leukemia in a randomized, phase III trial of fludarabine plus cyclophosphamide with or without oblimersen. J Clin Oncol. 2009;27:5208–12.

    PubMed  Google Scholar 

  98. Albershardt TC, Salerni BL, Soderquist RS, Bates DJ, Pletnev AA, Kisselev AF, et al. Multiple BH3 mimetics antagonize antiapoptotic MCL1 protein by inducing the endoplasmic reticulum stress response and up-regulating BH3-only protein NOXA. J Biol Chem. 2011;286:24882–95.

    PubMed  CAS  Google Scholar 

  99. Billard C. Design of novel BH3 mimetics for the treatment of chronic lymphocytic leukaemia. Leukemia. 2012;26:2032–8.

    PubMed  CAS  Google Scholar 

  100. Mazumder S, Choudhary GS, Al-Harbi S, Almasan A. Mcl-1 phosphorylation defines resistance to ABT-373 resistance that can be overcome by increased NOXA expression in leukemic B cells. Cancer Res. 2012;72:3069–79.

    PubMed  CAS  Google Scholar 

  101. Balakrishnan K, Wierda WG, Keating MJ, Gandhi V. Gossypol, a BH3 mimetic, induces apoptosis in chronic lymphocytic leukemia cells. Blood. 2008;112:1971–80.

    PubMed  CAS  Google Scholar 

  102. James JE, Castro O, Loria CE, Prada RA, Aguillon, Kipps TJ. AT-101, a small molecule Bcl-2 antagonist, in treatment naïve CLL patients (pts) with high risk features; Preliminary results from an ongoing phase I trial. J Clin Oncol. 2006;24:6605.

    Google Scholar 

  103. Del Gaizo Moore G, Brown JR, Certo M, Love TM, Novina CD, Letai A. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J Clin Invest. 2007;117:112–21.

    PubMed  CAS  Google Scholar 

  104. Mason KD, Khaw SL, Rayeroux KC, Chew E, Lee EF, Fairlie WD, et al. The BH3 mimetic compound, ABT-737, synergizes with a range of cytotoxic chemotherapy agents in chronic lymphocytic leukemia. Leukemia. 2009;23:2034–41.

    PubMed  CAS  Google Scholar 

  105. Vogler M, Butterworth M, Majid A, Walewska RJ, Sun XM, Dyer MJ, et al. Concurrent up-regulation of BCL-XL and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia. Blood. 2009;113:4403–13.

    PubMed  CAS  Google Scholar 

  106. Tromp JM, Geest CR, Breij EC, Elias JA, van Laar J, Luijks DM, et al. Tipping the Noxa/Mcl-1 balance overcomes ABT-737 resistance in chronic lymphocytic leukemia. Clin Cancer Res. 2012;18:487–98.

    PubMed  CAS  Google Scholar 

  107. van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE, et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell. 2006;10:389–99.

    PubMed  Google Scholar 

  108. Paoluzzi L, Gonen M, Bhagat G, Furman RR, Gardner JR, Scotto L, et al. The BH3-only mimetic ABT-737 synergizes the antineoplastic activity of proteasome inhibitors in lymphoid malignancies. Blood. 2008;112:2906–16.

    PubMed  CAS  Google Scholar 

  109. Al-Harbi S, Hill BT, Mazumder S, Singh K, Devecchio J, Choudhary G, et al. An antiapoptotic BCL-2 family expression index predicts the response of chronic lymphocytic leukemia to ABT-737. Blood. 2011;118:3579–90.

    PubMed  CAS  Google Scholar 

  110. Kojima K, Duvvuri S, Ruvolo V, Samaniego F, Younes A, Andreeff M. Decreased sensitivity of 17p-deleted chronic lymphocytic leukemia cells to a small molecule BCL-2 antagonist ABT-737. Cancer. 2012;118:1023–31.

    PubMed  CAS  Google Scholar 

  111. Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ, Khaw SL, et al. Substantial susceptibility of chronic lymphocytic leukaemia to Bcl-2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol. 2012;30:488–96.

    PubMed  CAS  Google Scholar 

  112. Roberts A, Davids M, Mahadevan D, Anderson M, Kipps T, Pagel J, et al. Selective inhibition of BCL-2 is active against chronic lymphocytic leukaemia (CLL): first clinical experience with the BH3-mimetic ABT-199. Haematologica. 2012;97:Abstract 0546.

    Google Scholar 

  113. Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Murthy Madiraju SR, et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci U S A. 2007;104:19512–7.

    PubMed  CAS  Google Scholar 

  114. Pérez-Galán P, Roué G, López-Guerra M, Nguyen M, Villamor N, Montserrat E, et al. BCL-2 phosphorylation modulates sensitivity to the BH3 mimetic GX15-070 (Obatoclax) and reduces its synergistic interaction with bortezomib in chronic lymphocytic leukemia cells. Leukemia. 2008;22:1712–20.

    PubMed  Google Scholar 

  115. O’Brien SM, Claxton DF, Crump M, Faderl S, Kipps T, Keating MJ, et al. Phase I study of obatoclax mesylate (GX15-070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukaemia. Blood. 2009;113:299–305.

    PubMed  Google Scholar 

  116. Shanafelt TD, Call TG, Zent CS, LaPlant B, Bowen DA, Roos M, et al. Phase I trial of daily oral polyphenon E in patients with asymptomatic Rai Stage 0 to II chronic lymphocytic leukemia. J Clin Oncol. 2009;27:3808–14.

    PubMed  CAS  Google Scholar 

  117. Shanafelt TD, Call TG, Zent CS, Leis JF, LaPlant B, Bowen DA, et al. Phase 2 trial of daily, oral polyphenon E in patients with asymptomatic, Rai stage 0 to II chronic lymphocytic leukemia. Cancer. 2013;119(2):363–70.

    PubMed  CAS  Google Scholar 

  118. Walsby E, Pearce L, Burnett AK, Fegan C, Pepper C. The Hsp90 inhibitor NVP-AUY922-AG inhibits NF-κB signaling, overcomes microenvironmental cytoprotection and is highly synergistic with fludarabine in primary CLL cells. Oncotarget. 2012;3:525–34.

    PubMed  Google Scholar 

  119. Hewamana S, Alghazal S, Lin TT, Clement M, Jenkins C, Guzman ML, et al. The NF-kappaB subunit Rel A is associated with in vitro survival and clinical disease progression in chronic lymphocytic leukemia and represents a promising therapeutic target. Blood. 2008;111:4681–9.

    PubMed  CAS  Google Scholar 

  120. Pepper C, Mahdi JG, Buggins AG, Hewamana S, Walsby E, Mahdi E, et al. Two novel aspirin analogues show selective cytotoxicity in primary chronic lymphocytic leukaemia cells that is associated with dual inhibition of Rel A and COX-2. Cell Prolif. 2011;44:380–90.

    PubMed  CAS  Google Scholar 

  121. El-Khoury V, Moussay E, Janji B, Palissot V, Aouali N, Brons NH, et al. The histone deacetylase inhibitor MGCD0103 induces apoptosis in B-cell chronic lymphocytic leukemia cells through a mitochondria-mediated caspase activation cascade. Mol Cancer Ther. 2010;9:1349–60.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Fegan M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fegan, C., Pepper, C. (2013). Apoptosis Deregulation in CLL. In: Malek, S. (eds) Advances in Chronic Lymphocytic Leukemia. Advances in Experimental Medicine and Biology, vol 792. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8051-8_7

Download citation

Publish with us

Policies and ethics