Skip to main content

Exploitation of Agro-Industrial Wastes to Produce Low-Cost Microbial Surfactants

  • Chapter
  • First Online:
Biotransformation of Waste Biomass into High Value Biochemicals

Abstract

Biosurfactants have characteristic interfacial properties making them good emulsifiers, detergents, solubilizers, and foaming and wetting agents which could be exploited in industrial, agriculture, food, pharmaceutical, and personal-care sectors. Different microbial species have been reported to produce structurally diverse biosurfactants with different hydrophilic moieties and variations in length/composition of hydrophobic chains, thus providing options for wide range of applications. These surface-active molecules have functional properties similar to that of synthetic surfactants and retain their activities under extremes of temperature, pH, and salinity making them commercially promising biomolecules. Biosurfactants are envisaged as green alternatives to petrochemical-based toxic synthetic surfactants. The major deterrent to large-scale application of biosurfactants is their 10–30 % higher production cost than synthetic surfactants.

The carbon and energy sources used in fermentation process generally account for 50 % of the overall biosurfactant production cost. Thus, efforts are being made to explore potential of renewable agricultural wastes and nutritionally rich low-value industrial by-products as substrates to bring down the overall production cost of biosurfactants. The abundant agro-industrial wastes, such as distillery wastes, plant oils, oil wastes, starchy substances, and whey, are the potential candidates as they are available throughout the year. The integrated approach of developing efficient microbial strains capable of growing on these alternative substrates and designing of low-cost nutritionally balanced optimized medium could significantly reduce the production cost of biosurfactants. The efforts to design efficient bioreactors for obtaining maximum biosurfactant yield using low downstream processing inputs could make the process economically viable. The application of biosurfactants for therapeutic and biomedical purposes demands high purity levels which increase the cost of downstream processing. However, application of biosurfactant preparations for field scale bioremediation does not need high level purity and thus would be in contention with chemical surfactants in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abalos A, Pinaso A, Infante MR, Casals M, Garcia F, Manresa A (2001) Physiochemical and antimicrobial activities of new rhamnolipids by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371

    CAS  Google Scholar 

  • Abdel-Mawgoud A, Aboulwafa M, Hassouna N (2008) Optimization of surfactin production by Bacillus subtilis isolate BS5. Appl Biochem Biotechnol 150:305–325

    CAS  Google Scholar 

  • Abouseoud M, Yataghene A, Amrane A, Maachi R (2008) Biosurfactant production by free and alginate entrapped cells of Pseudomonas fluorescens. J Ind Microbiol Biotechnol 35:1303–1308

    CAS  Google Scholar 

  • Abu-Ruwaida AS, Banat M, Haditirto SS, Kadri A (1991) Isolation of biosurfactant producing bacteria product characterization and evaluation. Acta Biotech 11:315–324

    CAS  Google Scholar 

  • Aparna A, Srinikethan G, Smitha H (2012) Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloid Surf B 95:23–29

    CAS  Google Scholar 

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptide surfactant produced by Bacillus subtilis isolation, characterisation and its inhibition of fibrin clot fomation. Biochem Biophys Res Commun 31:488–494

    CAS  Google Scholar 

  • Ashby RD, Nuñez A, Solaiman DKY, Foglia TA (2005) Sophorolipid biosynthesis from a biodiesel co-production stream. J Am Oil Chem Soc 82:625–630

    CAS  Google Scholar 

  • Asokan P, Saxena M, Asolekar SR (2005) Coal combustion residues environmental implications and recycling potentials. Resour Conserv Recy 43:239–262

    Google Scholar 

  • Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil-recovery and oil pollution remediation – a review. Bioresour Technol 51:1–12

    CAS  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    CAS  Google Scholar 

  • Barros FF, Ponezi AN, Pastore GM (2008) Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. J Ind Microbiol Biotechnol 35:1071–1078

    CAS  Google Scholar 

  • Bartels T (2005) Lubricants and lubrication, in Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim. doi:10.1002/14356007.a15_423

    Google Scholar 

  • Brown MJ (1991) Biosurfactants for cosmetic applications. Int J Cosmet Sci 13:61–64

    CAS  Google Scholar 

  • Camargo-de-Morais M, Ramos SAF, Pimentel M, De Morais M Jr, Lima Filho J (2003) Production of an extracellular polysaccharide with emulsifier properties by Penicillium citrinum. World J Microbiol Biotechnol 19:191–194

    CAS  Google Scholar 

  • Camire ME, Violette D, Dougherty MP, McLaughlin MA (1997) Potato peels dietary fiber composition: effects of peeling and extrusion cooking processes. J Agric Food Chem 45:1404–1408

    CAS  Google Scholar 

  • Casas J, Garcia-Ochoa F (1999) Sophorolipid production by Candida bombicola: medium composition and culture methods. J Biosci Bioeng 88:488–494

    CAS  Google Scholar 

  • Chen HL, Chen Y-S, Juang R-S (2008) Recovery of surfactin from fermentation broths by a hybrid salting-out and membrane filtration process. Sep Purif Technol 59:244–252

    CAS  Google Scholar 

  • Chtioui O, Dimitrov K, Gancel F, Dhulster P, Nikov I (2012) Rotating discs bioreactor, a new tool for lipopeptides production. Process Biochem 47:2020–2024

    Google Scholar 

  • Cirigliano MC, Carman GM (1985) Purification and characterization of liposan, a bioemulsifier from candida lipolytica. Appl Environ Microbiol 50:846–850

    CAS  Google Scholar 

  • Coimbra CD, Rufino RD, Luna JM, Sarubbo LA (2009) Studies of the cell surface properties of Candida species and relation with the production of biosurfactants for environmental applications. Curr Microbiol 58:245–249

    CAS  Google Scholar 

  • Costa LG (2006) Current issues in organophosphate toxicology. Clinica Chimica Acta 366:1–13

    CAS  Google Scholar 

  • Costa SG, Lépine F, Milot S, Déziel E, Nitschke M, Contiero J (2009) Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. J Ind Microbiol Biotechnol 36:1063–1072

    CAS  Google Scholar 

  • Daniel HJ, Reuss M, Syldatk C (1998) Production of sophorolipids in high concentration from deproteinized whey and rapeseed oil in a two stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC 20509. Biotechnol Lett 20:1153–1156

    CAS  Google Scholar 

  • Das K, Mukherjee AK (2005) Characterization of biochemical properties and biological activities of biosurfactants produced by Pseudomonas aeruginosa mucoid and non-mucoid strains isolated from hydrocarbon-contaminated soil samples. Appl Microbiol Biotechnol 69:192–199

    CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: some industrial applications of biosurfactants. Pro Biochem 42:1191–1199

    CAS  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine B. circulans. J Appl Microbiol 104:1675–1684

    CAS  Google Scholar 

  • Daverey A, Pakshirajan K (2009) Production, characterization, and properties of sophorolipids from the yeast Candida bombicola using a low-cost fermentative medium. Appl Biochem Biotechnol 158:663–674

    CAS  Google Scholar 

  • Daverey A, Pakshirajan K (2010) Kinetics of growth and enhanced sophorolipids production by Candida bombicola using a low-cost fermentative medium. Appl Biochem Biotechnol 160:2090–2101

    CAS  Google Scholar 

  • Deak N, Johnson L (2006) Functional properties of protein ingredients prepared from high-sucrose/low-stachyose soybeans. JOCOS 83:811–818

    CAS  Google Scholar 

  • Deleu M, Paquot M (2004) From renewable vegetables resources to micro-organisms: new trends in surfactants. Comptes Rendus Chimie 7:641–646

    CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  Google Scholar 

  • Deshpande M, Daniels L (1995) Evaluation of sophorolipid biosurfactant production by Candida bombicola using animal fat. Bioresour Technol 54:143–150

    CAS  Google Scholar 

  • Dos santos SC, Fernandez LG, Rossi-alva JC, De abreu roque MR (2010) Evaluation of substrates from renewable sources in biosurfactant production by Pseudomonas strains. Afr J Biotechnol 9:5074–5711

    Google Scholar 

  • Dubey K, Juwarkar A (2001) Distillery and curd whey wastes as viable alternative sources for biosurfactant production. World J Microbiol Biotechnol 17:61–69

    CAS  Google Scholar 

  • Dubey K, Juwarkar A (2004) Determination of genetic basis for biosurfactant production in distillery and curd whey wastes utilizing Pseudomonas aeruginosa strain BS2. Ind J Biotechnol 3:74–81

    CAS  Google Scholar 

  • Duvnjak Z, Cooper DG, Kosaric N (1982) Production of surfactant by Arthrobacter paraffineus ATCC19558. Biotechnol Bioeng 24:165–175

    CAS  Google Scholar 

  • Ferreira NL (2008) Industrial exploitation of renewable resources: from ethanol production to bio products development. J Soc Biol 202:191–199

    CAS  Google Scholar 

  • Fox SL, Bala GA (2000) Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrates. Bioresour Technol 75:235–240

    CAS  Google Scholar 

  • Gerard J, Lloyd R, Barsby T, Haden P, Kelly MT, Andersen RJ (1997) Massetolides A-H, antimycobacterial cyclic depsipeptides produced by two pseudomonads isolated from marine habitats. J Nat Prod 60:223–229

    CAS  Google Scholar 

  • Ghribi D, Ellouze-Chaabouni S (2011) Enhancement of Bacillus subtilis lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnol Res Int 2011:653654. doi:10.4061/2011/653654

    Google Scholar 

  • Guerra-Santos L, Kappeli O, Fiechter A (1986) Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol Biotechnol 24:443–448

    CAS  Google Scholar 

  • Haba E, Espuny M, Busquets M, Manresa A (2000) Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J Appl Microbiol 88:379–387

    CAS  Google Scholar 

  • Horowitz S, Currie JK (1990) Novel dispersants of silicon and aluminum nitride. J Dispersion Sci Technol 11:637–659

    CAS  Google Scholar 

  • IARC (2000) Some industrial chemicals. Monographs on the evaluation of carcinogenic risks to humans. World Health Organization (WHO) international agency for research on cancer (IARC) 77:A-1–31

    Google Scholar 

  • International Advisory Board of the International Environmental Technology Centre (IETC) Eighth meeting Osaka, Japan, 7 November 2012. UNEP(DTIE)/IETC/IAB.8/3

    Google Scholar 

  • Jack TR (1998) Microbially enhanced oil recovery. Biorecovery 1:59–73

    Google Scholar 

  • Jahanshah G, Nahvi I, Zarkesh-Esfahani SH, Ghanavati H, Khodaverdi H, Barani M (2013) Enhancing compost quality by using whey-grown biosurfactant-producing bacteria as inocula. Annal Microbiol 63:91–100. doi:10.1007/s13213-012-0448-1

    Google Scholar 

  • Jamal P, Nawawi WMFW, Alam MZ (2012) Optimum medium components for biosurfactant production by Klebsiella pneumonia WMF02 utilizing sludge palm oil as a substrate. Aust J Basic Appl Sci 6:100–108

    CAS  Google Scholar 

  • Joshi S, Bharucha C, Desai AJ (2008) Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Bioresour Technol 99:4603–4608

    CAS  Google Scholar 

  • Käppeli O, Finnerty WR (1979) Partition of alkane by an extracellular vesicle derived from hexadecane- grown Acinetobacter. J Bacteriol 140:707–712

    Google Scholar 

  • Kitamoto D, Yanagishita H, Shinbo T, Nakane T, Kamisawa C, Nakahara T (1993) Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J Biotechnol 29:91–96

    CAS  Google Scholar 

  • Kosaric N (1992) Biosurfactants in industry. Pure Appl Chem 64:1731–1737

    CAS  Google Scholar 

  • Krieger N, Doumit C, David AM (2010) Production of microbial biosurfactants by solid-state cultivation. Adv Exp Medic Bio 672:203–210

    CAS  Google Scholar 

  • Lima de CJB, Ribeiro EJ, Sérvulo EFC, Resende MM, Cardoso VL (2009) Biosurfactant production by Pseudomonas aeruginosa grown in residual soybean oil. Appl Biochem Biotechnol 152:156–168

    Google Scholar 

  • Lima TMS, Procópio LC, Brandão FD, Carvalho AMX, Tótola MR, Borges AC (2011) Biodegradability of bacterial surfactants. Biodegradation 22:585–592

    CAS  Google Scholar 

  • Luna JM, Rufino RD, Sarubbo LA, Campos-Takaki GM (2013) Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Colloids Surf B Biointerfaces 102:202–209

    CAS  Google Scholar 

  • Lutaladio NB, Castaldi L (2009) Potato: The hidden treasure. J Food Compos Anal 22:491–493

    Google Scholar 

  • Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793

    CAS  Google Scholar 

  • Makkar RS, Cameotra SS (1997) Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. J Am Oil Chem Soc 74:887–889

    CAS  Google Scholar 

  • Makkar RS, Cameotra SS (1999) Biosurfactant production by microorganisms on unconventional carbon sources. J Surf Detergents 2:237–241

    CAS  Google Scholar 

  • Makkar RS, Cameotra SS (2002) An update on use of unconventional substrates for biosurfactants production and their new applications. Appl Microbiol Biotechnol 58:428–434

    CAS  Google Scholar 

  • Makkar RS, Rockne KJ (2003) Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ Toxicol Chem 22:2280–2292

    CAS  Google Scholar 

  • Maneerat S (2005) Production of biosurfactants using substrates from renewable resources. Songklanakarin J Sci Techno 27:675–683

    Google Scholar 

  • Mao-Sung Y, Yu-Hong W, Jo-Shu C (2006) Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochem 41:1799–1805

    Google Scholar 

  • Marmesat S, Rodrigues E, Velasco J, Dobarganes C (2007) Quality of used frying fats and oils: comparison of rapid tests based on chemical and physical oil properties. Int J Food Sci Technol 42:601–608

    CAS  Google Scholar 

  • Mata-Sandoval JC, Karns J, Torrents A (1999) High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J Chromat 864:211–220

    CAS  Google Scholar 

  • McInerney MJ, Javaheri M, Nagle DP (1990) Properties of the biosurfactant produced by Bacillus licheniformis strain JF-2. J Indust Microbiol 5:95–102

    CAS  Google Scholar 

  • Mercade E, Robert M, Espuny MJ, Bosch MP, Manreesa MA, Parra JL, Guinea J (1988) New Surfactant Isolated from Pseudomonas sp. 42A2. J Am Oil Chem Soc 65:1915–1916

    CAS  Google Scholar 

  • Mercadé M, Monleón L, de Andrés C (1996) Screening and selection of surfactant-producing bacteria from waste lubricating oil. J Appl Bacteriol 81:161–166

    Google Scholar 

  • Mercade ME, Manresa MA, Robert M, Espuny MJ, de Andres C, Guinea J (1993) Olive oil mill effluent (OOME). New substrate for biosurfactant production. Bioresour Technol 43:1–6

    CAS  Google Scholar 

  • Millioli VS, Servulol ELC, Sobrald LGS, de Carvalho DD (2009) Bioremediation of crude oil-bearing soil: evaluating the effect of rhamnolipid addition to soil toxicity and to crude oil biodegradation efficiency. Global Nest J 11:181–188

    Google Scholar 

  • Moldes AB, Paradelo R, Rubinos D, Devesa-Rey R, Cruz JM, Barral MT (2011) Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus. J Agric Food Chem 59:9443–9447

    CAS  Google Scholar 

  • Moldes AB, Torrado AM, Barral MT, Dominguez JM (2007) Evaluation of biosurfactant production from various agricultural residues by Lactobacillus pentosus. J Agric Food Chem 55:4481–4486

    CAS  Google Scholar 

  • Montoneri E, Savarino P, Bottigliengo S, Boffa V, Prevot AB, Fabbri D, Pramauro E (2009) Biomass wastes as renewable source of energy and chemicals for the industry with friendly environmental impact. Fresenius Environ Bull 18:219–223

    CAS  Google Scholar 

  • Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515

    CAS  Google Scholar 

  • Mutalik SR, Vaidya BK, Joshi RM, Desai KM, Nene SN (2008) Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574. Bioresource Technol 99:7875–7880

    CAS  Google Scholar 

  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Sci 94:736–774

    CAS  Google Scholar 

  • Natu RB, Mazza G, Jadhav SJ (1991) Waste utilization. Potato: production, processing, and products. CRC Press, Boca Raton, FL, pp 175–201

    Google Scholar 

  • Neto DC, Meira JA, Tiburtius E, Zamora PP, Bugay C, Mitchell DA, Krieger N (2009) Production of rhamnolipids in solid-state cultivation: characterization, downstream processing and application in the cleaning of contaminated soils. Biotechnol J 4:748–755

    Google Scholar 

  • Nitschke M, Costa S (2007) Biosurfactants in food industry. Trends Food Sci Technol 18:252–259

    CAS  Google Scholar 

  • Nitschke M, Pastore G (2003) Cassava flour wastewater as a substrate for biosurfactant production. Appl Biochem Biotechnol 106:295–302

    Google Scholar 

  • Nitschke M, Pastore GM (2004) Biosurfactant production by Bacillus subtilis using cassava-processing effluent. Appl Biochem Biotechnol 112:163–172

    CAS  Google Scholar 

  • Nitschke M, Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresource Technol 97:336–341

    CAS  Google Scholar 

  • Noah KS (2005) Surfactin production from potato process effluent by Bacillus subtilis in a chemostat. Appl Biochem Biotechnol 122:465–474

    Google Scholar 

  • Noudeh GD, Housaindokht M, Bazzaz BSF (2005) Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. J Microbiol 43:272–276

    Google Scholar 

  • Onbasli D, Aslim B (2009) Determination of rhamnolipid biosurfactant production in molasses by some Pseudomonas spp. New Biotechnol 25:S255

    Google Scholar 

  • Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Proc Biochem 35:1153–1169

    CAS  Google Scholar 

  • Pekin G, Vardar-Sukan FNK (2005) Production of sophorolipids from Candida bombicola ATCC 22214 using turkish corn oil and honey. Eng Life Sci 5:357–362

    CAS  Google Scholar 

  • Poremba K, Gunkel W, Lang S, Wagner F (1991) Marine biosurfactants, III. Toxicity testing with marine micro-organisms and comparison with synthetic surfactants. Z Naturforsch 46:210–221

    CAS  Google Scholar 

  • Providenti MA, Flemming CA, Lee H, Trevors JT (1995) Effect of addition of rhamnolipid biosurfactant or rhamnolipid-producing Pseudomonas aeruginosa on phenanthrene mineralization in soil slurries. Fed Eur Microbiol Soc Microbiol Ecol 17:15–26

    CAS  Google Scholar 

  • Pruthi V, Cameotra SS (2003) Effect of nutrients on optimal production of biosurfactants by Pseudomonas putida—a Gujarat oil field isolate. J Surfact Deterg 6:65–68

    CAS  Google Scholar 

  • Radwan S, Sorkhoh N (1993) Lipids of n-alkane-utilizing micro-organisms and their application potential. Adv Appl Microbiol 39:29–90

    CAS  Google Scholar 

  • Rahman KS, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using lowcost raw materials. Biotechnol Prog 18:1277–1281

    CAS  Google Scholar 

  • Rahman PKSM, Gakpe E (2008) Production, characterisation and applications of biosurfactants-review. Biotechnology 7:360–370

    CAS  Google Scholar 

  • Rashedi H, Assadi MM, Bonakdarpour B, Jamshidi E (2005) Environmental importance of rhamnolipid production from molasses as a carbon source. Int J Environ Sci Technol 2:59–62

    CAS  Google Scholar 

  • Rau U, Hammen S, Heckmann R, Wray V, Lang S (2001) Sophorolipids: a source for novel compounds. Ind Crop Prod 13:85–92

    CAS  Google Scholar 

  • Raza ZA, Khan MS, Khalid ZM (2007) Physicochemical and surface-active properties of biosurfactant produced using molasses by a Pseudomonas aeruginosa mutant. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:73–80

    CAS  Google Scholar 

  • Reis FA, Servulo EF, De Franca FP (2004) Lipopeptide surfactant production by Bacillus subtilis grown on low-cost raw materials. Appl Biochem Biotechnol 115:899–912

    Google Scholar 

  • REN21: Renewable Energy Policy Network for the 21st Century (2011) Global status report. www.ren21.net

  • Robert M, Mercadé ME, Bosch MP, Parra JL, Espuny MJ, Manresa MA, Guinea J (1989) Effect of the carbon source on biosurfactant production by P. aeruginosa 44T1. Biotechnol Lett 11:871–874

    CAS  Google Scholar 

  • Rodrigues LR, Teixeira JA, Oliveira R (2006) Low-cost fermentative medium for biosurfactant production by probiotic bacteria. Biochemical Eng J 32:135–142

    CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High and low molecular weight mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    CAS  Google Scholar 

  • Rosenberg E, Rubinovitz C, Gottlieb A, Rosenhak S, Ron EZ (1988) Production of biodispersan by Acinetobacter calcoaceticus A2. Appl Environ Microbiol 54:317–322

    CAS  Google Scholar 

  • RPA (2006) Non-surfactant organic ingredients and zeolite-based detergents. Final report prepared for the European Commission. Risk & Policy Analysts Limited (RPA)

    Google Scholar 

  • Samadi N, Abadian N, Akhavan A, Fazeli MR, Tahzibi A, Jamalifar H (2007) Biosurfactant production by the strain isolated from contaminated soil. J Biol Sci 7:1266–1269

    CAS  Google Scholar 

  • Sen R (1997) Response surface optimization of the critical media components for the production of surfactin. J Chem Tech Biotechnol 68:263–270

    CAS  Google Scholar 

  • Sengupta J (2002) Recycling of agro-industrial wastes for manufacturing of building materials and components in India. An over view. Civil Eng Constr Rev 15:23–33

    Google Scholar 

  • Shah V, Jurjevic M, Badia D (2007) Utilization of restaurant waste oil as a precursor for sophorolipid production. Biotechnol Prog 23:512–515

    CAS  Google Scholar 

  • Sharma S, Singh PB, Raj M, Chadha BS, Saini HS (2009) Aqueous phase partitioning of hexachlorocyclohexane (HCH) isomers by biosurfactant produced by Pseudomonas aeruginosa WH-2. J Haz Mat 171:1178–1182

    CAS  Google Scholar 

  • Siddhartha GV, Costa AO, Lépine F, Milot S, Déziel E, Nitschke M (2009) Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. J Indust Microbiol Biotechnol 36:1063–1072

    Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology. Part 2. Application aspects. Biotechnol Adv 25:99–121

    CAS  Google Scholar 

  • Singh PB, Sharma S, Saini HS, Chadha BS (2009) Biosurfactant production by Pseudomonas sp. and its role in aqueous phase partitioning and biodegradation of chlorpyrifos. Lett Appl Microbiol 49:378–383

    CAS  Google Scholar 

  • Smyth TJP, Perfumo A, Marchant R, Banat IM (2010) Isolation and analysis of low molecular weight microbial glycolipids, Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, pp 3705–3723

    Google Scholar 

  • Sobrinho HBS, Rufino RD, Luna JM, Salgueiro AA, Campos-Takaki GM, Leite LFC, Sarubbo LA (2008) Utilization of two agro-industrial by-products for the production of a surfactant by Candida sphaerica UCP0995. Process Biochem 43:912–917

    CAS  Google Scholar 

  • Solaiman D, Ashby R, Zerkowski J, Foglia T (2007) Simplified soy molasses-based medium for reduced-cost production of sophorolipids by Candida bombicola. Biotechnol Lett 29:1341–1347

    CAS  Google Scholar 

  • Solaiman DKY, Ashby RD, Nun˜ez A, Foglia A (2004) Production of sophorolipids by Candida bombicola grown on soy molasses as substrate. Biotechnol Lett 26:1241–1245

    CAS  Google Scholar 

  • Sousa JR, Correia JAC, Almeida JGL, Rodrigues S, Pessoa ODL, Melo VMM, Gonçalves LRB (2011) Evaluation of a co-product of biodiesel production as carbon source in the production of biosurfactant by P. aeruginosa MSIC02. Proc Biochem 46:1831–1839

    Google Scholar 

  • Stanghellini ME, Miller RM (1997) Biosurfactants: their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Disease 81:4–12

    CAS  Google Scholar 

  • Syldatk C, Lang S, Wagner F (1985) Chemical and physical characterization of four interfacial active rhamnolipids from Pseudomonas sp. DSM 2874 grown on n-alkanes. Z Naturforsch 40:51–60

    CAS  Google Scholar 

  • Thaniyavarn J, Chianguthai T, Sangvanich P, Roongsawang N, Washio K, Morikawa M, Thaniyavarn S (2008) Production of sophorolipid biosurfactant by Pichia anomala. Biosci Biotechnol Biochem 72:2061–2068

    CAS  Google Scholar 

  • Thaniyavarn J, Chongchin A, Wanitsuksombut N, Thaniyavarn S, Pinphanichakarn P, Leepipatpiboon N, Morikawa M, Kanaya S (2006) Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source. J Gen Appl Microbiol 52:215–222

    CAS  Google Scholar 

  • Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM (2008) Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World J Microbiol Biotechnol 24:917–925

    CAS  Google Scholar 

  • Thavasi R, Jayalakshmi S, Banat IM (2011) Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresour Technol 102:3366–3372

    CAS  Google Scholar 

  • Trummler K, Effenberger F, Syldatk C (2003) An integrated microbial/enzymatic process for production of rhamnolipids and L-(+)-rhamnose from rapeseed oil with Pseudomonas sp. DSM 2874. Eur J Lipid Sci Technol 105:563–571

    CAS  Google Scholar 

  • USDA (2009) Oilseeds: world market and trade. FOP 1–09:01–12 http://www.fas.usda.gov/oilseeds/circular/2009/January/Oilseedsfull0109.pdf

  • Van Bogaert INA, Saerens K, De Muynck C, Develter D, Soetaert W, Vandamme EJ (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 76:23–34

    Google Scholar 

  • Vedaraman N, Venkatesh N (2011) Production of surfactin by Bacillus subtilis MTCC 2423 from waste frying oils. Braz J Chem Eng 28:0104–6632

    Google Scholar 

  • Vollbrecht E, Rau U, Lang S (1999) Microbial conversion of vegetable oils into surface-active di-, tri-, and tetrasaccharide lipids (biosurfactants) by the bacterial strain Tsukamurella sp. Lipid - Fett 101:389–394

    CAS  Google Scholar 

  • Vollenbroich D, Özel M, Vater J, R Kamp M, Pauli G (1997) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25:289–297

    CAS  Google Scholar 

  • Wadekar SD, Kale SB, Lali AM, Bhowmick DN, Pratap AP (2012) Utilization of sweetwater as a cost-effective carbon source for sophorolipids production by Starmerella bombicola (ATCC 22214). Prep Biochem Biotechnol 42:125–142

    CAS  Google Scholar 

  • Wang S, Mulligan CN (2004) Surfactant foam technology in remediation of contaminated soil. Chemosphere 57:1079–1089

    Google Scholar 

  • White P, Johnson LA (eds) (2003) Corn: chemistry and technology, 2nd edn. American Association of Cereal Chemists, St. Paul, MN

    Google Scholar 

  • Yakimov M, Amro M, Bock M (1997) The potential of Bacillus licheniformis strains for in situ enhanced oil recovery. J Petro Sci Eng 18:147–160

    CAS  Google Scholar 

  • Zhu Z, Zhang G, Luo Y, Ran W, Qirong S (2012) Production of lipopeptides by Bacillus amyloliquefaciens XZ-173 in solid state fermentation using soybean flour and rice straw as the substrate. Bioresource Technol 112:254–260

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvinder Singh Saini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Singh, P.B., Saini, H.S. (2014). Exploitation of Agro-Industrial Wastes to Produce Low-Cost Microbial Surfactants. In: Brar, S., Dhillon, G., Soccol, C. (eds) Biotransformation of Waste Biomass into High Value Biochemicals. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8005-1_18

Download citation

Publish with us

Policies and ethics