Skip to main content

Challenges in Freeze–Thaw Processing of Bulk Protein Solutions

  • Chapter
  • First Online:
Sterile Product Development

Abstract

Freeze-thawing is a common unit operation during the production of protein-based therapeutics. Bulk protein solutions are often stored in frozen state for extended periods, and thawed to room temperature prior to downstream process operations including lyophilization, add-in formulation ingredients step, and fill and finish processes. However, freezing can induce protein denaturation stresses, such as cold denaturation, ice–liquid interfacial denaturation, and cryoconcentration. Many of these stresses are manifested as unfolding, reversible aggregation, and insoluble particle formation, while some can cause loss of structure and therapeutic function. Numerous studies have been attempted to understand and mitigate protein denaturation during freeze-thawing, and thereby provide guidelines for optimization of formulation and process variables. This chapter presents an overview of freeze-thawing-induced stresses, cryopreservation aspects, and containers, associated with manufacturing of bulk protein solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

°C:

Degree Celsius

ΔG :

Gibb’s free energy

ANS:

1-Anilino-8-napthalene sulfonate

BSA:

Bovine serum albumin

CMC:

Critical micelle concentration

C p :

Heat capacity

DTPA:

Diethylenetriamine penta-acetic acid

EDTA:

Ethylenediamine tetra-acetic acid

IgG:

Immunoglobulin G

IR:

Infrared

kJ:

Kilojoules

LDH:

Lactate dehydrogenase

LPT:

Last point to thaw

LPTF:

Last point to freeze

LYS:

Lysozyme

mAb:

Monoclonal antibody

mL:

Milliliters

PE:

Polyethylene

PEG:

Poly(ethylene) glycol

PETG:

Poly(ethylene) terephthalate glycol

PFK:

Phosphofructokinase

PP:

Polypropylene

PTFE:

Polytetrafluoroethylene

PVP:

Poly(vinyl) pyrrolidone

rhFXIII:

Recombinant hemophilic factor XIII

rhIFN-γ:

Recombinant human interferon-γ

T c :

Crystallization temperature

T e :

Eutectic temperature

T f :

Equilibrium freezing point

T g :

Glass transition temperature of solids

Tg΄:

Glass transition temperature of frozen solution

T het :

Heterogeneous nucleation temperature

T hom :

Homogeneous nucleation temperature

T m :

Melting temperature

TRE:

Trehalose

Trp:

Tryptophan

T x :

Devitrification temperature

References

  • Abernethy DR et al (2010) Metal impurities in food and drugs. Pharm Res 27:750–755

    PubMed  CAS  Google Scholar 

  • Akers MJ, Vasudevan V, Stickelmeyer M (2002) Formulation development of protein dosage forms. Pharm Biotechnol 14:47–127

    PubMed  CAS  Google Scholar 

  • Allison SD, Dong A, Carpenter JF (1996) Counteracting effects of thiocyanate and sucrose on chymotrypsinogen secondary structure and aggregation during freezing, drying and rehydration. Biophys J 71:2022–2032

    PubMed  CAS  Google Scholar 

  • Allison SD et al (1999) Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding. Arch Biochem Biophys 365:289–298

    PubMed  CAS  Google Scholar 

  • Anchordoquy TJ, Carpenter JF (1996) Polymers protect lactate dehydrogenase during freeze-drying by inhibiting dissociation in the frozen state. Arch Biochem Biophys 332:231–238

    PubMed  CAS  Google Scholar 

  • Anchordoquy TJ et al (2001) Maintenance of quaternary structure in the frozen state stabilizes lactate dehydrogenase during freeze-drying. Arch Biochem Biophys 390(1):35–41

    PubMed  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1982a) Preferential interactions of proteins with salts in concentrated solutions. Biochemistry 21(25):6545–6552

    PubMed  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1982b) [Mechanism of stabilization of proteins by glycerol and sucrose]. Seikagaku 54(11):1255–1259

    PubMed  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1984) Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding. Biochemistry 23(25):5912–5923

    PubMed  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1985a) Mechanism of poly(ethylene glycol) interaction with proteins. Biochemistry 24(24):6756–6762

    PubMed  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1985b) The stabilization of proteins by osmolytes. Biophys J 47(3):411–414

    PubMed  CAS  Google Scholar 

  • Arakawa T et al (1993) Factors affecting short-term and long-term stabilities of proteins. Adv Drug Deliv Rev 10:1–28

    CAS  Google Scholar 

  • Arakawa T et al (2007) Biotechnology applications of amino acids in protein purification and formulations. Amino Acids 33(4):587–605

    PubMed  CAS  Google Scholar 

  • Ayel V et al (2006) Crystallization of undercooled aqueous solutions: experimental study of free dendritic growth in cylindrical geometry. Int J Heat Mass Transfer 49:1876–1884

    CAS  Google Scholar 

  • Bam NB, Randolph TW, Cleland JL (1995) Stability of protein formulations: investigation of surfactant effects by a novel EPR spectroscopic technique. Pharm Res 12(1):2–11

    PubMed  CAS  Google Scholar 

  • Bee JS et al (2011) Effects of surfaces and leachables on the stability of biopharmaceuticals. J Pharm Sci 100(10):4158–4170

    CAS  Google Scholar 

  • Bhatnagar BS et al (2005) Post-thaw aging affects activity of lactate dehydrogenase. J Pharm Sci 94(6):1382–1388

    PubMed  CAS  Google Scholar 

  • Bhatnagar BS, Bogner RH, Pikal MJ (2007) Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm Dev Technol 12:505–523

    PubMed  CAS  Google Scholar 

  • Butler MF (2002a) Freeze-concentration of solute at the ice/solution interface studied by optical interferometry. Cryst Growth Des 2(6):541–548

    CAS  Google Scholar 

  • Butler MF (2002b) Freeze concentration of solutes at the ice/solution interface studied by optical interferometry. Cryst Growth Des 1(3):541–548

    Google Scholar 

  • Cao E et al (2003) Effect of freezing and thawing rates on denaturation of proteins in aqueous solutions. Biotechnol Bioeng 82(6):684–690

    PubMed  CAS  Google Scholar 

  • Carpenter JF, Change BS (1996) Lyophilization of protein pharmaceuticals. In: Avis K, Wu VL (eds) Biotechnology and biopharmaceutical manufacturing, processing and preservation. Interpharm, CRC, Buffalo Grove

    Google Scholar 

  • Carpenter JL, Crowe JH (1988) The mechanism of cryoprotection of proteins by solutes. Cryobiology 25(3):244–255

    PubMed  CAS  Google Scholar 

  • Carpenter JF, Crowe JH (1989) An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 28(9):3916–3922

    PubMed  CAS  Google Scholar 

  • Carpenter JF et al (1986) Cryoprotection of phosphofructokinase with organic solutes: characterization of enhanced protection in the presence of divalent cations. Arch Biochem Biophys 250(2):505–512

    PubMed  CAS  Google Scholar 

  • Carpenter JF, Prestrelski SJ, Arakawa T (1993) Separation of freezing- and drying-induced denaturation of lyophilized proteins using stress-specific stabilization. I. Enzyme activity and calorimetric studies. Arch Biochem Biophys 303(2):456–464

    PubMed  CAS  Google Scholar 

  • Chang BS, Randall CS (1992) Use of subambient thermal analysis to optimize protein lyophilization. Cryobiology 29:632–656

    CAS  Google Scholar 

  • Chang BS, Kendrick BS, Carpenter JF (1996) Surface-induced denaturation of proteins during freezing and its inhibition by surfactants. J Pharm Sci 85(12):1325–1330

    PubMed  CAS  Google Scholar 

  • Chen YH, Cui Z (2006) Effects of salts on the freezing denaturation of lactate dehydrogenase. Food Bioprod Process 84(C1):44–50

    CAS  Google Scholar 

  • Clegg JS (1982) Interrelationships between water and cell metabolism in Artemia cysts. IX. Evidence for organization of soluble cytoplasmic enzymes. Cold Spring Harb Symp Quant Biol 46(pt 1):23–37

    PubMed  Google Scholar 

  • Clegg JS et al (1982) Cellular responses to extreme water loss: the water-replacement hypothesis. Cryobiology 19(3):306–316

    PubMed  CAS  Google Scholar 

  • Crowe JH (1971) Anhydrobiosis: an unsolved problem. Am Nat 105:563–573

    Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    PubMed  CAS  Google Scholar 

  • Crowe JH, Crowe LM, Carpenter JF (1993) Preserving dry biomaterials: the water replacement hypothesis. Biopharm 6:40–43

    CAS  Google Scholar 

  • Daugherty AL, Mrsny RJ (2006) Formulation and delivery issues for monoclonal antibody therapeutics. Adv Drug Deliv Rev 58(5–6):686–706

    PubMed  CAS  Google Scholar 

  • Dawson PJ (1992) Effect of formulation and freeze-drying on the long-term stability of rDNA-derived cytokines. Dev Biol Stand 74:273–282

    PubMed  CAS  Google Scholar 

  • Dias CL et al (2010) The hydrophobic effect and its role in cold denaturation. Cryobiology 60:91–99

    PubMed  CAS  Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    PubMed  CAS  Google Scholar 

  • Dong J et al (2009) Freezing-induced phase separation and spatial microheterogeneity in protein solutions. J Phys Chem B 113(30):10081–10087

    PubMed  CAS  Google Scholar 

  • Fahy GM, Rall WF (2007) Vitrification: an overview. In: Tucker MJ, Liebermann J (eds) Vitrification in assisted reproduction. Informa Healthcare, London, pp 1–20

    Google Scholar 

  • Fishbein WN, Winkert JW (1977) Parameters of biological freezing damage in simple solutions: catalase. I. The characteristic pattern of intracellular freezing damage exhibited in a membraneless system. Cryobiology 14(4):389–398

    PubMed  CAS  Google Scholar 

  • Franks F (1993a) Storage stabilization of proteins. In: Franks F (ed) Protein biotechnology: isolation, characterization, and stabilization. Humana, Cambridge, pp 489–531

    Google Scholar 

  • Franks F (1993b) Solid aqueous solutions. Pure Appl Chem 65:2527–2537

    CAS  Google Scholar 

  • Franks F (2003) Scientific and technological aspects of aqueous glasses. Biophys Chem 105(2–3):251–261

    PubMed  CAS  Google Scholar 

  • Franks HS, Evans MW (1945) Free volume and entropy in condensed systems: III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J Chem Phys 13:507

    Google Scholar 

  • Franks F, Hatley RHM (1991) Stability of proteins at subzero temperatures; thermodynamics and ecological consequences. Pure Appl Chem 63:1367–1380

    CAS  Google Scholar 

  • Goff HD, Verspej E, Jermann D (2003) Glass transitions in frozen sucrose solutions are influenced by solute inclusions within ice crystals. Thermochim Acta 399(1–2):43–55

    CAS  Google Scholar 

  • Gombotz WR et al (1994) The stabilization of a human IgM monoclonal antibody with poly(vinylpyrrolidone). Pharm Res 11:624–632

    PubMed  CAS  Google Scholar 

  • Gomez G, Pikal MJ, Rodriguez-Hornedo N (2001) Effect of initial buffer composition on pH changes during far-from-equilibrium freezing of sodium phosphate buffer solutions. Pharm Res 18:90–97

    PubMed  CAS  Google Scholar 

  • Hatley RHM, Franks F, Mathias SF (1987) The stabilization of labile biochemicals by undercooling. Process Biochem 22:169–172

    CAS  Google Scholar 

  • Hawe A et al (2012) Forced degradation of therapeutic proteins. J Pharm Sci 101(3):895–913

    PubMed  CAS  Google Scholar 

  • Hillgren A, Lindgren J, Alden M (2002) Protection mechanism of tween 80 during freeze-thawing of a model protein, LDH. Int J Pharm 237:57–69

    PubMed  CAS  Google Scholar 

  • Hovorka S, Schoneich C (2001) Oxidative degradation of pharmaceuticals: theory, mechanisms and inhibition. J Pharm Sci 90:253–269

    PubMed  CAS  Google Scholar 

  • Izutsu KI, Kojima S (2000) Freeze-concentration separates proteins and polymer excipients into different amorphous phases. Pharm Res 17(10):1316–1322

    PubMed  CAS  Google Scholar 

  • Izutsu KI et al (1996) Effects of sugars and polymers on crystallization of poly(ethylene glycol) in frozen solutions: phase separation between incompatible polymers. Pharm Res 13:1393–1400

    PubMed  CAS  Google Scholar 

  • Jiang S, Nail SL (1998) Effect of process conditions on the recovery of protein activity after freezing and freeze-drying. Eur J Pharm Biopharm 45(3):249–257

    PubMed  CAS  Google Scholar 

  • Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63

    PubMed  CAS  Google Scholar 

  • Kolhe P, Badkar A (2011) Protein and solute distribution in drug substance containers during frozen storage and post-thawing: a tool to understand and define freezing-thawing parameters in biotechnology process development. Biotechnol Prog 27(2):494–504

    PubMed  CAS  Google Scholar 

  • Kolhe P, Amend E, Singh SK (2010) Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation. Biotechnol Prog 26(3):727–733

    PubMed  CAS  Google Scholar 

  • Kreilgaard L et al (1998) Effect of Tween 20 on freeze-thawing- and agitation-induced aggregation of recombinant human factor XIII. J Pharm Sci 87:1597–1603

    PubMed  CAS  Google Scholar 

  • Kueltzo LA et al (2008) Effects of solution conditions, processing parameters, and container materials on aggregation of a monoclonal antibody during freeze-thawing. J Pharm Sci 97(5):1801–1812

    PubMed  CAS  Google Scholar 

  • Lam XM, Constantino HR (1996) Replacing succinate with glycolate buffer improves the stability of lyophilized interferon. Int J Pharm 142:85–95

    CAS  Google Scholar 

  • Lam XM, Yang JY, Cleland JL (1997) Anti-oxidants for prevention of methionine oxidation in recombinant monoclonal antibody HER2. J Pharm Sci 86(11):1250–1255

    PubMed  CAS  Google Scholar 

  • Langer JS, Sekerka RF, Fujioka T (1978) Evidence for a universal law of dendritic growth rates. J Cryst Growth 44(4):414–418

    CAS  Google Scholar 

  • Lazar KL, Patapoff TW, Sharma VK (2010) Cold denaturation of monoclonal antibodies. MAbs 2(1):42–52

    PubMed  Google Scholar 

  • Lee HJ et al (2011) Molecular origins of surfactant-mediated stabilization of protein drugs. Adv Drug Deliv Rev 63:1160–1171

    PubMed  CAS  Google Scholar 

  • Levine H, Slade L (1988) Thermomechanical properties of small carbohydrate-water glasses and rubbers. J Chem Soc Faraday Trans 84:2619–2633

    CAS  Google Scholar 

  • Levine H, Slade L (1992) Another view of trehalose for drying and stabilizing biological materials. Biopharm 5(5):36–40

    CAS  Google Scholar 

  • Lopez CF, Darst RK, Rossky PJ (2008) Mechanistic elements of protein cold denaturation. J Phys Chem B 112:5961–5967

    PubMed  CAS  Google Scholar 

  • Maity H, Karkaria C, Davagnino J (2009) Mapping of solution components, pH changes, protein stability and the elimination of protein precipitation during freeze-thawing of fibroblast growth factor 20. Int J Pharm 378(1–2):122–135

    PubMed  CAS  Google Scholar 

  • Mehl PL (1996) Crystallization and vitrification in aqueous glass-forming solutions. In: Steponkus PL (ed) Advances in low-temperature biology, vol 3. Elsevier, Amsterdam, pp 185–255

    Google Scholar 

  • Minton AP (2005) Models for excluded volume interaction between an unfolded protein and rigid macromolecular cosolutes: macromolecular crowding and protein stability revisited. Biophys J 88:971–985

    PubMed  CAS  Google Scholar 

  • Mishima O, Stanley HE (1998) The relationship between supercooled and glassy water. Nature 396:329–335

    CAS  Google Scholar 

  • Mozhaev VV, Martinek K (1984) Structure stability relationship in proteins: new approaches to stabilizing enzymes. Enzyme Microb Technol 6:50–59

    CAS  Google Scholar 

  • Mozhaev VV, Martinek K (1990) Pharmacokinetics and pharmacodistribution of macromolecules. Adv Drug Deliv Rev 4(3):387–419

    CAS  Google Scholar 

  • Nema S, Avis KE (1993) Freeze-thaw studies of a model protein, lactate dehydrogenase, in the presence of cryoprotectants. J Parenter Sci Technol 47(2):76–83

    PubMed  CAS  Google Scholar 

  • Ohtake S, Kita Y, Arakawa T (2011) Interactions of formulation excipients with proteins in solution and in the dried state. Adv Drug Deliv Rev 63(13):1053–1073

    PubMed  CAS  Google Scholar 

  • Sundaramurthi P et al (2010) Crystallization of trehalose in frozen solutions and its phase behavior during drying. Pharm Res 27(11):2374–2383

    Google Scholar 

  • Philo JS, Arakawa T (2009) Mechanisms of protein aggregation. Curr Pharm Biotechnol 10:348–351

    PubMed  CAS  Google Scholar 

  • Piedmonte DM et al (2006) Sorbitol crystallization can lead to protein aggregation in frozen protein formulations. Pharm Res 24(1):136–146

    PubMed  Google Scholar 

  • Pikal MJ (1994) Freeze-drying of proteins: process, formulation and stability. In: Cleland JL, Langer R (eds) Formulation and delivery of peptides and proteins. American Chemical Society, Washington, DC, pp 120–133

    Google Scholar 

  • Pikal MJ et al (1991) The effects of formulation variables on the stability of freeze-dried human growth hormone. Pharm Res 8:427–436

    PubMed  CAS  Google Scholar 

  • Pikal-Cleland KA, Rodriguez-Hornedo N (2000) Protein denaturation during freezing and thawing in phosphate buffer systems: monomeric and tetrameric B-galactosidase. Arch Biochem Biophys 384:398–406

    PubMed  CAS  Google Scholar 

  • Pikal-Cleland KA et al (2002) Effect of glycine on pH changes and protein stability during freeze–thawing in phosphate buffer systems. J Pharm Sci 91:1969–1979

    PubMed  CAS  Google Scholar 

  • Privalov PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25(4):281–305

    PubMed  CAS  Google Scholar 

  • Privalov PL, Gill SJ (1988) Stability of protein structure and hydophobic interaction. Adv Protein Chem 39:191–234

    PubMed  CAS  Google Scholar 

  • Qi P et al (2009) Characterization of the photodegradation of a human IgG1 monoclonal antibody formulated as a high-concentration liquid dosage form. J Pharm Sci 98:3117–3130

    PubMed  CAS  Google Scholar 

  • Randolph TW (1997) Effects of phase separating systems on lyophilized hemoglobin. J Pharm Sci 86(11):1198–1203

    PubMed  CAS  Google Scholar 

  • Randolph TW, Jones LT (2002) Surfactant-protein interactions. In: Carpenter JF, Manning MC (eds) Rational design of stable protein formulations: theory and practice. Kluwer Academic, New York, pp 159–175

    Google Scholar 

  • Rathore N, Rajan RS (2008) Current perspectives on stability of protein drug products during formulation, fill and finish operations. Biotechnol Prog 24(3):504–514

    PubMed  CAS  Google Scholar 

  • Reategui E, Aksan A (2009) Effects of the low-temperature transitions of confined water on the structures of isolated and cytoplasmic proteins. J Phys Chem B 113(39):13048–13060

    PubMed  CAS  Google Scholar 

  • Rosenberg AS (2006) Effects of protein aggregates: an immunologic perspective. AAPS J 8:E501–E507

    PubMed  Google Scholar 

  • Sarciaux J-M et al (1998) Effect of species, processing conditions and phosphate buffer composition on IgG aggregation during lyophilization. Pharm Sci 1(suppl):545

    Google Scholar 

  • Schneider W et al (1973) Demonstration of subliminal erythrocytic immune antibodies by cryoconcentration of the sera. Med Welt 24(10):367–368

    PubMed  CAS  Google Scholar 

  • Schoof H et al (2000) Dendritic ice morphology in unidirectionally solidified collagen suspensions. J Cryst Growth 209:122–129

    CAS  Google Scholar 

  • Schwegman JJ, Carpenter JF, Nail SL (2009) Evidence of partial unfolding of proteins at the ice/freeze-concentrate interface by infrared microscopy. J Pharm Sci 98(9):3239–3246

    PubMed  CAS  Google Scholar 

  • Shamlou PA et al (2007) A new scaleable freeze-thaw technology for bulk protein solutions. Biotechnol Appl Biochem 46(pt 1):13–26

    PubMed  CAS  Google Scholar 

  • Singh SK et al (2009a) Freezing of biologics—a practitioner’s review. Part II: practical advice. Bioprocess Int 7(10):34–42

    CAS  Google Scholar 

  • Singh SK et al (2009b) Freezing of biologics—a practitioner’s review. Part I: fundamental aspects. Bioprocess Int 7(9):32–44

    CAS  Google Scholar 

  • Singh SK et al (2011) Frozen state storage instability of a monoclonal antibody: aggregation as a consequence of trehalose crystallization and protein unfolding. Pharm Res 28(4):873–885

    PubMed  CAS  Google Scholar 

  • Soliman FS, Van den Berg L (1971) Factors affecting freezing damage of lactate dehydrogenase. Cryobiology 8(1):73–78

    PubMed  CAS  Google Scholar 

  • Stoll VS, Blanchard JS (1990) Buffers: principles and practice. Methods Enzymol 182:24–38

    PubMed  CAS  Google Scholar 

  • Strambini GB, Gallieneri E (1996) Proteins in frozen solutions: evidence of ice-induced partial unfolding. Biophys J 70(February):971–976

    PubMed  CAS  Google Scholar 

  • Sundaramurthi P, Suryanarayanan R (2011) Thermophysical properties of carboxylic and amino acid buffers at subzero temperatures: relevance to frozen state stabilization. J Phys Chem B 115(21):7154–7164

    PubMed  CAS  Google Scholar 

  • Tanaka K, Takeda T, Miyajima K (1991) Cryoprotective effect of saccharides on denaturation of catalase by freeze-drying. Chem Pharm Bull 39:1091–1094

    CAS  Google Scholar 

  • Tang XC, Pikal MJ (2005) The effect of stabilizers and denaturants on the cold denaturation temperatures of proteins and implications for freeze-drying. Pharm Res 22(7):1167–1175

    PubMed  CAS  Google Scholar 

  • Valliere-Douglass JF et al (2010) Photochemical degradation of citrate buffers leads to covalent acetonation of recombinant protein therapeutics. Protein Sci 19(11):2152–2163

    PubMed  CAS  Google Scholar 

  • Van den Berg L, Rose D (1959) Effect of freezing on the pH and composition of sodium and potassium phosphate solutions: the reciprocal system KH2PO4-Na2HPO4-H2O. Arch Biochem Biophys 81:319–329

    Google Scholar 

  • Wang W (1999) Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm 185:129–188

    PubMed  CAS  Google Scholar 

  • Ward KR et al (1999) Protection of the enzyme l-asparaginase during lyophilisation—a molecular modelling approach to predict required level of lyoprotectant. Int J Pharm 187:153–162

    PubMed  CAS  Google Scholar 

  • Wasylaschuk WR et al (2007) Evaluation of hydroperoxides in common pharmaceutical excipients. J Pharm Sci 96:106–116

    PubMed  CAS  Google Scholar 

  • Weiss WF IV, Young TM, Roberts CJ (2008) Principles, approaches, and challenges for predicting protein aggregation rates and shelf life. J Pharm Sci 98(4):1246–1277

    Google Scholar 

  • Wilkins J, Sesin D, Wisniewski R (2001) Large-scale cryopreservation of biotherapeutic products. Innov Pharm Technol 1(8):174–180

    Google Scholar 

  • Zhou S et al (2010) Comparative evaluation of disodium edetate and diethylene triaminepentaacetic acid as iron chelators to prevent metal catalyzed destabilization of a therapeutic monoclonal antibody. J Pharm Sci 99(10):4239–4250

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari R. Desu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Desu, H.R., Narishetty, S.T. (2013). Challenges in Freeze–Thaw Processing of Bulk Protein Solutions. In: Kolhe, P., Shah, M., Rathore, N. (eds) Sterile Product Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7978-9_7

Download citation

Publish with us

Policies and ethics