Skip to main content

Particulate Matter in Sterile Parenteral Products

  • Chapter
  • First Online:
Sterile Product Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 6))

Abstract

Particulate matter, visible or subvisible, in sterile parenteral products is regarded as a critical quality attribute, impacting safety of the product. Particles can arise from many sources foreign, intrinsic, or inherent to the product, the latter having particular emphasis for biopharmaceuticals. This chapter discusses the nature of these particles, the safety concerns behind the need to control them, and the various techniques available to monitor them. The concern with inherent proteinaceous particles in biopharmaceuticals has led to a large amount of research in this area and the development of a number of novel techniques and applications. The chapter also covers some special topics of current interest including the definition of “essentially free,” topics related to the measurement and control of subvisible particles under 10 μm in biopharmaceuticals, the new USP<787> chapter, as well as guidance for addressing particles related regulatory queries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldrich DS (2010) Particulate matter: subvisible. In: Nema S, Ludwig JD (eds) Pharmaceutical dosage forms parenteral medications, vol 2, Facility design, sterilization and processing. Informa Healthcare, New York, pp 114–145

    Google Scholar 

  • Algvere P, Wallow IH, Martini B (1988) The development of vitreous membranes and retinal detachment induced by intravitreal carbon microparticles. Graefes Arch Clin Exp Ophthalmol 226:471–478

    Article  PubMed  CAS  Google Scholar 

  • Allen T (1990) Particle size measurement. Chapman Hall, London

    Book  Google Scholar 

  • Anonymous (2010) Monoclonal antibodies for human use. Pharmeuropa 22(1):49–53

    Google Scholar 

  • Anonymous (2011) Particulate contamination. Risk prevention in infusion therapy. Available at www.safeinfusiontherapy.com. Accessed Jan 2012

  • Anonymous (2012) Usp<787> subvisible particulate matter in therapeutic protein injections. [New] (USP36-NF31 1S). Pharmacopeial Forum 38(3)

    Google Scholar 

  • Anonymous (2013) USP<787> Subvisible particulate matter in therapeutic protein injections. [New] (USP37-NF32 1S). Pharmacopeial Forum 39(2)

    Google Scholar 

  • Arakawa T, Philo JS, Ejima D, Sato H, Tsumoto K (2007a) Aggregation analysis of therapeutic proteins, part 3. Principles and optimization of field-flow fractionation. Bioprocess Int 5(11):52–70

    CAS  Google Scholar 

  • Arakawa T, Philo JS, Ejima D, Tsumoto K, Arisaka F (2007b) Aggregation analysis of therapeutic proteins, part 2. Analytical ultracentrifugation and dynamic light scattering. Bioprocess Int 5(4):38–47

    Google Scholar 

  • Ball PA (2003) Intravenous in-line filters: filtering the evidence. Curr Opin Clin Nutr Metab Care 6:319–325

    PubMed  Google Scholar 

  • Ball PA, Bethune K, Fox J, Ledger R, Barnett M (2001) Particulate contamination in parenteral nutrition solutions: still a cause for concern? Nutrition 17:926–929

    Article  PubMed  CAS  Google Scholar 

  • Barber TA (2000) Control of particulate matter contamination in healthcare manufacturing. Interpharm Press, Denver, CO

    Google Scholar 

  • Barnard JG, Singh SK, Randolph TW, Carpenter JF (2011) Subvisible particle counting provides a sensitive method of detecting and quantifying aggregation of monoclonal antibody caused by freeze-thawing: insights into the roles of particles in the protein aggregation pathway. J Pharm Sci 100(2):492–503

    Article  PubMed  CAS  Google Scholar 

  • Barnard JG, Rhyner MN, Carpenter JF (2012) Critical evaluation and guidance for using the coulter method for counting subvisible particles in protein solutions. J Pharm Sci 101(1):140–153

    Article  PubMed  CAS  Google Scholar 

  • Borchert SJ, Abe A, Aldrich DS, Fox LE, Freeman JE, White RD (1986) Particulate matter in parenteral products: a review. J Parenter Sci Technol 40(5):212–241

    PubMed  CAS  Google Scholar 

  • Brazeau G, Sauberan SL, Gatlin L, Wisniecki P, Shah J (2011) Effect of particle size of parenteral suspensions on in vitro muscle damage. Pharm Dev Technol 16(6):591–598

    Article  PubMed  CAS  Google Scholar 

  • Brown L (2009) Imaging particle analysis: resolution and sampling considerations. Available at http://fluidimagingcom. Accessed Dec 2011

  • Burg TP, Godin M, Knudsen SM, Shen W, Carlson G, Foster JS, Babcock K, Manalis SR (2007) Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446:1066–1069

    Article  PubMed  CAS  Google Scholar 

  • Cao S, Jiang Y, Narhi L (2010) A light-obscuration method specific for quantifying subvisible particles in protein therapeutics. Pharmacopeial Forum 36(3):824–834

    Google Scholar 

  • Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJA, Middaugh CR, Winter G, Fan YX, Kirshner S, Verthelyi D, Kozlowski S, Clouse KA, Swann PG, Rosenberg A, Cherney B (2009) Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. J Pharm Sci 98(4):1202–1205

    Article  Google Scholar 

  • Carpenter JF, Cherney B, Lubinecki A, Ma S, Marszal E, Mire-Sluis A, Nikolai T, Novak J, Raheb J, Simak J (2010a) Meeting report on protein particles and immunogenicity of therapeutic proteins: filling in the gaps in risk evaluation and mitigation. Biologicals 38:602–611

    Article  PubMed  Google Scholar 

  • Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJA, Middaugh CR, Winter G (2010b) Potential inaccurate quantitation and sizing of protein aggregates by size exclusion chromatography: essential need to use orthogonal methods to assure the quality of therapeutic protein products. J Pharm Sci 99(5):2200–2208

    Article  PubMed  CAS  Google Scholar 

  • Chrai S, Clayton R, Mestrandrea L, Myers T, Raskin R, Sokol M, Willis C (1987) Limitations in the use of HIAC for product particle counting. PDA J Parenter Sci Technol 41(6):209–214

    CAS  Google Scholar 

  • Das T, Nema S (2008) Protein particulate issues in biologics development. Am Pharm Rev 11(4):52–57

    CAS  Google Scholar 

  • Demeule B, Palais C, Machaidze G, Gurny R, Arvinte T (2009) New methods allowing the detection of protein aggregates. A case study on trastuzumab. mAbs 1(2):142–150

    Article  PubMed  Google Scholar 

  • Demeule B, Messick S, Shire SJ, Liu J (2010) Characterization of particles in protein solutions: reaching the limits of current technologies. AAPS J 12(4):708–715

    Article  PubMed  CAS  Google Scholar 

  • den Engelsman J, Garidel P, Smulders R, Koll H, Smith B, Bassarab S, Seidl A, Hainzl O, Jiskoot W (2011) Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm Res 28(4):920–933

    Article  Google Scholar 

  • Dewan PA, Stefanek W, Byard RW (1995) Long-term histological response to intravenously injected teflon and silicone in a rat model. Pediatr Surg Int 10(2–3):129–133

    Google Scholar 

  • Dungan DJ (1968) Particulate contamination in pharmaceutical preparations for injection. Aust J Pharm 49:499–564

    Google Scholar 

  • Fagan DT, Ahuja E, Bares D, Hacche L, Lenzie W, Murphy J (2001) Compendial standard for subvisible particulate matter in ophthalmic solutions: results of an industry collaborative study and proposed standards. Pharmacopeial Forum 27(5):3166–3168

    Google Scholar 

  • Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res 27(5):796–810

    Article  PubMed  CAS  Google Scholar 

  • Fradkin AH, Carpenter JF, Randolph TW (2009) Immunogenicity of aggregates of recombinant human growth hormone in mouse models. J Pharm Sci 98(9):3247–3264

    Article  PubMed  CAS  Google Scholar 

  • Fradkin AH, Carpenter JF, Randolph TW (2011) Glass particles as an adjuvant: a model for adverse immunogenicity of therapeutic proteins. J Pharm Sci 100(11):4953–4964

    Article  PubMed  CAS  Google Scholar 

  • Garidel P, Kebbel F (2010) Protein therapeutics and aggregates characterization by photon correlation spectroscopy. An application for high-concentration liquid formulations. Bioprocess Int 8(3):38–47

    CAS  Google Scholar 

  • Graham MD (2003) The Coulter principle: foundation of an industry. J Assoc Lab Autom 8(6):72–81

    Article  Google Scholar 

  • Greb E (2011) Scrutinizing the subvisible. Pharm Technol 35(4):44–48

    Google Scholar 

  • Gregory J (1998) Turbidity and beyond. Filtr Sep 35(1):63–67

    Article  CAS  Google Scholar 

  • Hawe A, Hulse WH, Jiskoot W, Forbes RT (2011) Taylor dispersion analysis compared to dynamic light scattering for the size analysis of therapeutic peptides and proteins and their aggregates. Pharm Res 28(9):2302–2310

    Article  PubMed  CAS  Google Scholar 

  • Hickey MB, Waggener S, Gole D, Jimidar I, Vermeersch H, Ratanabanangkoon P, Tinke AP, Almarsson O (2011) Complexities of particulate matter measurement in parenteral formulations of small-molecule amphiphilic drugs. AAPS PharmSciTech 12(1):248–254

    Article  PubMed  CAS  Google Scholar 

  • Huang CT, Sharma D, Oma P, Krishnamurthy R (2008) Quantitation of protein particles in parenteral solutions using micro-flow imaging. J Pharm Sci 98(9):3058–3071

    Article  Google Scholar 

  • Hulse WH, Forbes RT (2011) A nanolitre method to determine the hydrodynamic radius of proteins and small molecules by Taylor dispersion analysis. Int J Pharm 411:64–68

    Article  PubMed  CAS  Google Scholar 

  • Iacocca RG, Allgeier M (2007) Corrosive attack of glass by a pharmaceutical compound. J Mater Sci 42:801–811

    Article  CAS  Google Scholar 

  • Iacocca RG, Allgeier M, Bustard B, Dong X, Foubert M, Hofer J, Peoples S, Shelbourn T (2010) Factors affecting the chemical durability of glass used in the pharmaceutical industry. AAPS PharmSciTech 11(3):1340–1349

    Article  PubMed  CAS  Google Scholar 

  • Jamet X (1988) Influence of packaging material and of appropriate measures during manufacturing on the particulate content of small volume parenterals. Pharm Ind 50(1):108–110

    CAS  Google Scholar 

  • Joubert MK, Luo Q, Nashed-Samuel Y, Wypych J, Narhi LO (2011) Classification and characterization of therapeutic antibody aggregates. J Biol Chem 286(28):25118–25133

    Article  PubMed  CAS  Google Scholar 

  • Kahook MY, Liu L, Rucyzki P, Mandava N, Carpenter JF, Petrash JM, Ammar DA (2010) High molecular weight aggregates in repackaged bevacizumab. Retina 30(6):887–892

    Article  PubMed  Google Scholar 

  • Kirkpatrick CJ, Lehr HA, Otto M, Bittinger F, Rangoonwala R (1999) Clinical implications of circulating particulate contamination of parenteral injections. A Review. Crit Care Shock 4:166–173

    Google Scholar 

  • Knapp JZ (1999a) The effect of validation on non-destructive particle inspection. PDA J Parenter Sci Technol 53(3):108–110

    CAS  Google Scholar 

  • Knapp JZ (1999b) The scientific basis for visible particle inspection. PDA J Pharm Sci Technol 53(6):291–302

    PubMed  CAS  Google Scholar 

  • Kuramoto K, Shoji T, Nakagawa Y (2006) Usefulness of the final filter of the iv infusion set in intravenous administration of drugs—contamination of injection preparations by insoluble microparticles and its causes. Yakugaku Zasshi 126(4):289–295

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Kirchmeier M, Mach H (2011a) Monoclonal antibody aggregation intermediates visualized by atomic force microscopy. J Pharm Sci 100(2):416–423

    Article  PubMed  CAS  Google Scholar 

  • Lee KR, Chae YJ, Cho SE, Chung SJ (2011b) A strategy for reducing particulate contamination on opening glass ampoules and development of evaluation methods for its application. Drug Dev Ind Pharm 37(12):1394–1401

    Article  PubMed  CAS  Google Scholar 

  • Lehr H-A, Brunner J, Rangoonwala R, Kirkpatrick CJ (2002) Particulate matter contamination of intravenous antibiotics aggravates loss of functional capillary density in postischemic striated muscle. Am J Respir Crit Care Med 165:514–520

    Article  PubMed  Google Scholar 

  • Li B, Flores J, Corvari V (2007) A simple method for the detection of insoluble aggregates in protein formulations. J Pharm Sci 96(7):1840–1843

    Article  PubMed  CAS  Google Scholar 

  • Ludwig DB, Trotter JT, Gabrielson JP, Carpenter JF, Randolph TW (2011) Flow cytometry: a promising technique for the study of silicone oil-induced particulate formation in protein formulations. Anal Biochem 410(2):191–199

    Article  PubMed  CAS  Google Scholar 

  • Mach H, Bhambhani A, Meyer BK, Burek S, Davis H, Blue JT, Evans RK (2011) The use of flow cytometry for the detection of subvisible particles in therapeutic protein formulations. J Pharm Sci 100(5):1671–1678

    Article  PubMed  CAS  Google Scholar 

  • Madsen RE, Cherris RT, Shabushnig JG, Hunt DG (2009) Visible particles in injections—a history and a proposal to revise USP General chapter Injections <1> Pharmacopeial Forum 35(5):1383–1387

    Google Scholar 

  • Mahler H-C, Freiss W, Grauschopf U, Keise S (2009) Protein aggregation: pathways, induction factors and analysis. J Pharm Sci 98(9):2909–2934

    Article  PubMed  CAS  Google Scholar 

  • Melchore JA (2010) Sound practices for consistent human visual inspection. AAPS PharmSciTech 12(1):215–221

    Article  Google Scholar 

  • Mitchell JP (2000) Particle standards: their development and application. KONA Powder Part 18:41–59

    CAS  Google Scholar 

  • Munsch C, Rosenfeldt F, Chang V, Newman M, Davis B (1991) Absence of particle-induced coronary vasoconstriction during cardioplegic infusion: is it desirable to use a microfilter in the infusion line? J Thorac Cardiovasc Surg 101(3):473–480

    PubMed  CAS  Google Scholar 

  • Narhi LO, Jiang Y, Cao S, Benedek K, Shnek D (2009) A critical review of analytical methods for subvisible and visible particles. Curr Pharm Biotechnol 10(4):378–381

    Article  Google Scholar 

  • Narhi L, Schmit J, Bechtold-Peters K, Sharma D (2012) Classification of protein aggregates. J Pharm Sci 101(2):493–498

    Article  PubMed  CAS  Google Scholar 

  • Nath N, McNeal E, Obenhuber D, Pillari B, Shelton L, Stevens-Riley M, Sweeney N (2004) Particulate contaminants of intravenous medication and the limits set by USP General chapter <788> Pharmacopeial Forum 30(6):2272–2280

    Google Scholar 

  • Nayak A, Colandene J, Bradford V, Perkins M (2011) Characterization of subvisible particle formation during the filling pump operation of a monoclonal antibody solution. J Pharm Sci 100(10):4198–4204

    Article  CAS  Google Scholar 

  • Newton DW, Driscoll DF (2008) Calcium and phosphate compatibility: revisited again. Am J Health Syst Pharm 65(1):73–80

    Article  PubMed  CAS  Google Scholar 

  • Oma P, Sharma DK, King D (2010) Flow microscopy: dynamic image analysis for particle counting. Pharmacopeial Forum 36(1):311–320

    Google Scholar 

  • Pavanetto F, Conti B, Genta I, Ponci R, Montanari L, Grassi M (1989) Particulate matter test in small volume parenterals: critical aspects in sampling methodology. Farmaco 44(6):633–643

    PubMed  CAS  Google Scholar 

  • Philo JS (2006) Is any measurement method optimal for all aggregate sizes and types? AAPS J 8(3):E564–E571

    Article  PubMed  CAS  Google Scholar 

  • Philo JS (2009) A critical review of methods for size characterization of non-particulate protein aggregates. Curr Pharm Biotechnol 10(4):359–372

    Article  PubMed  CAS  Google Scholar 

  • Philo JS, Arakawa T (2009) Mechanisms of protein aggregation. Curr Pharm Biotechnol 10(4):348–351

    Article  PubMed  CAS  Google Scholar 

  • Piecoro JJ, Goodman NL, Wheeler WE, Gwilt PR, Rapp RP (1975) Particulate matter in reconstituted amphotericin b and assay of filtered solutions of amphotericin b. Am J Hosp Pharm 32(4):381–384

    PubMed  CAS  Google Scholar 

  • Pisal DS, Middaugh CR, Bankert RB, Balu-Iyer SV (2012) Native like aggregates of factor viii (FVIII) are immunogenic in von willebrand factor deficient (vWF−/−) and in hemophilia-A mice. J Pharm Sci 101(6):2055–2065

    Article  PubMed  CAS  Google Scholar 

  • Rathore N, Chen C, Gonzalez O, Ji W (2009) Challenges and strategies for implementing automated visual inspection for biopharmaceuticals. Pharm Technol 33(11 Nov suppl):s25–s29

    Google Scholar 

  • Rhyner MN (2011) The Coulter principle for analysis of subvisible particles in protein formulations. AAPS J 13(1):54–58

    Article  PubMed  CAS  Google Scholar 

  • Ripple DC, Wayment JR, Carrier MJ (2011) Standards for the optical detection of protein particles. Am Pharm Rev 14(5):90–96

    CAS  Google Scholar 

  • Rosenberg AS (2006) Effect of protein aggregates: an immunologic perspective. AAPS J 8(3):E501–E507

    Article  PubMed  Google Scholar 

  • Rubino JT, Chan LL, Walker JT, Segretario J, Everlof JG, Hussain MA (1999) Photoinduced particulate matter in a parenteral formulation for bisnafide, an experimental antitumor agent. Pharm Dev Technol 43(3):439–447

    Article  Google Scholar 

  • Russel JH (1970) Pharmaceutical applications of filtration. J Hosp Pharm 28:125–126

    Google Scholar 

  • Sadar MJ (1998) Turbidity science. Technical information series—booklet no 11. Available at www.hach.com. Accessed Nov 2011

  • Sauerborn M, Brinks V, Jiskoot W, Schellekens H (2010) Immunological mechanism underlying the immune response to recombinant human protein therapeutics. Trends Pharmacol Sci 31(2):53–59

    Article  PubMed  CAS  Google Scholar 

  • Scherer TM, Leung S, Owyang L, Shire SJ (2012) Issues and challenges of sub-visible and submicron particulate analysis in protein solutions. AAPS J 14(2):236–243

    Article  PubMed  CAS  Google Scholar 

  • Sharma D, King D, Moore P, Oma P, Thomas D (2007) Flow microscopy for particulate analysis in parenteral and pharmaceutical fluids. Eur J Parenter Pharm Sci 12(4):97–101

    Google Scholar 

  • Sharma D, Oma P, Pollo MJ, Sukumar M (2010) Quantification and characterization of subvisible proteinaceous particles in opalescent mab formulations using micro-flow imaging. J Pharm Sci 99(6):2628–2642

    PubMed  CAS  Google Scholar 

  • Signoretti EC, Dell’Utri A, Paoletti L, Batisti D, Montanari L (1988) Parenteral solutions: nature of particulate matter. Drug Dev Ind Pharm 14(1):1–12

    Article  CAS  Google Scholar 

  • Singh SK (2011) Impact of product-related factors on immunogenicity of biotherapeutics. J Pharm Sci 100(2):354–387

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Toler MR (2012) Monitoring of subvisible particles in therapeutic proteins. In: Voynov V, Caravella JA (eds) Therapeutic proteins: methods and protocols. Springer Science+Business Media LLC, New York (Chapter 24)

    Google Scholar 

  • Singh SK, Afonina N, Awwad M, Bechtold-Peters K, Blue JT, Chou D, Cromwell M, Krause HJ, Mahler HC, Meyer BK, Narhi L, Nesta DP, Spitznagel T (2010) An industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics. J Pharm Sci 99(8):3302–3321

    Article  PubMed  CAS  Google Scholar 

  • Southall S, Ketkar A, Brisbane C, Nesta D (2011) Particle analysis as a formulation development tool. Am Pharm Rev 14(6):61–66

    CAS  Google Scholar 

  • Strehl R, Rombach-Riegraf V, Diez M, Egodage K, Bluemel M, Jeschke M, Koulov AV (2012) Discrimination between silicone oil droplets and protein aggregates in biopharmaceuticals: a novel multiparametric image filter for sub-visible particles in microflow imaging analysis. Pharm Res 29(2):594–602

    Article  PubMed  CAS  Google Scholar 

  • Toler MR, Nema S (2010) Visual inspection. In: Nema S, Ludwig JD (eds) Pharmaceutical dosage forms: parenteral medications, vol 3, Regulations, validation and the future. Informa Healthcare, New York, pp 52–70

    Google Scholar 

  • Turco S, Davis NM (1973) Clinical significance of particulate matter. A review of the literature. Hosp Pharm 8:137–140

    Google Scholar 

  • Tyagi AK, Randolph TW, Dong A, Maloney KM, Hitscherich C Jr, Carpenter JF (2009) IgG particle formation during filling pump operation: a case study of heterogeneous nucleation on stainless steel nanoparticles. J Pharm Sci 98(1):94–104

    Article  PubMed  CAS  Google Scholar 

  • Uemera O, Sato H, Terayama H, Nitta H, Ryokai J, Namiki G, Hattori H, Sato H (1998) Experimental ocular injuries caused by plastic particulate matters possibly contaminating ophthalmic solutions. Iyakuhin Kenkyu 29(11):793–807

    Google Scholar 

  • van Beers MMC, Sauerborn M, Gilli F, Brinks V, Schellekens H, Jiskoot W (2011) Oxidized and aggregated recombinant human interferon beta is immunogenic in human interferon beta transgenic mice. Pharm Res 28(10):2393–2402

    Article  PubMed  Google Scholar 

  • van Beers MMC, Gilli F, Schellekens H, Randolph TW, Jiskoot W (2012) Immunogenicity of recombinant human interferon beta interacting with particles of glass, metal, and polystyrene. J Pharm Sci 101(1):187–199

    Article  PubMed  Google Scholar 

  • van Gelder AM, Chowdhury ZK, Lawler DF (1999) Conscientious particle counting. J Am Water Works Assoc 91(12):64–76

    Google Scholar 

  • Weiss WFI, Young TM, Roberts CJ (2009) Principles, approaches, and challenges for predicting protein aggregation rates and shelf life. J Pharm Sci 98(4):1246–1277

    Article  PubMed  CAS  Google Scholar 

  • Wen Z-Q, Torraca G, Yee C, Li G (2007) Investigation of contaminants in protein pharmaceuticals in pre-filled syringes by multiple micro-spectroscopies. Am Pharm Rev 10(5):101–107

    CAS  Google Scholar 

  • Wuchner K, Buchler J, Spycher R, Dalmonte P, Volkin DB (2010) Development of a microflow digital imaging assay to characterize protein particulates during storage of a high concentration IgG1 monoclonal antibody formulation. J Pharm Sci 99(8):3343–3361

    Article  PubMed  CAS  Google Scholar 

  • Zhang A, Qi W, Singh SK, Fernandez EJ (2011) A new approach to explore the impact of freeze-thaw cycling on protein structure: hydrogen/deuterium exchange mass spectrometry (HX-MS). Pharm Res 28(5):1179–1193

    Article  PubMed  CAS  Google Scholar 

  • Zhang A, Singh SK, Shirts MR, Kumar S, Fernandez EJ (2012) Distinct aggregation mechanisms of monoclonal antibody under thermal and freeze-thaw stresses revealed by hydrogen exchange. Pharm Res 29(1):236–250

    Article  PubMed  Google Scholar 

  • Zolls S, Tantipolphan R, Wiggenhorn M, Winter G, Jiskoot W, Hawe A (2012) Particles in therapeutic protein formulations, Part 1: overview of analytical methods. J Pharm Sci 101(3):914–935

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Singh, S.K. (2013). Particulate Matter in Sterile Parenteral Products. In: Kolhe, P., Shah, M., Rathore, N. (eds) Sterile Product Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7978-9_14

Download citation

Publish with us

Policies and ethics